20,816 research outputs found

    A methodology for the selection of new technologies in the aviation industry

    Get PDF
    The purpose of this report is to present a technology selection methodology to quantify both tangible and intangible benefits of certain technology alternatives within a fuzzy environment. Specifically, it describes an application of the theory of fuzzy sets to hierarchical structural analysis and economic evaluations for utilisation in the industry. The report proposes a complete methodology to accurately select new technologies. A computer based prototype model has been developed to handle the more complex fuzzy calculations. Decision-makers are only required to express their opinions on comparative importance of various factors in linguistic terms rather than exact numerical values. These linguistic variable scales, such as ‘very high’, ‘high’, ‘medium’, ‘low’ and ‘very low’, are then converted into fuzzy numbers, since it becomes more meaningful to quantify a subjective measurement into a range rather than in an exact value. By aggregating the hierarchy, the preferential weight of each alternative technology is found, which is called fuzzy appropriate index. The fuzzy appropriate indices of different technologies are then ranked and preferential ranking orders of technologies are found. From the economic evaluation perspective, a fuzzy cash flow analysis is employed. This deals quantitatively with imprecision or uncertainties, as the cash flows are modelled as triangular fuzzy numbers which represent ‘the most likely possible value’, ‘the most pessimistic value’ and ‘the most optimistic value’. By using this methodology, the ambiguities involved in the assessment data can be effectively represented and processed to assure a more convincing and effective decision- making process when selecting new technologies in which to invest. The prototype model was validated with a case study within the aviation industry that ensured it was properly configured to meet the

    Development, test and comparison of two Multiple Criteria Decision Analysis(MCDA) models: A case of healthcare infrastructure location

    Get PDF
    When planning a new development, location decisions have always been a major issue. This paper examines and compares two modelling methods used to inform a healthcare infrastructure location decision. Two Multiple Criteria Decision Analysis (MCDA) models were developed to support the optimisation of this decision-making process, within a National Health Service (NHS) organisation, in the UK. The proposed model structure is based on seven criteria (environment and safety, size, total cost, accessibility, design, risks and population profile) and 28 sub-criteria. First, Evidential Reasoning (ER) was used to solve the model, then, the processes and results were compared with the Analytical Hierarchy Process (AHP). It was established that using ER or AHP led to the same solutions. However, the scores between the alternatives were significantly different; which impacted the stakeholders‟ decision-making. As the processes differ according to the model selected, ER or AHP, it is relevant to establish the practical and managerial implications for selecting one model or the other and providing evidence of which models best fit this specific environment. To achieve an optimum operational decision it is argued, in this study, that the most transparent and robust framework is achieved by merging ER process with the pair-wise comparison, an element of AHP. This paper makes a defined contribution by developing and examining the use of MCDA models, to rationalise new healthcare infrastructure location, with the proposed model to be used for future decision. Moreover, very few studies comparing different MCDA techniques were found, this study results enable practitioners to consider even further the modelling characteristics to ensure the development of a reliable framework, even if this means applying a hybrid approach

    A comparative study of multiple-criteria decision-making methods under stochastic inputs

    Get PDF
    This paper presents an application and extension of multiple-criteria decision-making (MCDM) methods to account for stochastic input variables. More in particular, a comparative study is carried out among well-known and widely-applied methods in MCDM, when applied to the reference problem of the selection of wind turbine support structures for a given deployment location. Along with data from industrial experts, six deterministic MCDM methods are studied, so as to determine the best alternative among the available options, assessed against selected criteria with a view toward assigning confidence levels to each option. Following an overview of the literature around MCDM problems, the best practice implementation of each method is presented aiming to assist stakeholders and decision-makers to support decisions in real-world applications, where many and often conflicting criteria are present within uncertain environments. The outcomes of this research highlight that more sophisticated methods, such as technique for the order of preference by similarity to the ideal solution (TOPSIS) and Preference Ranking Organization method for enrichment evaluation (PROMETHEE), better predict the optimum design alternative

    A multi-attribute decision making procedure using fuzzy numbers and hybrid aggregators

    Get PDF
    The classical Analytical Hierarchy Process (AHP) has two limitations. Firstly, it disregards the aspect of uncertainty that usually embedded in the data or information expressed by human. Secondly, it ignores the aspect of interdependencies among attributes during aggregation. The application of fuzzy numbers aids in confronting the former issue whereas, the usage of Choquet Integral operator helps in dealing with the later issue. However, the application of fuzzy numbers into multi-attribute decision making (MADM) demands some additional steps and inputs from decision maker(s). Similarly, identification of monotone measure weights prior to employing Choquet Integral requires huge number of computational steps and amount of inputs from decision makers, especially with the increasing number of attributes. Therefore, this research proposed a MADM procedure which able to reduce the number of computational steps and amount of information required from the decision makers when dealing with these two aspects simultaneously. To attain primary goal of this research, five phases were executed. First, the concept of fuzzy set theory and its application in AHP were investigated. Second, an analysis on the aggregation operators was conducted. Third, the investigation was narrowed on Choquet Integral and its associate monotone measure. Subsequently, the proposed procedure was developed with the convergence of five major components namely Factor Analysis, Fuzzy-Linguistic Estimator, Choquet Integral, Mikhailov‘s Fuzzy AHP, and Simple Weighted Average. Finally, the feasibility of the proposed procedure was verified by solving a real MADM problem where the image of three stores located in Sabak Bernam, Selangor, Malaysia was analysed from the homemakers‘ perspective. This research has a potential in motivating more decision makers to simultaneously include uncertainties in human‘s data and interdependencies among attributes when solving any MADM problems

    Fuzzy Analytical Hierarchy Processes for Damage State Assessment of Arch Masonry Bridge

    Get PDF
    The present work proposes a fuzzy analytical hierarchy approach for decision making in the maintenance programming of masonry arch bridges. As a practical case, we propose to classify the degradation state of the Mohammadia masonry bridge. A large number of criteria and sub-criteria are combined to classify this type of bridges through visual inspections. The main criteria (level 1) considered in this work are the history of the bridge, the environmental conditions, the structural capacity and the professional involvement of the bridge. In addition, these criteria are subdivided into several sub-criteria (level 2) which are, in turn, subdivided into sub-criteria (level 3). Considering these criteria and sub-criteria, weights Wiare calculated by fuzzy geometric mean method of Buckley. Subsequently, expert scores were assigned to calculate the overall score CS reflecting the degradation of the considered infrastructure. Thereafter, the masonry arch bridges are classified respecting the French IQOA scoring system using the overall scores value CS. The proposed classification method gave similar results provided by an expert’s study realized previously as part of a national patrimony preservation policy. The obtained results are in good agreement, which makes this method an effective scientific tool for decision-making in view of prioritization of the maintenance after systematic inspection of masonry bridges such as the bridge studied in this work. Doi: 10.28991/cej-2021-03091770 Full Text: PD

    Multi-criteria analysis: a manual

    Get PDF

    Analysis of Decision Support Systems of Industrial Relevance: Application Potential of Fuzzy and Grey Set Theories

    Get PDF
    The present work articulates few case empirical studies on decision making in industrial context. Development of variety of Decision Support System (DSS) under uncertainty and vague information is attempted herein. The study emphases on five important decision making domains where effective decision making may surely enhance overall performance of the organization. The focused territories of this work are i) robot selection, ii) g-resilient supplier selection, iii) third party logistics (3PL) service provider selection, iv) assessment of supply chain’s g-resilient index and v) risk assessment in e-commerce exercises. Firstly, decision support systems in relation to robot selection are conceptualized through adaptation to fuzzy set theory in integration with TODIM and PROMETHEE approach, Grey set theory is also found useful in this regard; and is combined with TODIM approach to identify the best robot alternative. In this work, an attempt is also made to tackle subjective (qualitative) and objective (quantitative) evaluation information simultaneously, towards effective decision making. Supplier selection is a key strategic concern for the large-scale organizations. In view of this, a novel decision support framework is proposed to address g-resilient (green and resilient) supplier selection issues. Green capability of suppliers’ ensures the pollution free operation; while, resiliency deals with unexpected system disruptions. A comparative analysis of the results is also carried out by applying well-known decision making approaches like Fuzzy- TOPSIS and Fuzzy-VIKOR. In relation to 3PL service provider selection, this dissertation proposes a novel ‘Dominance- Based’ model in combination with grey set theory to deal with 3PL provider selection, considering linguistic preferences of the Decision-Makers (DMs). An empirical case study is articulated to demonstrate application potential of the proposed model. The results, obtained thereof, have been compared to that of grey-TOPSIS approach. Another part of this dissertation is to provide an integrated framework in order to assess gresilient (ecosilient) performance of the supply chain of a case automotive company. The overall g-resilient supply chain performance is determined by computing a unique ecosilient (g-resilient) index. The concepts of Fuzzy Performance Importance Index (FPII) along with Degree of Similarity (DOS) (obtained from fuzzy set theory) are applied to rank different gresilient criteria in accordance to their current status of performance. The study is further extended to analyze, and thereby, to mitigate various risk factors (risk sources) involved in e-commerce exercises. A total forty eight major e-commerce risks are recognized and evaluated in a decision making perspective by utilizing the knowledge acquired from the fuzzy set theory. Risk is evaluated as a product of two risk quantifying parameters viz. (i) Likelihood of occurrence and, (ii) Impact. Aforesaid two risk quantifying parameters are assessed in a subjective manner (linguistic human judgment), rather than exploring probabilistic approach of risk analysis. The ‘crisp risk extent’ corresponding to various risk factors are figured out through the proposed fuzzy risk analysis approach. The risk factor possessing high ‘crisp risk extent’ score is said be more critical for the current problem context (toward e-commerce success). Risks are now categorized into different levels of severity (adverse consequences) (i.e. negligible, minor, marginal, critical and catastrophic). Amongst forty eight risk sources, top five risk sources which are supposed to adversely affect the company’s e-commerce performance are recognized through such categorization. The overall risk extent is determined by aggregating individual risks (under ‘critical’ level of severity) using Fuzzy Inference System (FIS). Interpretive Structural Modeling (ISM) is then used to obtain structural relationship amongst aforementioned five risk sources. An appropriate action requirement plan is also suggested, to control and minimize risks associated with e-commerce exercises

    An Adaptive ANP & ELECTRE IS-Based MCDM Model Using Quantitative Variables

    Full text link
    [EN] The analytic network process (ANP) is a discrete multi-criteria decision-making (MCDM) method conceived as a generalization of the traditional analytic hierarchical process (AHP) to address its limitations. ANP allows the incorporation of interdependence and feedback relationships between the criteria and alternatives that make up the system. This implies much more complexity and intervention time, which reduces the expert¿s ability to make accurate and consistent judgments. The present paper takes advantage of the usefulness of this methodology by formulating the model for exclusively quantitative variables, simplifying the decision problem by resulting in fewer paired comparisons. Seven sustainability-related criteria are used to determine, among four design alternatives for a building structure, which is the most sustainable over its life cycle. The results reveal that the number of questions required by the conventional AHP is reduced by 92%. The weights obtained between the AHP and ANP groups show significant variations of up to 71% in the relative standard deviation of some criteria. This sensitivity to subjectivity has been implemented by combining the ANP-ELECTRE IS methods, allowing the expert to reflect the view of the decision problem with greater flexibility and accuracy. The sensitivity of the results on different methods has been analyzed.Grant PID2020-117056RB-I00 funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe".Sánchez-Garrido, AJ.; Navarro, IJ.; García, J.; Yepes, V. (2022). An Adaptive ANP & ELECTRE IS-Based MCDM Model Using Quantitative Variables. Mathematics. 10(12):1-24. https://doi.org/10.3390/math10122009124101
    corecore