232 research outputs found

    A Simple and Accurate onset Detection Method for a Measured Bell-shaped Speed Profile

    Get PDF
    Motor control neuroscientists measure limb trajectories and extract the onset of the movement for a variety of purposes. Such trajectories are often aligned relative to the onset of individual movement before the features of that movement are extracted and their properties are inspected. Onset detection is performed either manually or automatically, typically by selecting a velocity threshold. Here, we present a simple onset detection algorithm that is more accurate than the conventional velocity threshold technique. The proposed method is based on a simple regression and follows the minimum acceleration with constraints model, in which the initial phase of the bell-shaped movement is modeled by a cubic power of the time. We demonstrate the performance of the suggested method and compare it to the velocity threshold technique and to manual onset detection by a group of motor control experts. The database for this comparison consists of simulated minimum jerk trajectories and recorded reaching movements

    Switching in Feedforward Control of Grip Force During Tool-Mediated Interaction With Elastic Force Fields

    Get PDF
    Switched systems are common in artificial control systems. Here, we suggest that the brain adopts a switched feedforward control of grip forces during manipulation of objects. We measured how participants modulated grip force when interacting with soft and rigid virtual objects when stiffness varied continuously between trials. We identified a sudden phase transition between two forms of feedforward control that differed in the timing of the synchronization between the anticipated load force and the applied grip force. The switch occurred several trials after a threshold stiffness level in the range 100–200 N/m. These results suggest that in the control of grip force, the brain acts as a switching control system. This opens new research questions as to the nature of the discrete state variables that drive the switching

    Adaptation to Delayed Force Perturbations in Reaching Movements

    Get PDF
    Adaptation to deterministic force perturbations during reaching movements was extensively studied in the last few decades. Here, we use this methodology to explore the ability of the brain to adapt to a delayed velocity-dependent force field. Two groups of subjects preformed a standard reaching experiment under a velocity dependent force field. The force was either immediately proportional to the current velocity (Control) or lagged it by 50 ms (Test). The results demonstrate clear adaptation to the delayed force perturbations. Deviations from a straight line during catch trials were shifted in time compared to post-adaptation to a non-delayed velocity dependent field (Control), indicating expectation to the delayed force field. Adaptation to force fields is considered to be a process in which the motor system predicts the forces to be expected based on the state that a limb will assume in response to motor commands. This study demonstrates for the first time that the temporal window of this prediction needs not to be fixed. This is relevant to the ability of the adaptive mechanisms to compensate for variability in the transmission of information across the sensory-motor system

    New Perspectives on the Dialogue between Brains and Machines

    Get PDF
    Brain-machine interfaces (BMIs) are mostly investigated as a means to provide paralyzed people with new communication channels with the external world. However, the communication between brain and artificial devices also offers a unique opportunity to study the dynamical properties of neural systems. This review focuses on bidirectional interfaces, which operate in two ways by translating neural signals into input commands for the device and the output of the device into neural stimuli. We discuss how bidirectional BMIs help investigating neural information processing and how neural dynamics may participate in the control of external devices. In this respect, a bidirectional BMI can be regarded as a fancy combination of neural recording and stimulation apparatus, connected via an artificial body. The artificial body can be designed in virtually infinite ways in order to observe different aspects of neural dynamics and to approximate desired control policies

    Concurrent adaptation to opposing visual displacements during an alternating movement.

    Get PDF
    It has been suggested that, during tasks in which subjects are exposed to a visual rotation of cursor feedback, alternating bimanual adaptation to opposing rotations is as rapid as unimanual adaptation to a single rotation (Bock et al. in Exp Brain Res 162:513–519, 2005). However, that experiment did not test strict alternation of the limbs but short alternate blocks of trials. We have therefore tested adaptation under alternate left/right hand movement with opposing rotations. It was clear that the left and right hand, within the alternating conditions, learnt to adapt to the opposing displacements at a similar rate suggesting that two adaptive states were formed concurrently. We suggest that the separate limbs are used as contextual cues to switch between the relevant adaptive states. However, we found that during online correction the alternating conditions had a significantly slower rate of adaptation in comparison to the unimanual conditions. Control conditions indicate that the results are not directly due the alternation between limbs or to the constant switching of vision between the two eyes. The negative interference may originate from the requirement to dissociate the visual information of these two alternating displacements to allow online control of the two arms

    Asymmetric interlimb transfer of concurrent adaptation to opposing dynamic forces

    Get PDF
    Interlimb transfer of a novel dynamic force has been well documented. It has also been shown that unimanual adaptation to opposing novel environments is possible if they are associated with different workspaces. The main aim of this study was to test if adaptation to opposing velocity dependent viscous forces with one arm could improve the initial performance of the other arm. The study also examined whether this interlimb transfer occurred across an extrinsic, spatial, coordinative system or an intrinsic, joint based, coordinative system. Subjects initially adapted to opposing viscous forces separated by target location. Our measure of performance was the correlation between the speed profiles of each movement within a force condition and an ‘average’ trajectory within null force conditions. Adaptation to the opposing forces was seen during initial acquisition with a significantly improved coefficient in epoch eight compared to epoch one. We then tested interlimb transfer from the dominant to non-dominant arm (D → ND) and vice-versa (ND → D) across either an extrinsic or intrinsic coordinative system. Interlimb transfer was only seen from the dominant to the non-dominant limb across an intrinsic coordinative system. These results support previous studies involving adaptation to a single dynamic force but also indicate that interlimb transfer of multiple opposing states is possible. This suggests that the information available at the level of representation allowing interlimb transfer can be more intricate than a general movement goal or a single perceived directional error

    Stimulation of PPC affects the mapping between motion and force signals for stiffness perception but not motion control

    Get PDF
    How motion and sensory inputs are combined to assess an object’s stiffness is still unknown. Here, we provide evidence for the existence of a stiffness estimator in the human posterior parietal cortex (PPC). We showed previously that delaying force feedback with respect to motion when interacting with an object caused participants to underestimate its stiffness. We found that applying theta-burst transcranial magnetic stimulation (TMS) over the PPC, but not the dorsal premotor cortex, enhances this effect without affecting movement control. We explain this enhancement as an additional lag in force signals. This is the first causal evidence that the PPC is not only involved in motion control, but also has an important role in perception that is disassociated from action. We provide a computational model suggesting that the PPC integrates position and force signals for perception of stiffness and that TMS alters the synchronization between the two signals causing lasting consequences on perceptual behavior

    Addressing Constraints Creatively: How New Design Software Helps Solve the Dilemma of Originality and Feasibility

    No full text
    International audienceAre designers doomed to sacrifice creativity when integrating new product development processes? Although many studies highlight the need to produce original and innovative designs, maintainingcreativity in the design process continues to be difficult due to industrial constraints. Thus, creativity is restricted to phases in the "Fuzzy Front End" to avoid those constraints that might effectively kill it(Amabile, 1998, Reid and De Brentani, 2004). However, constraints are also acknowledged as a resource for creativity, ashas previously been shown with artists and engineers (Burkhardt and Lubart, 2010, Sternberg and Lubart, 1999, Le Masson et al., 2011, Goldenberg and Mazursky, 2000).Thus, we posethefollowing research question: In which cases can a constraint be a resource for creativity? To answer this question, we investigate different types of computer-aided design (CAD) software. Relying on an experimental method, we compare the performance of those types of software at the so-called ideation gap where design sketches are transformed into digital models. We show the following: 1) some CAD software enables designers to work under additional constraints and be more creative and toavoid the tradeoff between robustness and creativity,and 2) understanding this performance means appreciating that such software enables designers to play with the embedded constraints to revealassociated fixations and to design models that follow the constraint but overcome the fixation. Constraints and creativity are linked by two competing processes: constraints decrease the degree of freedom and, as a result, creative possibilities, but embedding constraints increases the awareness of fixationsandtherefore the capacity to design original models. Today, new CAD tools more effectively support the second process, which leads to ―acquired originality‖ in design

    Advances in Human-Robot Handshaking

    Full text link
    The use of social, anthropomorphic robots to support humans in various industries has been on the rise. During Human-Robot Interaction (HRI), physically interactive non-verbal behaviour is key for more natural interactions. Handshaking is one such natural interaction used commonly in many social contexts. It is one of the first non-verbal interactions which takes place and should, therefore, be part of the repertoire of a social robot. In this paper, we explore the existing state of Human-Robot Handshaking and discuss possible ways forward for such physically interactive behaviours.Comment: Accepted at The 12th International Conference on Social Robotics (ICSR 2020) 12 Pages, 1 Figur
    corecore