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1. Introduction

Human sensorimotor system contains many delay/lag elements in the control loop, 

including sensory processing, neuronal transmittion and muscle activation. It is a 

fundamental question how our brain achieves real-time motor control with this slow 

system. Computational theories have pointed out that feed-forward control with internal 

models is essential for overcoming this problem (Engel & Soechting, 2000; Kawato, 

1999; Kawato & Wolpert, 1998; Wolpert & Miall, 1996; Wolpert, Miall, & Kawato, 

1998). The validity of feed-forward control has been mainly discussed in the case of 

ballistic movements such as reaching, presumably because it assumes that motor 

commands be calculated before the movement onset. Nevertheless, feed-forward control 

must be indispensable also in continuous, environment-dependent motor tasks (such as 

target tracking) even though it requires motor planning for every motor action, because 

ordinary feedback control cannot effectively work with the large delay (Paul, 1981). 

In the present study, we propose a hypothetical control model called “adaptive 

intermittent control” or “segmented control” as a possible mechanism for operating 

feed-forward control in continuous motor tasks. The principle is that brain divides the 

time axis into discrete segments and executes feed-forward control in each segment. It is 

close to the scheme of model predictive control (MPC) proposed in the field of control 

theory (Maciejowski, 2002). 

Most control models for sensorimotor functions (especially for continuous motor tasks) 

implicitly assume that the control system is stationary: They keep receiving sensory 

information and producing motor commands in a seamless manner. However, it seems 

more plausible that the motor control process in our brain is temporally organized: 

Different computational processes (e.g., model estimation, future prediction and motor 

planning) work in a temporally non-uniform manner dependent on the internal and 

external events (Sakaguchi, 2007). One example of control models realizing such a 

non-stationary control process is “intermittent control,” which occasionally updates the 

control signals at certain sparse points in time (Karniel, 2013). This concept has been 

proposed in the fields of control theory, biological modeling and nonlinear dynamical 

system. As a classical work, Craik (1947, 1948) discussed the intermittent nature of the 

behavior observed in human operators in the control system, and other researchers (Keele, 

1968; Keele & Posner, 1968; Navas & Stark, 1968; Pew, 1966; Vince, 1948a, 1948b) 

have pointed out the intermittent mechanism of human motor control. As an example of 

recent studies, moreover, Gawthrop, Loram and their colleagues (Gawthrop, 2010; 

Gawthrop, Loram, Gollee, & Lakie, 2014; Gawthrop, Loram, Lakie, & Gollee, 2011; 

Gawthrop & Wang, 2006, 2009, 2010, 2011; Gollee, Mamma, Loram, & Gawthrop, 

2012; Lakie & Loram, 2006; Loram, Gawthrop, & Lakie, 2006; Loram, Gollee, Lakie, & 

Gawthrop, 2011; Loram, van de Kamp, Gollee, & Gawthrop, 2012; Ronco, Arsan, & 38 
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Gawthrop, 1999; van de Kamp, Gawthrop, Gollee, & Loram, 2013; Vieira, Loram, 

Muceli, Merletti, & Farina, 2012) have published a series of works proposing the 

intermittent control model from a viewpoint of control theory, and examined its validity 

from a viewpoint of biological modeling. Specifically, Gawthrop and Wang (2011) 

proposed a model based on model predictive control that updated motor commands only 

intermittently (“i.e., intermittent MPC”). This model has two types of command update 

rules: Clock-driven and event-driven. In the former type, the motor command is updated 

with fixed intervals (based on a time clock) while in the latter type, it is updated when the 

task error exceeds a specific threshold. One merit of intermittent control is to reducing the 

amount of computational cost because motor planning requires the heaviest calculation 

(i.e., optimization) in motor control process (see Section 4.4 for a related issue). Another 

merit is to be able to stabilize the control system with large sensorimotor delay, as we 

mention below. 

In the field of non-linear dynamical system, Minton and his colleagues (Cabrera & 

Milton, 2002, 2004; Hosaka, Ohira, Luciani, Cabrera, & Milton, 2006; Milton, Cabrera, 

& Ohira, 2008; Milton, Cabrera, et al., 2009; Milton et al., 2013; Milton, Ohira, et al., 

2009; Milton, Townsend, King, & Ohira, 2009) proposed a theoretical control model to 

discuss the phenomena caused by the interaction between delayed feedback and intrinsic 

noise. They picked up “stick balancing” as an example of human behavior and showed 

that their theory could explain the nature of human behavior, especially, the occurrence of 

“escape” (i.e., the fall of stick). They also showed that given an appropriate threshold for 

corrective action, the system could avoid escape (Milton et al., 2013).  

Therefore, the concept of intermittent control has been already discussed from various 

viewpoints. Here, we propose an adaptive intermittent control from a viewpoint of 

“system model of sensorimotor mechanism,” aiming to simulate the information 

processing in our brain. This model could be regarded as an expansion of the 

conventional intermittent MPC scheme, but includes a novel idea of adaptive 

determination of the timing of motor updates. As described above, previous intermittent 

control models update motor commands (or make corrective actions) in a passive 

manner: Clock-driven controllers update motor plan regularly (i.e., with intervals of a 

fixed length), and event-driven controllers update when the error exceeds a given 

threshold. In contrast, the proposed model updates motor plans dependent on the 

relationship between the prediction error and “reliability” of the prediction.  

Motor planning for feed-forward control is inevitably based on the future prediction, but 

the prediction is not necessarily correct, especially when the environment is not 

stationary: Motor plan based on wrong prediction might result in a task error. For 

minimizing the risk of this task error, shorter segment (i.e., more frequent motor update) 

is preferable. On the other hand, frequent update increases computational cost for motor 

planning. Coping with this cost/risk trade-off, the proposed model determines the 77 
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segment length adaptively according to the “reliability” of internal model (Sakaguchi & 78 

Takano, 2004), which is measured by the residual error in estimating the internal model 79 

(i.e., greater residue brings shorter segment). This adaptive segmentation is a key feature 80 

of the proposed model. 81 

With the intermittent control, it is expected that body motion may change discontinuously 82 

at segment boundaries because motor commands may sometimes change abruptly. This 83 

would be remarkably observed when the motor commands in the previous segment are 84 

planned based on erroneous prediction. In concert with this expectation, human motion 85 

often shows intermittent discontinuities with variable time intervals in continuous motor 86 

tasks (Beppu, Nagaoka, & Tanaka, 1987; Beppu, Suda, & Tanaka, 1984; Miall, Weir, & 87 

Stein, 1986, 1993; Sakaguchi, 2013; Wolpert, Miall, Winter, & Stein, 1992). More 88 

specifically, when people try to follow a moving target with their hand, the velocity 89 

profile of the hand movement shows small humps with variable time intervals even if the 90 

target moves smoothly. In the present article, we call this intermittent discontinuity found 91 

in movement trajectory “motor intermittency” though other researchers sometimes use 92 

this term to represent the discontinuities in the force profile instead of those in the 93 

velocity profile (e.g., Asai et al., 2009). Motor intermittency is commonly observed in 94 

various tracking tasks and never a measurement artifact. Previous researches have 95 

suggested that it originate from the update of motor commands based on visual feedback 96 

(Inoue & Sakaguchi, 2014; Miall, Weir, & Stein, 1993; Novak, Miller, & Houk, 2000; 97 

Pasalar, Roitman, & Ebner, 2005; Roitman, Massaquoi, Takahashi, & Ebner, 2004), and 98 

here we hypothesize that it should be the side effect of the abrupt change in motor 99 

commands resulting from intermittent control. 100 

Because the primary aim of the present study is to simulate the human sensorimotor 101 

process, replication of motor intermittency is an important issue for evaluating the 102 

model’s validity. In contrast, it seems that previous intermittent control models did not 103 

pay much attention to this point. Most control theory studies place importance on 104 

theoretically demonstrating its advantage as a control mechanism (i.e., to prove its 105 

stability or to prove good performance with less computational cost), rather than 106 

replicating human behavior. For example, Gawthrop et al. (2011) compared the tracking 107 

behaviors of human participants with those of their intermittent MPC controllers (Fig. 11 108 

of their article), but they neither mentioned the motor intermittency observed in human 109 

behavior (which can be readily found in panel (a) of Fig. 11) nor tried to replicate it. As 110 

an example of dynamical system studies, Minton et al. (Milton et al., 2013) dealt with the 111 

stick balancing problem and compared the stochastic properties of occurrence of failure 112 

between human participants and mathematical model, but they did not mention 113 

intermittent discontinuities observed in the trajectory data (Fig. 3 of their article): Their 114 

primary interest seems to be in the nature of non-linear dynamics caused by interaction 115 

between delayed feedback and intrinsic noise. 116 
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Here, we should note that “intermittent motor update” of the control mechanism and 117 

“motor intermittency” of human behavior are different things. The former indicates the 118 

internal computational process while the latter means the resultant phenomenon observed 119 

from the outside. Actually, the intermittent motor update cannot be necessarily detected 120 

as motor intermittency, as we will show in the computer simulation. 121 

In order to validate the proposed model, we performed computation simulation and 122 

behavioral experiment using a visuo-manual tracking task. We implemented several other 123 

control models as well as the proposed model, and compared their motion profiles with 124 

humans. We also analyzed the statistical properties of motor intermittency observed in 125 

the profiles. 126 

127 

2. Methods128 

2.1 Behavioral experiment 129 

We ran behavioral experiments to examine the nature of intermittent discontinuities in 130 

human hand movements in a visuo-manual target-tracking task. The experiment was 131 

similar to those in the previous studies (e.g., Miall, Weir, & Stein, 1993) but we 132 

conducted it in order to obtain detailed data not shown in the published articles. 133 

2.1.1 Participants 134 

Three naive graduate students (male, aged 22–24 yrs) participated in the experiment. All 135 

participants received an adequate explanation of the merits and demerits of participation 136 

in this research, and we obtained an informed consent form from all participants. They 137 

had normal or corrected-to-normal visual acuity and no significant neurological history. 138 

They were paid 1000 Japanese Yen (about 10 US dollars) for 1 hour.  139 

This experiment was approved by the University of Electro-Communications Institutional 140 

Review Board for Human Subjects Research, and was in accordance with the ethical 141 

standards in the Declaration of Helsinki. We obtained a written consent form from all 142 

participants. 143 

2.1.2 Apparatus 144 

Participants sat in front of a desk with their heads fixed by a chin rest. They put their 145 

index fingers on an air-floating slider (Daedalon, EA-01, Waldoboro, ME, USA), which 146 

moved forward and backward in a line with little friction. The slider position was 147 

measured by an optical position sensor (Keyence, IL-300, Osaka, Japan) with a sampling 148 

rate of 200 Hz. A vertical screen was set in front of the participants (distance of 2.1 m), 149 
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on which a green laser spot (target) and a red laser spot (cursor) were projected through 150 

galvano scanners (GSI, VM500, Bedford, MA, USA). Each moved vertically, with the 151 

target position controlled by experimental software and the cursor position determined by 152 

the slider position. The ratio of hand (slider) movement to cursor movement was 3:1 (10 153 

cm of hand movement produced 30 cm of cursor movement.) Hand position measured by 154 

the position sensor was indicated by the cursor position at delays of less than 5 ms, and 155 

could therefore be neglected. More detailed setup has been described elsewhere (Inoue & 156 

Sakaguchi, 2014). 157 

2.1.3 Task 158 

The task was to move the slider with the right hand so that the cursor tracked the target as 159 

precisely as possible. Various temporal patterns of target movement were used in the 160 

experiment, but here we show the results for the two types of target movements. One was 161 

a sinusoidal motion with a frequency of 0.3 Hz, and the other was a pseudo-random 162 

motion realized by summing four sinusoids with different temporal frequencies (0.073, 163 

0.117, 0.205, and 0.278 Hz) (Miall, Weir, & Stein, 1993). Specifically, target visual 164 

position at time t s was given by )2cos(3.0)( 0tftyT   (f0 = 0.3 Hz) in the sinusoidal 165 

condition, and,  )2cos()2cos()2cos()2cos(1.0)( 4321 tftftftftyT   ((f1, f2, f3, f4)166 

= (0.073, 0.117, 0.205, 0.278) Hz) in the peudo-random condition. In a strict sense, the 167 

target motion in the pseudo-random condition is deterministic and continuous, and the 168 

target behavior could be predicted within a short time span (~ hundreds of milliseconds) 169 

because it was rather slow (the frequencies of all components were lower than 0.3 Hz). 170 

However, it was difficult (almost impossible) for the participants to predict its future 171 

trajectory for a longer time span. This held also in the sinusoidal condition: Though the 172 

sinusoidal motion could be completely predicted in a mathematical sense, it was hard for 173 

participants to exactly predict its movement (in both spatial and temporal dimensions). 174 

The duration of a trial was 60 s, and participants performed the trials in the two 175 

conditions alternately for 20 times (10 trials for each condition), with dozens of seconds 176 

rest between each. Before starting the main experiment, they performed three trials for 177 

familiarization. 178 

2.1.4 Analysis 179 

In evaluating the tracking performance, we used the positional difference between the 180 

target and the cursor, together with the difference in their instantaneous phases. 181 

Specifically, we applied a Hilbert transform (“hilbert” function of Matlab software) to the 182 

target and hand trajectories to calculate their instantaneous phases. In addition, the 183 

discontinuous points in the human movement trajectory were extracted automatically 184 

using custom-made analysis software written in Matlab software (MathWorks, Natick, 185 

MA, USA). It detects the discontinuities by making use of the amplitude and phase 186 

information of the complex-valued continuous wavelet analysis, whose details has been 187 
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presented elsewhere (Inoue & Sakaguchi, 2015). Briefly, this software tried to detect a 188 

specific peak position in the jerk profile, making use of the continuous wavelet transform 189 

(with a Gaussian derivative kernel) of the velocity profile. A key is to combine the 190 

amplitude and phase information of multiple scales of complex-valued wavelet transform 191 

to find the singular points. Utilizing the nature of hand movement, moreover, this 192 

software stably detects the movement discontinuities without parameter tuning (i.e., 193 

parameter-free method). We investigated the temporal positions of the detected 194 

discontinuous points and their intervals separately for individual participants. The same 195 

analysis method was applied to the trajectory of the control models to compare the model 196 

behavior to human behavior. 197 

In showing the trajectory data in the result section, we applied 4th-order Butterworth 198 

filter (cut-off frequency: 10 Hz) to the positional data (“filtfilt” function of Matlab). The 199 

velocity data was obtained by the numerical differentiation to the filtered positional data. 200 

2.2 Adaptive Intermittent Control Model: Algorithm and Computer Simulation 201 

Experiment 202 

2.2.1 General structure and simulation settings 203 

We implemented the proposed model as in the block diagram shown in Fig. 1. We 204 

assumed that the system could continuously observe the position of the target and hand 205 

through the visual system. We also assumed that this information contains some 206 

fluctuations (i.e., observation noise), and that there is a delay (Dv) between the physical 207 

event and its perception. The motor command issued by the central motor system reaches 208 

the actuator with a delay (Dm). Here, we do not assume any motor noise because it is not 209 

essential for our problem. Visual and motor delays were set Dv = 100 ms and Dm = 50 ms, 210 

considering the facts that minimum conduction time between cortical neurons and 211 

peripheral sensorimotor organs are about 20 ms, and that delay of motor reaction for 212 

visual perturbation was at least 160 ms (Saunders & Knill, 2003). Note that we did not 213 

explicitly represent the time for central processing (i.e., motor planning), which were 214 

implicitly included in the visual and motor delays. Observation noise obeyed a Gaussian 215 

distribution N(0, 0.0001
2
) in the computer simulation experiment. Although this noise216 

little affected the overall tracking ability, its randomness modulated the microscopic (i.e., 217 

trial-by-trial) behavior of the control system. The forearm system was model with a 218 

second-order linear spring-mass-damper system with mass m and damper constant b. The 219 

normalized motor command u was translated into the muscle force (or joint torque) with 220 

maximum value F through a first-order lag element (time constant ). In the experiment, 221 

we set = 50 ms, m = 0.1 Kgm
2
, k = 0.1 Nm, b = 0.05 Nms, and F = 30 Nm, referring to222 

the physiological and mechanical properties of muscle activation and the forearm. All 223 

simulation experiments were performed with Matlab software. 224 

2.2.2 General flow of the control process 225 
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Before going into the detailed mechanism of the proposed model, we briefly outline the 226 

flow of information processing. 227 

In the proposed model, the system divides a continuous motor task into discrete segments, 228 

and calculates motor commands separately for each segment. The new segment generally 229 

starts when the previous segment is finished or when very large prediction error has been 230 

detected. When decided to start a new segment, the system first estimates the target 231 

motion model (that is, the target motion model is updated at every segment onset). In the 232 

computer simulation, this model was implemented as an auto-regressive (AR) model. An 233 

important assumption here is that the target motion is never regarded stationary, and the 234 

system adaptively updates motor plan according to the change in the target motion. 235 

Therefore, the system updates the target motion model (instead of using an identical 236 

motion model with updating state variables), and plans motor commands using the latest 237 

motion model. This is an advantage of adaptive intermittent control. In order to make this 238 

assumption viable, the AR model is estimated using the sensory data within the limited 239 

time range (say, 300 ms) just before the segment onset.  240 

Next to the target motion estimation, the system determines the segment length. Because 241 

motor planning spent considerable amount of computational cost, it is preferable to 242 

reduce the segment updates or to lengthen the segment length as much as possible. On the 243 

other hand, longer segment increases the risk of large tracking error (because motor 244 

commands are not modified within a segment) especially when the target motion model 245 

was incorrect. In order to make this trade-off, the system determines the segment length 246 

according to the “reliability of the target motion model,” which is determined by the sum 247 

of residual error when estimating the target motion model. The rationale is that larger 248 

residual error, degrading the reliability of the target motion model, means larger risk that 249 

the planed motor command might bring extremely large task error. This could happen, for 250 

example, when the nature of target motion is changing, when target motion is inherently 251 

random, or when the observation noise is large. In every case, it is too risky to plan a 252 

motor command over a long time period. Thus, shorter segment length is adopted when a 253 

larger residual error is observed.  254 

Once the segmentation length is determined, the system plans motor commands for the 255 

segment. In the proposed model, motor planning process is formulated based on an 256 

optimal control, that is, command sequence minimizing a loss function during the 257 

designated segment is calculated by an optimization algorithm (“lsqlin” function of 258 

Matlab). In the present study, the loss function is given by the sum of tracking error (task 259 

error) and motor command energy (motor effort). 260 

The following sections explain the details of the above processes. 261 

2.2.3 System description 262 
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The system dynamics were described as a discrete-time linear system. Although we could 263 

represent both hand and target system as a single dynamical system, here we describe 264 

them separately because they were separately implemented in the model. Representing 265 

the system state using a state vector xH(t), the hand system dynamics can be written by 266 

)()()( mHH DtButAt  xx (1) 267 

Here, A and B are the matrices representing the dynamics of the hand, u(t) is the motor 268 

command to the hand that the system should design (satisfying -1 < u(t) < 1) at time t, Dm 269 

is motor delay, and   is the simulation time step (set to 5 ms in the experiment, that is, 270 

the sampling rate was 200 Hz).  271 

In the computer simulation, we modeled that the hand system was a second-order linear 272 

spring-mass-damper system with mass m and damper constant b, and that motor 273 

command u was imposed into this system through a first-order lag element (time constant 274 

) and amplified. Thus, the state vector x had three components: position, velocity, and275 

acceleration, and the matrices A and B are given by276 
































-100

-1 -

01

m

b

m

k
A and























m

F
B 0

0

. (2) 277 

The variables observable by the visual system is described by 278 

)()( tCt HH xy  , (3) 279 

where C is the observation matrix. We assumed that the position and velocity of the hand 280 

could be observed, and thus, C was given by 281 











010

001
C . (4) 282 

On the other hand, the target position in visual coordinates ( )(tyT ) was given by 283 

)2cos(3.0)( 0tftyT  (f0 = 0.3 Hz) in the sinusoidal condition, and, 284 

 )2cos()2cos()2cos()2cos(1.0)( 4321 tftftftftyT   ((f1, f2, f3, f4) = (0.073, 0.117,285 

0.205, 0.278) Hz) in the peudo-random condition, just the same as in the behavioral 286 

experiment. This target motion was modeled with an autoregressive model for future 287 

prediction. Its details will be described in the next section. 288 
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When the visual system observed hand and target variables, they suffered from visual 289 

delay and observation noise. Thus, observed hand and target signals (zH(t) and zT(t), 290 

respectively) were given by  291 











)(0

0)(
)()(

t

t
Dtt

v

p

vHH



yz , (5) 292 

and 293 

)()()( tDtytz pvTT  , (6) 294 

where p(t) and v(t) are observation noises of the position and velocity, respectively, and 295 

both obeyed Gaussian distribution N(0, 0.0001
2
) in the simulation.296 

2.2.4 Prediction of hand movement 297 

In the present formulation, we assumed that the system had a correct model of hand 298 

dynamics and knew the length of sensory and motor delays (Dv and Dm). The hand 299 

motion was predicted by the framework of Kalman filter: 300 

)()()()( 3 tQeDtButAt mHH  xx , (7) 301 

and 302 

)()()( 2 teStCt HH  xy , (8) 303 

where Q is the diagonal matrix determining amplitude of process noise, S is that 304 

determining the amplitude of observation noise, and e2(t) and e3(t) are two and three 305 

dimensional normalized Gaussian noise, respectively. In the computer simulation, Q = 306 

diag(0.0001, 0.0001, 0.0001) and S = diag(0.0001, 0.0001). In order to simplify the 307 

explanation, we assumed that the amplitude of process noise Q was enough small 308 

compared to the estimation error of target motion model (see below) so that discussion on 309 

the uncertainty (or reliability) of prediction was concentrated on the target motion. 310 

2.2.5 Prediction of target movement 311 

The dynamics model of the target motion is estimated using its visual information. We 312 

adopted an autoregressive model (AR model) for representing the target motion. 313 

Concretely, the visual position of the target zT(t) was represented by the linear sum of the 314 

past n-times positions: 315 

)(  )(   )2( +)( =)( ARAR2AR1 tntzatzatzatz TnTTT   , (9)316 
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where AR is the time step for regression, ai (i = 1, 2, …, n) are weights, and (t) is the 317 

noise obeying the Gaussian distribution. The values of the weights ai were estimated 318 

using the standard method for AR models. We set n = 3 in the computer simulation (it 319 

worked also for larger n, but not for n = 2). It is an important question how to choose the 320 

visual data for parameter estimation. Assuming that the property of target motion can 321 

vary during the task, using data from a longer time range is not always appropriate. Thus, 322 

the proposed system uses only the data from the latest limited time period (TP). Note that 323 

because the visual information is perceived with a delay (Dv), the physical time interval 324 

used for estimation at time t is given by (t – (TP + Dv)), t – Dv). Because the clock 325 

frequency (= 200 Hz) of the computer simulation was too high to represent the target 326 

motion, the AR model was applied for the down-sampled (with factor ND = 5) sensory 327 

information (that is, AR = 5= 25 ms. This means that the system predicted the future 328 

target motion from the past 75-ms positions (i.e., 75 ms = 25 ms (AR model time step) × 329 

3 (order of AR model)). In the computer simulation, TP was set 300 ms, meaning that 10 330 

data was used for estimation because the sampling interval (of sub-sampled data) was 25 331 

ms. We subtracted mean of zT(t) (i.e., )(tzT ) in estimating the weights for better 332 

modeling. That is, we used in practice the following formula, instead of equation (9): 333 

)(  )(~   )2(~ +)(~ =)(~
ARAR2AR1 tntzatzatzatz TnTTT   , (10) 334 

where )(-)(=)(~ tztztz TTT (averaging is performed over the data used for estimation). 335 

2.2.6 Decision of starting new segment 336 

Before explaining the method used to decide the onset of a new segment, we would like 337 

to give a note on the motor planning method of the proposed system. As described above, 338 

the proposed system divides the time axis into discrete segments, but this does not mean 339 

that all parts of the time axis belong to certain segments; it is possible that some parts do 340 

not belong to any segment. The brain does not need to issue motor commands seamlessly 341 

throughout the motor task, that is, there can be blank regions for which no motor 342 

command is designed. 343 

In a target-tracking task, for example, if the target stays at a fixed position for a while 344 

(and the hand stands close enough to the target), there is no need to make a new action 345 

and no information useful for future prediction; the best solution is to institute a 346 

“moratorium period”, that is, to simply leave the hand there and do nothing until the 347 

target starts to move (which brings a clue to future prediction). Considering that the 348 

motor planning process occupies some resources in the brain, the brain presumably does 349 

not want to start a new motor plan when it is not required or unavailable. This point is 350 

essentially different from most engineering control systems in which the controller 351 

continuously calculates command signals and sends them to the plant. However, note that 352 

the zero motor command produced by a no motor plan (i.e., “do nothing”) cannot be 353 
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distinguished from the zero command produced by active motor planning (i.e., “put out 354 

zero as a result of motor planning”) simply based on the motor command itself. 355 

The algorithm for determining a new segment is as follows. Basically, a new segment 356 

starts when the current segment is terminated. However, there are two exceptions. First, 357 

as described above, the system does not start a new segment when no sensory cue can be 358 

obtained for predicting target movement at the segment offset. When using an AR model 359 

for representing target motion, the system does not update the target model (that is, start 360 

new segment) until the target prediction error (i.e., the difference between the observed 361 

target position zT(t) and predicted target position )(tzT


) exceeds a threshold ( = 0.01 in 362 

the simulation) (though this rarely occurred in the computer simulation because the target 363 

kept moving most of the time). 364 

Second, when an unexpectedly large prediction error has been observed, the system starts 365 

a new segment even if the current segment is on the way. This “emergent update” is 366 

activated when the target prediction error exceeds a threshold. More specifically, the 367 

system compares the observed target position zT(t) and target position estimated by the 368 

AR model )(tzT


, and starts a new segment when its absolute value (i.e., | zT(t) - )(tzT


|) 369 

exceeds the threshold (Although this mechanism may be superficially similar to the 370 

previous error dead-zone method (that is, evoking corrective motor commands only when 371 

the tracking error (i.e., | zH(t) - zT(t) |) exceeds a certain threshold), its fundamental 372 

concept is essentially different. In contrast to the conventional error dead-zone method 373 

that starts the control so as to compensate for the past tracking error, the proposed 374 

system updates the target model so as to predict the future target movement exactly. That 375 

is, the proposed method actively tries to detect prediction error so as to avoid the 376 

erroneous motor planning. Note that once this emergent update is activated, this 377 

mechanism is inhibited for a while. Introducing such a “refractory period (R)” is quite 378 

natural because tracking error would not start to decrease because of the motor delay. The 379 

length of the refractory period (R) was 100 ms in the computer simulation. 380 

Some may think that predicted tracking error (i.e., | )(- )( tztz TH


|) is another possible 381 

criterion to detect the unexpected tracking error. Because the system can predict the hand 382 

position ( )(tzH


) using the Kalman filter and the target position ( )(tzH


) using the AR 383 

model, this error quantity can be obtained free from the visual delay. Actually, this 384 

criterion is adopted in another type of intermittent controller (i.e., event-driven 385 

intermittent MPC controller, see Sec. 2.3). However, we adopted the above criterion (i.e., 386 

|)(ˆ)(| tztz TT  ) for the following reason. Quantity |)(ˆ)(| tztz TT  represents the387 

dissociation between the internal prediction and the external fact. Because the internal 388 

model is essential in the feed-forward control system, it is quite important to monitor its 389 

validity for managing the system performance, and it is natural to update the motor plan 390 

when the system notices that the internal model (i.e., AR model) is no longer correct (i.e., 391 
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large dissociation between the prediction and external fact). In this sense, quantity 392 

|)(ˆ)(| tztz TT  is closely related to the reliability of internal model. On the other hand,393 

quantity )(- )( tztz TH


simply represents the predicted tracking error, and has no 394 

395 

396 

397 

398 

399 

400 

401 

402 

403 

404 

405 

406 

407 

408 

409 

410 

411 

412 

413 

414 

415 

416 

417 

418 

419 

420 

additional meaning for the system maintenance. This point will be further discussed in 

Sec. 4. 3. 

2.2.7 Determination of segment length 

Once having decided to start a new segment, the system next has to determine its 

temporal length. To reduce the computational cost of motor planning (i.e., the frequency 

of motor update), it is preferable to design as long a segment as possible. However, 

longer segments give larger risks of producing greater prediction error, which may lead 

to an emergent update (which will cause additional computation as well as large tracking 

error). To determine an appropriate segment length, we used “reliability of prediction.” 

Because the system plans the motor commands so as to follow the predicted target 

trajectory, there is no need to make a motor plan for a long time span if the predicted 

trajectory is reliable. To implement this idea, we make use of the residue of the AR 

model as a measure of reliability (or uncertainty). Specifically, the segment length H was 

given by 1.2 × (threshold error level ) / (standard deviation of AR model error) in the 

computer simulation, where the standard deviation was calculated from the data used for 

the parameter estimation of AR model. Therefore, the segment is prolonged when the 

smaller variance (i.e., smaller residue of AR model) is observed in the latest temporal 

region. 

As mentioned above, we only dealt with the reliability of the target motion prediction in 

the present study. However, it is also possible to consider the reliability of hand motion 

model, and in such a case, we would determine the segment length dependent on both 

reliabilities. 

2.2.8 Motor Planning 

When the system decides to start a new segment, it calculates the motor command by 

solving an optimization problem. Because the human participants try to minimize the 

tracking error, that is, the visual displacement between the target and hand, here we think 

of a loss function given by 421 

 )())(ˆ)(ˆ)(())(ˆ)(ˆ(][ 2T 
f

s

T

s=T

HTHT s+ usssGssuL yyyy . (11) 422 

where s is the time index whose origin is the current time, G(s) is the weight matrix for 423 

evaluating the task performance, and Ts and Tf are the time indexes of the start and end of 424 

the evaluation region. ŷH(t) and ŷT(t) are two dimensional vectors representing the 425 
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predicted positions and velocities of the hand and target, respectively. Target state was 426 

predicted by the system model while the hand state was predicted by the AR model. The 427 

system state was estimated by Kalman filter based on the observed hand position and 428 

velocity zH(t). Note that the first term of the loss function (i.e., task error term) was 429 

summed up only with an interval of 25 ms because the time step of AR model was 430 

down-sampled (with factor ND = 5) as described above. On the other hand, the second 431 

term (i.e., command effort term) was summed for every time step (5ms). 432 

Next, we would like to consider the temporal interval for evaluating the loss function (Ts 433 

and Tf). Because of the motor delay (Dm) between the central system and the actuator, 434 

there is no need to plan the motor command until after this delay at least, and thus, we set 435 

Ts = Dm. The way Tf is determined has been described in the previous section. 436 

Weight matrix G(s) can be either constant or time dependent. If a considerable amount of 437 

tracking error has been already observed at the moment of motor planning, it is not 438 

necessarily good to evaluate the tracking error from the first moment of the segment 439 

because the error would have increased even more during the motor delay. Instead, it may 440 

be preferable to set G(s) as a zero matrix for a certain period and ignore the tracking error 441 

at the first part of the segment. The extreme case of this idea is that the tracking error is 442 

evaluated only around the segment end, which makes the system just try to catch up with 443 

the target at the end of the segment (rather than follow the target movement). Though 444 

there are a variety of implementations of this idea, we used the following settings in the 445 

computer simulation. Weight matrix G(s) was given by 0)()( GswNsG D with446 











v

p
G





0

0
0 , (12) 447 

and 448 
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otherwise1
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DTs
sw

s
. (13) 449 

Here, p and v are the weights for position error and velocity error, respectively, and ND 450 

(= 5) is the down-sampling factor. We can arbitrarily determine these values, and we used 451 

p = 5, v = 0.1 and D = 0.05 s in the computer simulation. 452 

Finally, note that the proposed model does not directly refer to the visual tracking error 453 

zH(t) – zT(t) in motor planning. The visual target position is used for estimating the target 454 

motion model (i.e., AR model), and visual hand position is used for estimating system 455 

state (i.e., Kalman filter): The motor command is planned based on predicted hand and 456 

target movements. 457 

2.3 Conventional Control Models 458 
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To compare the proposed model with other possible control models, we ran simulated 459 

experiments using seven control models, in addition to the proposed model: (1) PD and 460 

PID controllers with a delay-free sensorimotor system (for reference), (2) PD and PID 461 

controllers designed for a delay-free system but operated in a delay-rich system, (3) PD 462 

and PID controllers with a Smith predictor, (4) an act-and-wait (AAW) PD and PID 463 

control models, (5) intermittent PD and PID controllers with an error dead-zone, (6) a 464 

clock-driven intermittent MPC controller, and (7) an event-driven intermittent MPC 465 

controller (Fig. 2). In the experiment with controllers (1), the delay element was removed 466 

from the system. The parameters of controllers (2) were the same as controllers (1), but 467 

the controllers were operated with visual and motor delays. A Smith predictor is an 468 

engineering method for compensating for delay elements in the control loop. Miall et al. 469 

(1993) proposed that the cerebellum worked as a Smith predictor though later they 470 

reported an experiment denying this view (Miall & Jackson, 2006). The parameters of 471 

these continuous controllers were determined using the “tunepid” function of Matlab. 472 

The act-and-wait control model (4) (Gawthrop, 2010; T Insperger, 2006, 2011; T. 473 

Insperger & Milton, 2014) is a type of intermittent controller (Fig.2, Panel B). This puts 474 

motor output in a periodic manner with an interval (Tc), but it issues motor commands 475 

only for a limited portion in each interval, and waits (i.e., puts no motor output) for the 476 

remained portion. That is, the motor output is gated by the following gating function: 477 

ccw

wc

TTtT

TTt
tg






),mod(if,1

),mod(0if,0
)( { (14) 478 

If the length of the wait portion (Tw) is longer than the feedback delay, the system makes 479 

next action after it observes the result of the action of the previous period. As a result, it 480 

behaves like a time-discrete control system. Because the feedback delay was 150 ms (=Dv481 

+Dm) in the experimental setting, we set Tc = 200 ms and Tw = 160 ms in the computer482 

simulation. The parameters of PD and PID controllers were the same as for controllers483 

(1).484 

The intermittent PD/PID controller with the error dead-zone (5) (see Fig.2, Panel C) is a 485 

controller whose control signal (i.e., the output of the PD/PID controller) is imposed only 486 

when the observed tracking error (| zH(t) - zT(t) |) exceeds a certain threshold level 487 

(0.02 for the simulation; see also the results section). Note that the system could488 

detect the tracking error with the visual delay (Dv =100 ms), and the control output489 

suffered from the motor delay (Dm =50 ms). The PID parameter values were the same as490 

for controllers (1).491 

The intermittent MPC controller designed the motor commands for a certain length of 492 

future interval (“horizon”) so as to minimize the tracking error (Fig.2, Panel D). The 493 

length of the horizon was set to 1 s. In planning motor commands, the target movement 494 
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was predicted by an AR model, whose specification was described above (the same as the 495 

proposed model). Motor commands were updated with a fixed interval (100 ms) in the 496 

clock-driven intermittent controller (6) while in the event-driven controller (7), the 497 

commands were updated when the predicted tracking error (i.e., | |)(ˆ -)(ˆ| tztz TH ) 498 

exceeded a certain threshold (0.01). Note that this tracking error was evaluated not 499 

by the visual information but by the predicted information, and thus, it did not suffer from 500 

the effect of visual delay. Specifically, the hand position ( )(ˆ tzH ) was calculated by the 501 

Kalman filter and the target position ( )(ˆ tzT ) was predicted based on the AR model. In 502 

order to refrain from updating the motor commands too frequently, we set the minimum 503 

update interval as 100 ms. Parameter values of the AR model were updated when the new 504 

motor plan was designed. The weights for loss function in the motor planning process 505 

were set as p = 5 and v = 0.1, as for the proposed model. 506 

2.4 Determination of Parameter Values 507 

First, the parameter values related to the body dynamics and sensorimotor system were 508 

determined considering the physical and physiological situation of visuo-manual tracking 509 

task. In addition, the proposed model has several free parameters, including threshold for 510 

segmentation (), order of AR model, and weights for loss function (p and v).The 511 

values of all these parameters affected the model behavior to some extent: For example, 512 

larger weights (p and v) brought steeper change in velocity profile (because the system 513 

tries to minimize the tracking error rapidly). Such parameter dependency was observed 514 

common to all control models. When we ran the simulated experiments for various 515 

combinations of parameter values, however,  the model behavior was kept (at least 516 

qualitatively) similar so long as extreme values were not used. Because we cannot show 517 

the results of simulations in various conditions in the limited space of this article, we 518 

chose specific values of parameters so that we could demonstrate typical behavior of each 519 

control model. Unfortunately, we have no objective criterion to evaluate the validity of 520 

these parameter settings because we do not know the true values of these parameters. It 521 

might be possible to estimate the parameter values in the real human control system by 522 

means of searching the values which makes the model behave just like a specific 523 

participant, but it is out of scope of the present study. In the result section, we will show 524 

the model behavior with different values of parameters as appropriate. 525 

3. Results526 

3.1 Human behavior during visuo-manual target tracking 527 

First, we show a typical example of the hand trajectory of the target-tracking task (Fig. 3). 528 

In general, the participant faithfully tracked the target motion, but his motion profile 529 

clearly showed intermittent discontinuities: Small bell-shaped humps are superimposed 530 



participant, but all three participants showed motor intermittency. 

An important feature is that the intervals of the humps were not uniform and that their 

temporal positions fluctuated trial by trial (and cycle by cycle), implying that the 

discontinuities did not occur in a regular manner. We should also note that the hand 

movement often preceded the target movement (more remarkable in the sinusoidal case, 

but we can see them around 13–15 s in the pseudo-random case) (Ishida & Sawada, 

2004). 

3.2 Behavior of conventional control models 

Before introducing the behavior of the proposed model, we explain the behavior of the 

conventional control models. Although we do not show concrete data, all continuous 

feedback control models failed to replicate the human behavior. The ordinary PD and 

PID controllers achieved faithful tracking in both conditions if the system did not contain 

delay elements, confirming that this tracking problem is easy to solve with an ordinary 

feedback controller if the sensorimotor delay does not exist. However, these controllers 

became unstable if the system had sensory and motor delays, and could not produce 

stable tracking in either condition. Thanks to the Smith predictor, the system could track 

the target faithfully and smoothly even with a large delay, but the hand movement was 

delayed by the amount of visual delay Dv because the Smith predictor compensated only 

for motor delay. Moreover, the velocity profile was always smooth, different from the 

human behavior. No clear difference was observed between PD and PID controllers for 

every control model. Therefore, simple, continuous feedback control models fail to show 

the motor intermittency observed in human behavior, supporting the validity of 

feed-forward control as the model of human motor control.  

Figures 4 and 5 show the tracking behavior of the intermittent control models for two 

types of target movements. First, the act-and-wait PD controller (panel A) could track the 

target almost faithfully. Although small regular ripples can be observed in the velocity 

profiles, its tracking behavior is generally smooth, apparently different from the human 

behavior. This was the same for the system with PID controller.  

Next, the intermittent PD and PID controllers (panel B) could follow the target 

movement without the help of any predictor though its tracking error was somewhat 

large. Its velocity profile showed irregular patterns due to the activation/de-activation of 

the feedback loop. Furthermore, the general shape of the position and velocity profiles 

looks greatly different from those of human participants. Moreover, its control behavior 

much depended on the threshold value (i.e., the size of the error dead-zone) and became 

unstable with a smaller threshold level (in fact it became unstable when = 0.01 in our 

experiment, which is why we set = 0.02). This result suggests that “intermittent 
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control” itself is not essential for replicating the human-like motor intermittency, together 568 

with indicating that intermittent control and motor intermittency are different things. 569 

The clock-driven intermittent MPC controller (panel C) achieved much more faithful 570 

tracking. Its tracking error was always kept around zero and systematic delay was not 571 

observed. Generally, the position and velocity profiles of this model are close to those of 572 

human participants (see Fig. 3). The velocity profile contained many small humps. We 573 

should note that the velocity profile often showed smooth curves in spite that the motor 574 

command was updated by every 100 ms in this controller. That is, the intermittency of 575 

control mechanism does not correspond to the intermittency of movement discontinuities. 576 

The event-driven intermittent MPC controller (panel D) also achieved a good tracking 577 

performance, and its velocity profile showed intermittent discontinuities with variable 578 

intervals. This model replicated the features of human motor behavior in these ways 579 

though the fluctuation of velocity profiles was a little larger than that of the clock-driven 580 

controller. A further analysis revealed that it took 150–200 ms before the tracking error 581 

decreased under the threshold level once an over-threshold error was detected, which may 582 

be the cause of slowness of error recovery. Therefore, the motor delay (Dm = 50 ms) and 583 

slow muscle activation dynamics (= 50 ms) had significant effects on its behavior. Note 584 

that these phenomena could be moderated if the error detection was based on the future 585 

target and hand positions (say, 200 ms from the present time), instead of their current 586 

positions. This in turn means that predictive task evaluation is effective for good tracking 587 

performance.  588 

3.3 Behavior of proposed model 589 

Figure 6 shows the behavior of the proposed control model, together with the temporal 590 

patterns of motor commands u(t). 591 

The system tracked the target almost faithfully, and showed intermittent discontinuities in 592 

the velocity profiles. Comparing this figure with Fig. 3, the position and velocity profiles 593 

of the proposed model resemble those of participants, as the intermittent MPC 594 

controllers.  595 

In the bottom panel, the temporal positions of segment onsets are shown as the vertical 596 

gray lines. It clearly illustrates that the intervals of segments varied dynamically even for 597 

regular sinusoidal target movement. It can be also seen in the right panel (i.e., 598 

pseudo-random condition) that the segment length tended to be increased when the target 599 

movement kept its property (i.e., velocity and direction); in other words, the segments 600 

were more frequently updated when the target was accelerated or decelerated. These 601 

results indicate that the proposed algorithm adaptively determined the segment length. 602 
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Up to now, we have discussed the behavior of human and control models based only on 

position and velocity profiles. To compare the behaviors of human participants and 

control models more systematically, we examined the statistical properties of tracking 

performance and motor intermittency. Here the proposed model and intermittent MPC 

models were examined because only these models could successfully capture the 

intermittent nature of human motor behavior. Statistical indices were calculated from the 

30 trials (3 participants × 10 trials) data for humans and from the 100 simulation trials 

data for the control models. 

First, Fig. 7 shows the histograms of phase differences between the target and hand 

movement, where the instantaneous phase was extracted by applying a Hilbert transform 

to the position data (see Sec. 2.1.4). First, the phase difference in human tracking was 

distributed around zero irrespective of the types of target movement. The center of the 

distribution was slightly shifted to the direction that the hand was delayed to the target. 

Although this fact is reasonable because the hand basically followed the target, it is also 

important that the hand preceded the target (that is, the phase difference was positive) a 

considerable proportion of the time. All control models showed similar distributions of 

phase difference though their details were somewhat different from one another and from 

human participants. First, the center of the distribution was shifted leftward, that is, to the 

direction that the hand was delayed to the target commonly for the control models, 

compared to the human participants. This tendency was more remarkable in the sinusoid 

conditions. Second, the distribution was narrower for the clock-driven MPC controller, 

compared to the human participants and the other control models. Anyhow, we did not see 

any decisive difference among the behaviors of human participants and these control 

models. That is, all three models comparably replicated human behavior.  

For confirmation, we ran a statistical test for the difference in the phase distribution 

between three control models and human participants (Kruskal-Wallis one-way 

ANOVA), using down-sampled phase data (i.e., 1 Hz). Different from above qualitative 

observation, the result showed that these distributions were significantly different for both 

sinusoidal condition, (3) = 1733.97, p < 0.001, and pseudo-random condition, (3) = 

91.29, p < 0.001. Post hoc multi-comparison (Dunn-Sidak test) revealed that all pairs were 

significantly different for the sinusoidal condition (ps < 0.001), but difference between the 

clock-oriented MPC and the proposed model was not significant, p = 0.843 (the remaining 

pairs were all significantly different). Here, it is not fruitful to focus on this detailed 

difference in p-values because they could vary dependent on data sampling. More 

generally, rather, we should note the result that the order of mean ranks of these models 

was human > clock-oriented MPC > adaptive intermittent control model > 

event-oriented MPC in the sinusoidal condition, but human > event-oriented MPC > 

adaptive intermittent control model ≈ clock-oriented MPC in the pseudo-random 

condition. Therefore, overall relationship among the models varied dependent on the 641 
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target motion, implying that no specific model consistently emulated human behavior 

better than the others, with respect to the phase difference. 

Next, we examined the nature of temporal intervals of movement discontinuities. Most 

previous studies performed frequency analysis (e.g., Fourier transform) to examine the 

nature of motor intermittency (Miall, 1996; Miall, Weir, & Stein, 1993; Pew, 1966). 

These studies revealed that frequency components in the range of 0.5–1.8 Hz reflected the 

motor intermittency. However, as we have seen in the behavioral experiment (Fig. 3) and 

computer simulation (Figs. 4, 5 and 6), movement discontinuities are observed with 

variable time intervals, indicating that the nature of motor intermittency is not stationary. 

This suggests that frequency analysis is not necessarily an appropriate technique to 

analyze the motor intermittency because it was originally designed for periodic stationary 

signals. Thus, here we show the raw histograms of the intervals of discontinuous points 

detected by our custom-name software (Inoue & Sakaguchi, 2015). Figure 8A shows the 

distributions for human participants and for control models. For human participants, the 

intervals were distributed in the range 0.1–1.5 s and their profiles were almost the same 

between two tracking tasks. The distribution profiles for the control models are generally 

similar to humans, showing that all these models well captured the primary nature of 

motor intermittency of human behavior. However, the distribution profiles were different 

in several points. First, the peak position was shorter for the clock-driven MPC controller 

(0.3 – 0.4 s) and the distribution was more peaky, compared to humans and the other 

models (0.5 – 0.6 s) for the MPC controllers. Second, the clock-driven MPC controller 

showed characteristic peaky distribution in the sinusoidal condition, presumably because 

of the regularity of the sinusoidal motion. Third, the distribution seems bi-modal for the 

event-driven MPC model while those of humans and the other models are uni-modal (this 

tendency was observed with other parameter values though we have no idea about its 

reason). Because the quantitative profile could vary dependent on the parameter values, it 

is not fruitful to discuss the detailed difference, but peaky distribution of the clock-driven 

MPC was consistently observed in various conditions, which degrades its validity. 

Anyhow, here we would like to say that the result from the proposed model matched up 

nicely with that from the participants, as well as the event-driven MPC model. A 

statistical test (Kruskal-Wallis test) detected significant difference in the interval 

distribution for both sinusoidal condition (3) = 310.9, p < 0.001 and pseudo-random 

condition,(3) = 305.76, p < 0.001. In the post hoc multi-comparison (Dunn-Sidak test), 

significant difference was found between every pair in the sinusoidal condition, ps < 0.05, 

however, difference between the proposed model and human was not significant, p = 0.97 

in the pseudo-random condition (the other pairs were significantly different, ps < 0.001). 

The order of the mean ranks was event-oriented MPC > adaptive intermittent control ≈ 

human > clock-oriented MPC for both tracking conditions, which agrees with the apparent 

similarity of the distributions in Figure 8A. However, we should be wary of regarding this 

result as increased support for the proposed model because the result could vary according 

to the experimental settings.  682 
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Figure 8B shows the distributions of segment length for the adaptive intermittent control 

model and the event-driven intermittent MPC controller (segment length of the 

clock-driven MPC controller was fixed to 100 ms). Note that this distribution is not 

available for human participants because we could not observe the computational process 

inside the brain. Here, we should note that the segment length (determined by the 

controller) and the interval of discontinuities (detected from the movement trajectory) 

were completely different quantities. As in Figure 8A, intervals of the discontinuities of 

the clock-driven MPC controller was distributed over a wide range though it updated 

motor commands every 100 ms. Segment onsets are not necessarily detected as the 

movement discontinuities because movement can be smooth if the motor command does 

not change abruptly at the segment onset. As for the adaptive intermittent control model, 

nonetheless, the segment length was distributed over the range from 0.1 s to 0.5 s. This 

wide distribution clearly shows that the proposed model adaptively determined the 

segment length. The fact that the distribution was different between two target motion 

conditions also supported the adaptability. To the contrary, the segment length of the 

event-driven MPC model was concentrated on the minimum limit of the command update 

(i.e., 100 ms), and longer segments were less observed. This was also true when the 

minimum limit was set to 200 and 300 ms (Note that the tracking performance was 

degraded in these conditions). To be more specific, the upper end of the distribution was 

almost maintained whilst its lower end was shifted rightward with minimum limits of 200 

and 300 ms, which resulted in the concentration or shrinkage of the distribution. 

Therefore, the broad distribution of the segment length is peculiar to the proposed model. 

As a result, this controller updated the motor commands almost as frequently as the clock-

driven MPC controller. There are some possible reasons for this phenomenon. First, the 

next motor plan was often evoked before the previous tracking error decreased under the 

threshold level. Second, it may be inappropriate to set the error threshold for the tracking 

error (i.e., the difference between target and hand positions). Actually, the proposed 

model set the error threshold for the target prediction error (instead of the tracking error) 

which is more useful for detecting the wrong target model and correcting motor 

commands in earlier timings.  

In sum, the proposed model achieved the human-like motor behavior with the smallest 

computational cost (i.e., with the fewest motor updates). This feature presumably 

stemmed from the feed-forward control and error detecting mechanism and from the 

adaptive segmentation based on the reliability of prediction. 

Before finishing the result section, we would like to show some microscopic features of 

the movement discontinuities. Figure 9 illustrates some examples of the temporal 

positions of discontinuities detected by the analysis software for three control models 

(upper column) and three human participants (lower column). For the participants, the 

velocity profiles and detected discontinuities are plotted for three different trials for each 

participant. The precise timings of discontinuities were different among the participants 722 
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and among different trials of the same participants, indicating that the human behavior 

varied trial by trial. This is also true for the control models though we do not show the 

data here. Therefore, it is difficult to compare their behaviors based on the trajectories in 

individual trials. 

Finally, we would like to examine whether or not human participants adaptively 

determined the segmentation according to the tracking performance. To this end, we 

analyzed the temporal relationship between the instantaneous tracking error and the 

segment length (i.e., the interval between consecutive discontinuities): If the participants 

adjusted segment length according to the latest tracking error (i.e., larger/smaller tracking 

error produced a shorter/longer segment length,, respectively), temporal profile of the 

tracking error would somewhat precede that of the temporal change in intervals of 

extracted discontinuities. To test this prediction, we calculated the cross-correlation 

function between the absolute tracking error and the inverse of intervals. Because the 

interval of discontinuities cannot be determined for every time step, we generated a 

continuous function by linearly interpolating the following discrete function defined only 

at the discontinuous points, 738 

point) ousdiscontinunext   the to(interval

1
)(alinv_interv t , (14) 739 

and calculated the cross correlation function of the interpolated function and the 740 

low-passed absolute error (cutoff frequency: 4 Hz, “xcorr” function of Matlab)). The 741 

maximum temporal lag was set to 5 s. 742 

Figure 10 shows the cumulative cross-correlation functions of ten trials, separately for all 743 

combinations of three participants and two target conditions. Though we can see no clear 744 

peak in the correlation function, the cumulative cross-correlation functions commonly 745 

have the broad peak around −3 – 0 second time-lag, meaning that the tracking error led 746 

the segment length. 747 

This result gives a support that human participants adaptively determined the segment 748 

length reflecting the latest tracking performance, similar to the proposed model.  749 

750 

4. Discussion751 

4.1 Summary of present study 752 

We proposed an adaptive intermittent control as a computational model for a human 753 

motor control system performing a continuous sensorimotor task. This model essentially 754 

operates feed-forward control, but with organizing temporal structure of motor control: It 755 
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adaptively divides the time axis into discrete segments, designs a motor plan within each 756 

segment, and executes it in a feed-forward manner. We also postulated that as a side 757 

effect of this temporal organization, the abrupt changes in motor command at segment 758 

onsets might cause intermittent discontinuities, a common feature of human motor 759 

behavior. The concrete algorithm was given by introducing the idea of reliability of 760 

prediction into the theory of model predictive control (MPC), and its behavior was 761 

examined using computer simulations of a visuo-manual target tracking task. The 762 

proposed model achieved generally faithful tracking with intermittent discontinuities, as 763 

is observed for human participants. Previous intermittent MPC controllers also replicated 764 

human behavior while feedback controllers (including the intermittent feedback 765 

controller) showed behaviors apparently different from those of human participants. This 766 

suggests that intermittent feed-forward control is essential for simulating the human 767 

motor control process. Among intermittent feed-forward control models, in addition, the 768 

proposed performed the target tracking task with less frequent motor updates (i.e., less 769 

segmentation), compared to the other models.  770 

Through this study, we first suggest that feed-forward control should play an essential 771 

role in the human motor control not only in a discrete motor task (such as reaching) but 772 

also in a continuous task (such as target tracking). We examined how different control 773 

models behaved in a visuo-manual tracking task with a realistic sensorimotor delay, and 774 

illustrated for the first time that feedback control models (including the intermittent 775 

feedback controller) did not show human-like motor intermittency, but intermittent 776 

feed-forward controllers generally replicated it well. This implies that “intermittent 777 

control” itself does not necessarily simulate the human motor control process, but the 778 

combination of intermittent control and feed-forward control is essential. 779 

Second, we suggest that intermittent discontinuities should stem from the control 780 

algorithm that determines motor commands based on sensory information. Even if the 781 

prediction is effective for faithful tracking in most time, it may sometimes cause a large 782 

error if the prediction is incorrect. Human control system should keep monitoring 783 

whether or not the prediction is correct (i.e., internal model is valid) relying on the 784 

sensory information, and once it detects the change, it should modify the prediction and 785 

update the motor commands. Because of the sensorimotor delay, however, this update 786 

takes effect with some delay, which may be the essential cause of intermittent 787 

non-smooth change in the motion profile (i.e., motor intermittency). This is why the 788 

motor intermittency was commonly observed in three control models based on MPC 789 

schemes. 790 

Moreover, the concept of reliability plays an important role in realizing this adaptability. 791 

The reliability is a “subjective measure” representing how much the system relies on its 792 

own prediction (Sakaguchi & Takano, 2004). Because we cannot guarantee that the 793 

prediction of future target movement is consistently correct, motor planning is necessarily 794 



23 

795 

796 

797 

798 

799 

800 

801 

802 

803 

804 

805 

806 

807 

808 

809 

810 

811 

812 

813 

814 

815 

816 

817 

818 

819 

820 

821 

822 

823 

824 

825 

826 

827 

828 

829 

830 

831 

speculative. Thus, the system clips a segment of limited time length and executes 

feed-forward control within the segment. Our model gives a concrete algorithm to 

determine the segment length in an adaptive manner. This adaptive mechanism 

contributed to longer intervals of motor updates, compared to the previous intermittent 

MPC controllers (Fig. 8). Our computer simulation showed that both event-driven MPC 

model and our proposed model similarly replicated the human behavior, and thus, these 

two models are comparable from a viewpoint of replication of human behavior. However, 

the proposed model performed the tracking task with fewer motor updates (i.e., less 

computational cost), implying that if human brain adopts the same algorithm, it would 

achieve the comparable task performance with less computational resource in the brain. 

Finally, we think that feed-forward control with adaptive segmentation is a solution that 

the brain has developed to produce real-time motor control with a slow sensorimotor 

system in a time-variant environment. Although we believe that the adaptive intermittent 

control is a promising model of human sensorimotor process, only a qualitative 

explanation of human motor behavior is not sufficient for its justification. On this point, 

behavioral experiments are not enough for examining the validity of the model, because 

multiple models could potentially explain the same behavior, as in our computer 

simulation. The problem can be essentially resolved by a physiological experiment that 

reveals the neural events in the brain. We hope that in the near future some 

neurophysiological data will be reported reflecting the intermittent update process in 

brain’s motor areas. 

4.2 Motor intermittency and intermittent control 

As discussed in the introduction section, many researchers have pointed out “motor 

intermittency” as a feature commonly observed human and monkey motor behavior 

(Beppu et al., 1987; Beppu et al., 1984; Miall et al., 1986; Miall, Weir, & Stein, 1993; 

Wolpert et al., 1992). However, the existence of motor intermittency does not directly 

mean that our control mechanism is operated in an intermittent manner.  

Though its underlying mechanism is still controversial, a growing body of evidence 

supports the view that this phenomenon is not caused by mechanical property of 

peripheral motor organs but brought by central control mechanism. Novak et al. (2000) 

proposed that the intermittency was caused not by local oscillations in the peripheral 

system but by motor programming in the central nervous system, because such 

discontinuities could be observed only in the awake condition. Roitman et al. and Pasalar 

et al. (Pasalar et al., 2005; Roitman et al., 2004) analyzed the relationship between the 

temporal change in tracking error and the motor discontinuities and concluded that the 

discontinuities were caused by the error correction, and by the brain’s active control 

rather than a passive cause. Miall et al. (Miall, Weir, & Stein, 1993) found that the 

intermittency disappeared if the visual cursor represented the hand position, suggesting 832 
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that the phenomenon stems from the visual feedback of hand motion. These findings 833 

together support the contention that the central nervous system is involved in this 834 

phenomenon. 835 

A recent computational model of pursuit eye movement shows motor intermittency 836 

though it has no intermittent control mechanism (Orban de Xivry, Coppe, Blohm, & 837 

Lefèvre, 2013): The velocity profile for a sinusoidally-moving target (Orban de Xivry et 838 

al., 2013, Figure 6) shows discontinuities similar to those found in the positional profile 839 

of our study, though the authors did not mention it in their paper. 840 

The core idea of their model is to integrate the delayed information from the retina (i.e., 841 

retinal information) and non-delayed information calculated from the efference copy and 842 

the past memory (i.e., extra-retinal information) in a Bayesian manner. The past memory 843 

is a mechanism holding the target trajectory in the previous trial or previous cycle (in a 844 

cyclic movement like sinusoids). Here, the weights of Bayesian integration are 845 

determined by the covariance matrix of a Kalman filter and updated dynamically during 846 

the motor control. Thus, if the covariance matrices are drastically changed (for example, 847 

by large prediction error), then the weights are abruptly changed, which may result in the 848 

discontinuous motor behavior. To be more specific, the system comes to use the 849 

extra-retinal information preferentially when the retinal information becomes less reliable, 850 

which causes discontinuous “corrective movements.” 851 

Therefore, intermittent discontinuities can be elicited if the system contains some 852 

elements causing abrupt change in the motor commands, even if the system is operated in 853 

a continuous manner. However, the model by Orban de Xivery et al. has some 854 

shortcomings as a model of motor intermittency. 855 

First, their model hardly showed motor intermittency in the velocity-step target. In this 856 

condition, the target velocity is kept constant (after the initial step), and thus, it is unlikely 857 

the covariance matrix abruptly changes, resulting in few discontinuities. In the manual 858 

tracking task, in contrast, motor intermittency can be observed even when the target 859 

velocity is kept constant. 860 

Second, the performance of their model is largely owing to the memory mechanism. As 861 

mentioned above, their model memorizes the target’s velocity trace in the previous trial 862 

(or cycle) and uses it to predict target movement on the current trial (or cycle). This 863 

mechanism works well in a stationary environment (such as velocity-step and sinusoidal 864 

target), but does not work in a non-stationary environment (such as the pseudo-random 865 

condition in our experiment). Because discontinuous corrective movements are brought 866 

by the accurate target prediction provided by the memory mechanism, the discontinuities 867 

would disappear in a non-stationary environment. Therefore, it is unlikely that their 868 

model replicates motor intermittency in all situations. 869 
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Third, their memory mechanism seems somewhat peculiar because it potentially requires 870 

an elaborate management mechanism. In a sinusoidal tracking, for example, it has to 871 

detect the onset of every cycle and to update memory representation at the moment. In 872 

contrast, the intermittent feed-forward control models introduced in our manuscript (i.e., 873 

intermittent MPC controllers and our model) adaptively work for any situation without 874 

assuming such a special mechanism. 875 

Therefore, at the present, the control models with intermittent motor update mechanism 876 

seem more promising as a computational model of motor intermittency. 877 

4.3 Error dead-zone and active segmentation 878 

As an essential factor in explaining motor intermittency, Wolpert, Miall and their 879 

colleagues (Miall, Weir, & Stein, 1993; Wolpert et al., 1992) proposed the concept of an 880 

“error dead-zone”, meaning that a control system evokes corrective motor commands 881 

only when the tracking error exceeds a certain threshold. In other words, the control 882 

system issues no command while the tracking error is within a certain range (i.e., the 883 

error dead-zone). This mechanism is believed to be effective for stabilizing the control 884 

system in the face of a large feedback delay, and other researchers have adopted this idea 885 

for the control of body balance (Asai et al., 2009; Bottaro, Yasutake, Nomura, Casadio, & 886 

Morasso, 2008; Loram et al., 2011; Loram et al., 2012; Suzuki, Nomura, Casadio, & 887 

Morasso, 2012; van de Kamp et al., 2013). In the proposed model, we also adopted this 888 

idea for “emergent correction mechanism” for recovering from unexpectedly large 889 

prediction errors. 890 

Therefore, error dead-zone mechanism can be regarded as one of the fundamental 891 

mechanisms of brain motor control, but this alone may not explain the brain’s 892 

computational principle for realizing real-time motor control because in the computer 893 

simulation, the control models with this mechanism (especially in the feedback control 894 

scheme) did not well replicate the human behavior. We think that the present study have 895 

reinforced this view in the following points. First, while the error dead-zone concept was 896 

originally proposed from the viewpoint of feedback control, we introduced it to the 897 

feed-forward control. Human motor control is essentially future oriented because our 898 

brain seeks to improve motor performance in the future. In contrast, feedback control 899 

basically tries to make corrections for past errors, and this contention is also true for 900 

conventional error dead-zone view because it tries to correct motor commands when the 901 

error has exceeded a threshold. Second, the error dead-zone can be defined not only for 902 

the tracking error (i.e., task error) but also for the prediction error (i.e., model error). We 903 

think that the reliability of prediction is an important factor in motor planning, and error 904 

dead-zone should work precisely for the prediction error. Third, the trigger for the abrupt 905 

response may not only be the large task error but may also be a clue to the prediction of 906 

future target movement. 907 
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4.4 Neural implementation of motor planning 908 

In the present study, we formulated the algorithm of the proposed model based on the 909 

MPC theory, a kind of optimal control theory. Although most computational models on 910 

human motor control/planning are based on similar optimal theories, it is questionable 911 

that the real brain determines motor commands by solving such optimization problems in 912 

an on-line manner. Actually, a large amount of calculation is required for solving the 913 

optimization problem, which would obstruct the real-time control. An antithesis of such 914 

“calculation view” is “association view” or “table-lookup view,” meaning that the human 915 

brain recalls appropriate commands using associative memory or neural dynamics formed 916 

through past experience. 917 

Although our model is based on the optimal control theory, its essence is never 918 

contradictory to such association-based implementation. Rather, we prefer that the motor 919 

planning in the real brain should be realized by such an associative mapping. The 920 

proposed model calculates the motor command based on the internal models of 921 

target/hand motion that had been estimated from past experience, and thus, from a 922 

general viewpoint, we can regard that the proposed model learns the mapping between 923 

the visual input and motor commands and chooses appropriate motor commands using 924 

this mapping. The discussion holds also for the determination of the segment length. The 925 

computational theory formulates the motor planning process step by step in a logical 926 

manner, but the associative method realizes the same function by direct mapping without 927 

referring to its underlying computational structure. Considering that visuo-motor 928 

mapping for basic motor functions has been consistently experienced since birth, it is 929 

natural to think that such mapping has been formed by a long process of trial and error 930 

learning and of associative learning. Therefore, we believe that the present control 931 

mechanism can be implemented in an association-based manner, which will brings real 932 

“real-time control” model of human motor system.  933 
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Figure Captions 1115 

Figure 1 General diagram of segmented control model 1116 

General structure of the proposed control model is depicted. We assumed a visual 1117 

target-tracking task where the system tries to follow the target movement whose position 1118 

is given by visual information. The proposed control model is a feed-forward control 1119 

system, in which the command planning module designs motor commands using the 1120 

internal model of the arm system. The target position is observed through the visual 1121 

system where an information processing delay (Dv) is imposed. To overcome this delay, 1122 

the system predicts the target movement trajectory using a target motion model, and this 1123 

information is also conveyed to the command planning module. The planning module 1124 

designs a motor command whose resultant hand trajectory exactly tracks the predicted 1125 

target trajectory. The task segmentation module divides the continuous time axis into 1126 

discrete segments and tells the planning module the segment length, that is, the temporal 1127 

duration during which the motor commands should be designed. Once the motor 1128 

commands are determined for a specified segment, they are sent to the arm system with a 1129 

motor delay (Dm). 1130 

Figure 2 Conventional control models examined in this study 1131 

We picked up several conventional control models to examine how they behave in the 1132 

visuo-manual tracking task with large sensorimotor delays and whether or not they show 1133 

the intermittency observed in human motor behavior. (A) PD/PID controller in a basic 1134 

feedback control scheme  (B) PD/PID controller with a Smith predictor, (C) PD/PID 1135 

controller with an act-and-wait (AAW) control scheme, (D) intermittent PD/PID 1136 

controller with an error dead-zone, (E) clock-driven or event-driven intermittent MPC 1137 

controller. Note that observation noise is not depicted in the figure. 1138 

Figure 3 Motor Intermittency observed in human visuo-manual tracking 1139 

Typical behaviors observed in the visuo-manual tracking task are shown. This figure 1140 

shows typical position and velocity profiles for the target movement (broken curves) and 1141 

hand movement (solid curves) for two types of target movements: sinusoidal movement 1142 

with a frequency of 0.3 Hz (left panel) and peudo-random movement that was created by 1143 

the linear sum of four sinusoids with different temporal frequencies (right panel). Small 1144 

humps are clearly observed on the velocity profiles, that is, motor intermittency.  1145 

Figure 4 Behavior of conventional control models (sinusoidal condition) 1146 

To examine the behavior of the conventional control models in the visuo-manual tracking 1147 

task, we ran a series of computer simulations in the situation resembling the behavioral 1148 

experiments whose results are shown in Fig. 3. Four panels show the behaviors of an 1149 
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act-and-wait (AAW) control model (A), intermittent PD controller with an error 

dead-zone (B), a clock-driven intermittent MPC controller (C), and an event-driven 

intermittent MPC controller (D). In each panel, solid and broken curves represent hand 

and target movements, respectively. Only intermittent MPC controllers successfully 

replicated both generally faithful tracking and motor intermittency found in human 

movement trajectories. See Results for details. 

Figure 5 Behavior of conventional control models (pseudo-random condition) 

Four panels show the behavior of the four different control models, respectively, in 

visuo-manual tracking for pseudo-random targets. Again, only intermittent MPC 

controllers successfully replicated faithful tracking and intermittent discontinuities. See 

Results for details. 

Figure 6 Behavior of adaptive intermittent control model 

The behaviors of the proposed control model are shown. Vertical thin lines indicate the 

timing of segment onsets. The representation is the same as in Figs. 4 and 5, but temporal 

motor command patterns are also shown. Adaptive intermittent control model 

successfully replicated both faithful tracking and intermittent discontinuities. See Results 

for details. 

Figure 7 Phase relationship between target and hand 

The phase relationship between the target and hand was calculated by applying a Hilbert 

transform to the target and hand position data from the human participants and control 

models. Phase difference was distributed around zero but slightly shifted to the 

hand-delayed direction for both humans and segmented control model while it was 

shifted to the opposite direction for intermittent MPC controllers. It is important that the 

hand preceded the target (that is, phase difference was positive) a considerable proportion 

of the time, supporting the contention that the humans performed the tracking task in a 

predictive manner. 

Figure 8 Statistical properties of motor intermittency and control segment 

Panel A shows the normalized histograms of the intervals of discontinuous points for 

human participants and three feed-forward control models. The intervals were distributed 

in the range 0.1–1.5 s for both human participants and the control models though their 

shapes and peak positions were different. As for the present result, the proposed model 

best captured the characteristic features of motor intermittency observed in human 

participants though the model behavior potentially could vary dependent on parameter 

values. Panel B shows the distribution of the segment length for the proposed model and 

event-driven MPC controller. For the proposed model, segment length was distributed 1184 
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over a wide range, implying that the segmentation structure was determined adaptively. 

To the contrary, the distribution was concentrated onto the minimum limitation time (0.1 

s) for the event-driven MPC controller. This shows that the proposed model achieves the 
human-like motor behavior with a smaller computational cost (i.e., fewer motor updates).

Figure 9 Microscopic characteristics of movement discontinuities 

This figure shows the temporal positions of discontinuities extracted by the software, for 

both control models (upper column) and human participants (lower column). Vertical 

lines indicate the detected discontinuities. For human participants, the velocity profiles 

and detected discontinuities are plotted for three different trials for each participant. The 

precise timings of discontinuities were different among the participants and among 

different trials of the same participants, which clearly indicates that the human behavior 

varied trial by trial.  

Figure 10 Temporal relationship between tracking error and segment length 

This figure shows cross-correlation function between the tracking error and the inverse of 

the segment length (i.e., the interval of consecutive discontinuities extracted by the 

analysis software) for every combination of three subjects and two target conditions. 

Cross-correlation functions are accumulated for ten trials. Common to all panels, the 

cross correlation have a broad peak around the around −3 – 0 s time-lag, indicating that 

the change in the tracking error preceded that in the segment length. This result is 

consistent with the view that human participants adaptively adjusted the segmentation 

according to the latest tracking performance (i.e., a larger/smaller tracking error brings 

shorter/longer segments, respectively).  1206 

1207 
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