69,948 research outputs found

    Adaptive intermittent control: A computational model explaining motor intermittency observed in human behavior

    Get PDF
    It is a fundamental question how our brain performs a given motor task in a real-time fashion with the slow sensorimotor system. Computational theory proposed an influential idea of feed-forward control, but it has mainly treated the case that the movement is ballistic (such as reaching) because the motor commands should be calculated in advance of movement execution. As a possible mechanism for operating feed-forward control in continuous motor tasks (such as target tracking), we propose a control model called "adaptive intermittent control" or "segmented control," that brain adaptively divides the continuous time axis into discrete segments and executes feed-forward control in each segment. The idea of intermittent control has been proposed in the fields of control theory, biological modeling and nonlinear dynamical system. Compared with these previous models, the key of the proposed model is that the system speculatively determines the segmentation based on the future prediction and its uncertainty. The result of computer simulation showed that the proposed model realized faithful visuo-manual tracking with realistic sensorimotor delays and with less computational costs (i.e., with fewer number of segments). Furthermore, it replicated "motor intermittency", that is, intermittent discontinuities commonly observed in human movement trajectories. We discuss that the temporally segmented control is an inevitable strategy for brain which has to achieve a given task with small computational (or cognitive) cost, using a slow control system in an uncertain variable environment, and the motor intermittency is the side-effect of this strategy

    Action control, forward models and expected rewards : representations in reinforcement learning

    Get PDF
    Publisher Copyright: © 2021, The Author(s).The fundamental cognitive problem for active organisms is to decide what to do next in a changing environment. In this article, we analyze motor and action control in computational models that utilize reinforcement learning (RL) algorithms. In reinforcement learning, action control is governed by an action selection policy that maximizes the expected future reward in light of a predictive world model. In this paper we argue that RL provides a way to explicate the so-called action-oriented views of cognitive systems in representational terms.Peer reviewe

    Muscleless Motor synergies and actions without movements : From Motor neuroscience to cognitive robotics

    Get PDF
    Emerging trends in neurosciences are providing converging evidence that cortical networks in predominantly motor areas are activated in several contexts related to ‘action’ that do not cause any overt movement. Indeed for any complex body, human or embodied robot inhabiting unstructured environments, the dual processes of shaping motor output during action execution and providing the self with information related to feasibility, consequence and understanding of potential actions (of oneself/others) must seamlessly alternate during goal-oriented behaviors, social interactions. While prominent approaches like Optimal Control, Active Inference converge on the role of forward models, they diverge on the underlying computational basis. In this context, revisiting older ideas from motor control like the Equilibrium Point Hypothesis and synergy formation, this article offers an alternative perspective emphasizing the functional role of a ‘plastic, configurable’ internal representation of the body (body-schema) as a critical link enabling the seamless continuum between motor control and imagery. With the central proposition that both “real and imagined” actions are consequences of an internal simulation process achieved though passive goal-oriented animation of the body schema, the computational/neural basis of muscleless motor synergies (and ensuing simulated actions without movements) is explored. The rationale behind this perspective is articulated in the context of several interdisciplinary studies in motor neurosciences (for example, intracranial depth recordings from the parietal cortex, FMRI studies highlighting a shared cortical basis for action ‘execution, imagination and understanding’), animal cognition (in particular, tool-use and neuro-rehabilitation experiments, revealing how coordinated tools are incorporated as an extension to the body schema) and pertinent challenges towards building cognitive robots that can seamlessly “act, interact, anticipate and understand” in unstructured natural living spaces

    From humans to humanoids: The optimal control framework

    Get PDF
    AbstractIn the last years of research in cognitive control, neuroscience and humanoid robotics have converged to different frameworks which aim, on one side, at modeling and analyzing human motion, and, on the other side, at enhancing motor abilities of humanoids. In this paper we try to cover the gap between the two areas, giving an overview of the literature in the two fields which concerns the production of movements. First, we survey computational motor control models based on optimality principles; then, we review available implementations and techniques to transfer these principles to humanoid robots, with a focus on the limitations and possible improvements of the current implementations. Moreover, we propose Stochastic Optimal Control as a framework to take into account delays and noise, thus catching the unpredictability aspects typical of both humans and humanoids systems. Optimal Control in general can also easily be integrated with Machine Learning frameworks, thus resulting in a computational implementation of human motor learning. This survey is mainly addressed to roboticists attempting to implement human-inspired controllers on robots, but can also be of interest for researchers in other fields, such as computational motor control

    The Mechanics of Embodiment: A Dialogue on Embodiment and Computational Modeling

    Get PDF
    Embodied theories are increasingly challenging traditional views of cognition by arguing that conceptual representations that constitute our knowledge are grounded in sensory and motor experiences, and processed at this sensorimotor level, rather than being represented and processed abstractly in an amodal conceptual system. Given the established empirical foundation, and the relatively underspecified theories to date, many researchers are extremely interested in embodied cognition but are clamouring for more mechanistic implementations. What is needed at this stage is a push toward explicit computational models that implement sensory-motor grounding as intrinsic to cognitive processes. In this article, six authors from varying backgrounds and approaches address issues concerning the construction of embodied computational models, and illustrate what they view as the critical current and next steps toward mechanistic theories of embodiment. The first part has the form of a dialogue between two fictional characters: Ernest, the �experimenter�, and Mary, the �computational modeller�. The dialogue consists of an interactive sequence of questions, requests for clarification, challenges, and (tentative) answers, and touches the most important aspects of grounded theories that should inform computational modeling and, conversely, the impact that computational modeling could have on embodied theories. The second part of the article discusses the most important open challenges for embodied computational modelling

    Sampling in human cognition

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Brain and Cognitive Sciences, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 117-126).Bayesian Decision Theory describes optimal methods for combining sparse, noisy data with prior knowledge to build models of an uncertain world and to use those models to plan actions and make novel decisions. Bayesian computational models correctly predict aspects of human behavior in cognitive domains ranging from perception to motor control and language. However the predictive success of Bayesian models of cognition has highlighted long-standing challenges in bridging the computational and process levels of cognition. First, the computations required for exact Bayesian inference are incommensurate with the limited resources available to cognition (e.g., computational speed; and memory). Second, Bayesian models describe computations but not the processes that carry out these computations and fail to accurately predict human behavior under conditions of cognitive load or deficits. I suggest a resolution to both challenges: The mind approximates Bayesian inference by sampling. Experiments across a wide range of cognition demonstrate Monte-Carlo-like behavior by human observers; moreover, models of cognition based on specific Monte Carlo algorithms can describe previously elusive cognitive phenomena such as perceptual bistability and probability matching. When sampling algorithms are treated as process models of human cognition, the computational and process levels can be modeled jointly to shed light on new and old cognitive phenomena..by Edward Vul.Ph.D

    Function-Theoretic Explanation and the Search for Neural Mechanisms

    Get PDF
    A common kind of explanation in cognitive neuroscience might be called functiontheoretic: with some target cognitive capacity in view, the theorist hypothesizes that the system computes a well-defined function (in the mathematical sense) and explains how computing this function constitutes (in the system’s normal environment) the exercise of the cognitive capacity. Recently, proponents of the so-called ‘new mechanist’ approach in philosophy of science have argued that a model of a cognitive capacity is explanatory only to the extent that it reveals the causal structure of the mechanism underlying the capacity. If they are right, then a cognitive model that resists a transparent mapping to known neural mechanisms fails to be explanatory. I argue that a functiontheoretic characterization of a cognitive capacity can be genuinely explanatory even absent an account of how the capacity is realized in neural hardware

    Investigation of sequence processing: A cognitive and computational neuroscience perspective

    Get PDF
    Serial order processing or sequence processing underlies many human activities such as speech, language, skill learning, planning, problem-solving, etc. Investigating the neural bases of sequence processing enables us to understand serial order in cognition and also helps in building intelligent devices. In this article, we review various cognitive issues related to sequence processing with examples. Experimental results that give evidence for the involvement of various brain areas will be described. Finally, a theoretical approach based on statistical models and reinforcement learning paradigm is presented. These theoretical ideas are useful for studying sequence learning in a principled way. This article also suggests a two-way process diagram integrating experimentation (cognitive neuroscience) and theory/ computational modelling (computational neuroscience). This integrated framework is useful not only in the present study of serial order, but also for understanding many cognitive processes
    corecore