505 research outputs found

    Attentional load and sensory competition in human vision: Modulation of fMRI responses by load fixation during task-irrelevant stimulation in the peripheral visual field.

    Get PDF
    Perceptual suppression of distractors may depend on both endogenous and exogenous factors, such as attentional load of the current task and sensory competition among simultaneous stimuli, respectively. We used functional magnetic resonance imaging (fMRI) to compare these two types of attentional effects and examine how they may interact in the human brain. We varied the attentional load of a visual monitoring task performed on a rapid stream at central fixation without altering the central stimuli themselves, while measuring the impact on fMRI responses to task-irrelevant peripheral checkerboards presented either unilaterally or bilaterally. Activations in visual cortex for irrelevant peripheral stimulation decreased with increasing attentional load at fixation. This relative decrease was present even in V1, but became larger for successive visual areas through to V4. Decreases in activation for contralateral peripheral checkerboards due to higher central load were more pronounced within retinotopic cortex corresponding to 'inner' peripheral locations relatively near the central targets than for more eccentric 'outer' locations, demonstrating a predominant suppression of nearby surround rather than strict 'tunnel vision' during higher task load at central fixation. Contralateral activations for peripheral stimulation in one hemifield were reduced by competition with concurrent stimulation in the other hemifield only in inferior parietal cortex, not in retinotopic areas of occipital visual cortex. In addition, central attentional load interacted with competition due to bilateral versus unilateral peripheral stimuli specifically in posterior parietal and fusiform regions. These results reveal that task-dependent attentional load, and interhemifield stimulus-competition, can produce distinct influences on the neural responses to peripheral visual stimuli within the human visual system. These distinct mechanisms in selective visual processing may be integrated within posterior parietal areas, rather than earlier occipital cortex

    Interactions between Senses: Updating on Neural Mechanisms and Behavioral Evidence

    Get PDF
    In recent years there has been a dramatic progress in understanding how stimuli from different sensory modalities are integrated among each other. Multisensory integration results in a unitary representation of the world that strongly characterizes perception and cognition in humans. The body of knowledge acquired so far on multisensory integration has been gained through several research techniques and approaches, including neurophysiology, experimental psychology, neuropsychology, neuroimaging, and computational modeling. This special issue aims at presenting an up-to-date overview of the research on multisensory integration. In particular, the proposed collection of papers features state-ofthe-art reviews or original articles about key themes in multisensory research, considering novel evidence on the physiological mechanism of multisensory integration at cell level, and on the behavioral effects of multisensory integration on perception an

    Racism and the Empathy for Pain on Our Skin

    Get PDF
    Empathy is a critical function regulating human social life. In particular, empathy for pain is a source of deep emotional feelings and a strong trigger of pro-social behavior. We investigated the existence of a racial bias in the emotional reaction to other people's pain and its link with implicit racist biases. Measuring participants’ physiological arousal, we found that Caucasian observers reacted to pain suffered by African people significantly less than to pain of Caucasian people. The reduced reaction to the pain of African individuals was also correlated with the observers’ individual implicit race bias. The role of others’ race in moderating empathic reactions is a crucial clue for understanding to what extent social interactions, and possibly integration, may be influenced by deeply rooted automatic and uncontrollable responses

    The plasticity of near space: evidence for contraction

    Get PDF
    The distinction between near space and the space farther away has been well established, as has the relation of this distinction to arm length. Recent studies provide evidence for the plasticity of near space, showing that it is possible to expand its extent ("size") through tool-use. In the present study, we examine the converse effect, whether contraction of near space results from increasing the effort involved on a line bisection task. Adult participants bisected lines at different distances, while, in some cases, wearing weights. In Experiment 1, the arms, specifically, were weighted (wrist weights), and in Experiment 2, more general body weights were used (heavy backpack). As in previous studies, unencumbered participants showed leftward bias when bisecting lines at the closest distances and a rightward shift in bias with increasingly farther distances. With wrist weights, but not a heavy backpack, participants showed more rightward bias at the closest distances, and a more gradual rightward shift with increasing distance, as if the nearest locations were represented as being farther away. These results suggest that increased effort, when specifically related to the arm, can serve to reduce the size of near space, providing support for the generally symmetrical plasticity of near space representations

    Bisecting Real and Fake Body Parts: Effects of Prism Adaptation After Right Brain Damage

    Get PDF
    The representation of body parts holds a special status in the brain, due to their prototypical shape and the contribution of multisensory (visual and somatosensory-proprioceptive) information. In a previous study (Sposito et al., 2010), we showed that patients with left unilateral spatial neglect exhibit a rightward bias in setting the midpoint of their left forearm, which becomes larger when bisecting a cylindrical object comparable in size. This body part advantage, found also in control participants, suggests partly different processes for computing the extent of body parts and objects. In this study we tested 16 right-brain-damaged patients, and 10 unimpaired participants, on a manual bisection task of their own (real) left forearm, or a size-matched fake forearm. We then explored the effects of adaptation to rightward displacing prism exposure, which brings about leftward aftereffects. We found that all participants showed prism adaptation (PA) and aftereffects, with right-brain-damaged patients exhibiting a reduction of the rightward bias for both real and fake forearm, with no overall differences between them. Second, correlation analyses highlighted the role of visual and proprioceptive information for the metrics of body parts. Third, single-patient analyses showed dissociations between real and fake forearm bisections, and the effects of PA, as well as a more frequent impairment with fake body parts. In sum, the rightward bias shown by right-brain-damaged patients in bisecting body parts is reduced by prism exposure, as other components of the neglect syndrome; discrete spatial representations for real and fake body parts, for which visual and proprioceptive codes play different roles, are likely to exist. Multisensory information seems to render self bodily segments more resistant to the disruption brought about by right-hemisphere injury

    Crossmodal visual-tactile extinction: Modulation by posture implicates biased competition in proprioceptively reconstructed space

    Get PDF
    Extinction is a common consequence of unilateral brain injury: contralesional events can be perceived in isolation, yet are missed when presented concurrently with competing events on the ipsilesional side. This can arise crossmodally, where a contralateral touch is extinguished by an ipsilateral visual event. Recent studies showed that repositioning the hands in visible space, or making visual events more distant, can modulate such crossmodal extinction. Here, in a detailed single-case study, we implemented a novel spatial manipulation when assessing crossmodal extinction. This was designed not only to hold somatosensory inputs and hand/arm-posture constant, but also to hold (retinotopic) visual inputs constant, yet while still changing the spatial relationship of tactile and visual events in the external world. Our right hemisphere patient extinguished left-hand touches due to visual stimulation of the right visual field (RVF) when tested in the usual default posture with eyes/head directed straight ahead. But when her eyes/head were turned to the far left (and any visual events shifted along with this), such that the identical RVF retinal stimulation now fell at the same external location as the left-hand touch, crossmodal extinction was eliminated. Since only proprioceptive postural cues could signal this changed spatial relationship for the critical condition, our results show for the first time that such postural cues alone are sufficient to modulate crossmodal extinction. Identical somatosensory and retinal inputs can lead to severe crossmodal extinction, or none, depending on current posture

    Smelling the Space Around Us: Odor Pleasantness Shifts Visuospatial Attention in Humans

    Get PDF
    The prompt recognition of pleasant and unpleasant odors is a crucial regulatory and adaptive need of humans. Reactive answers to unpleasant odors ensure survival in many threatening situations. Notably, although humans typically react to certain odors by modulating their distance from the olfactory source, the effect of odor pleasantness over the orienting of visuospatial attention is still unknown. To address this issue, we first trained participants to associate visual shapes with pleasant and unpleasant odors, and then we assessed the impact of this association on a visuospatial task. Results showed that the use of trained shapes as flankers modulates performance in a line bisection task. Specifically, it was found that the estimated midpoint was shifted away from the visual shape associated with the unpleasant odor, whereas it was moved toward the shape associated with the pleasant odor. This finding demonstrates that odor pleasantness selectively shifts human attention in the surrounding space

    Attentional Load and Sensory Competition in Human Vision: Modulation of fMRI Responses by Load at Fixation during Task-irrelevant Stimulation in the Peripheral Visual Field

    Get PDF
    Perceptual suppression of distractors may depend on both endogenous and exogenous factors, such as attentional load of the current task and sensory competition among simultaneous stimuli, respectively. We used functional magnetic resonance imaging (fMRI) to compare these two types of attentional effects and examine how they may interact in the human brain. We varied the attentional load of a visual monitoring task performed on a rapid stream at central fixation without altering the central stimuli themselves, while measuring the impact on fMRI responses to task-irrelevant peripheral checkerboards presented either unilaterally or bilaterally. Activations in visual cortex for irrelevant peripheral stimulation decreased with increasing attentional load at fixation. This relative decrease was present even in V1, but became larger for successive visual areas through to V4. Decreases in activation for contralateral peripheral checkerboards due to higher central load were more pronounced within retinotopic cortex corresponding to ‘inner' peripheral locations relatively near the central targets than for more eccentric ‘outer' locations, demonstrating a predominant suppression of nearby surround rather than strict ‘tunnel vision' during higher task load at central fixation. Contralateral activations for peripheral stimulation in one hemifield were reduced by competition with concurrent stimulation in the other hemifield only in inferior parietal cortex, not in retinotopic areas of occipital visual cortex. In addition, central attentional load interacted with competition due to bilateral versus unilateral peripheral stimuli specifically in posterior parietal and fusiform regions. These results reveal that task-dependent attentional load, and interhemifield stimulus-competition, can produce distinct influences on the neural responses to peripheral visual stimuli within the human visual system. These distinct mechanisms in selective visual processing may be integrated within posterior parietal areas, rather than earlier occipital corte

    No efficacy of transcranial direct current stimulation on chronic migraine with medication overuse : a double blind, randomised clinical trial

    Get PDF
    Background: Transcranial direct current stimulation was suggested to provide beneficial effects in chronic migraine, a condition often associated with medication overuse for which no long-term therapy is available. Methods: We conducted a randomised controlled trial to assess long-term efficacy of transcranial direct current stimulation. Adults diagnosed with chronic migraine and medication overuse were assigned to receive in a 1:1:1 ratio anodal, cathodal, or sham transcranial direct current stimulation daily for five consecutive days, along with standardised drug withdrawal protocol. Primary outcome was 50% reduction of days of headache per month at 12 months. Co-secondary outcomes were 50% reduction of days of headache per month at 6 months, reduction of analgesic intake per month, and change in disability and quality of life, catastrophising, depression, state and trait anxiety, dependence attitude and allodynia intensity. Patients were not allowed to take any migraine prophylaxis drug for the entire study period. Results: We randomly allocated 135 patients to anodal (44), cathodal (45), and sham (46) transcranial direct current stimulation. At 6 and 12 months, the percentage of reduction of days of headache and number of analgesics per month ranged between 48.5% and 64.7%, without differences between transcranial direct current stimulation (cathodal, anodal, or the results obtained from the two arms of treatment, anodal plus cathodal) and sham. Catastrophising attitude significantly reduced at 12 months in all groups. There was no difference for the other secondary outcomes. Conclusions: Transcranial direct current stimulation did not influence the short and long-term course of chronic migraine with medication overuse after acute drug withdrawal. Behavioral and educational measures and support for patients' pain management could provide long-term improvement and low relapse rate. Trial registration number NCT04228809
    corecore