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Developing Context-sensitive Livability Indicators for Transportation Planning: A 

Measurement Framework 

 

1. Introduction 

The last two decades have witnessed a surge of interest in enhancing the livability of 

communities, and a growing commitment by governments to provide the framework, 

tools and data to plan and build livable communities. Although European governments 

have been proactive with respect to livability and sustainability plans (see, e.g., EU 

2010), until recently, efforts in the United States have been mostly citizen-organized in 

response to local and regional issues (Deakin 2002; NRC 2002). This changed 

substantially in 2009 when the U.S. Environmental Protection Agency (EPA), the 

Department of Housing and Urban Development (HUD) and the Department of 

Transportation (DOT) formed a partnership to coordinate federal housing, transportation, 

and other infrastructure investments with the goal of creating more livable and 

sustainable communities. The Partnership for Sustainable Communities intends to 

identify policy and investment strategies that encourage safe, reliable and economical 

transportation choices, promote equitable and affordable housing, enhance economic 

competitiveness, support community revitalization and promote healthy, safe and 

walkable neighborhoods in rural, urban or suburban settings. 

A key research need identified in the Partnership for Sustainable Communities is 

the development of livability measures and tools. The agreement calls for efforts to 

research, evaluate and recommend analytical measures that reflect the livability of 

communities, neighborhoods, and metropolitan areas. The intent is to use indices to 

benchmark existing conditions, measure progress and improve accountability in 

integrated planning efforts to enhance community livability. HUD, DOT, and EPA also 

intend to develop incentives to encourage communities to implement, use, and publicize 

the indices (USDOT 2009). 
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Livability indices are not new: quality of life, and sustainability measures and 

rankings include scientifically-based policy measures such as the ecological footprint 

(Wackernagel and Rees 1996) and the human development index (UNDP 1990) and 

measures of inequality such as the Gini coefficient (Garner 1993; Yitzhaki 1979). 

However, new policy initiatives imply a greater emphasis on indicators to guide planning 

and investment decisions. These indices should be carefully constructed given these 

functional requirements. In particular, livability and sustainability indicators should be 

internally consistent or coherent with respect to measurement assumptions, transparent 

in the sense that they are easily understood and interpreted, and externally valid with 

respect to capturing all relevant aspects of the concepts.  

This paper provides a measurement framework for developing and applying 

livability indices in transportation planning. With respect to internal consistency and 

transparency, we critically review the indicator construction process, focusing the 

discussion on issues relevant to transportation planning. With respect to external validity, 

we discuss multicriteria analysis (MCA): a set of techniques for eliciting preference 

structures in multiattribute decision-making (Jankowski 1995; Nijkamp et al. 1990). We 

also discuss techniques that allow indicators to capture the local context more fully. 

These include techniques that explicitly maintain stakeholder perspectives, and spatial 

analytic tools that can model spatial entities and relationships at varying levels of 

aggregation. We also discuss spatial decision support systems and the emerging concept 

of Geodesign as a framework for organizing these tools and technologies as well as 

integrating livability indicators into the broader planning process.  

Although we discuss conceptualizations of livability, we do not intend to provide 

definitions of livability beyond identifying features that are relevant for the indicator 

construction process. We also do not intend to suggest what livability data should or 

should not be collected. In fact, it is often a good idea to collect data beyond the 

requirements for indicator construction: these can be used for “drilling-down” to derive 

additional detail or auxiliary information.  

The next section of this paper provides background on defining livability, 

livability and transportation planning, indicators in policy and planning, and indicators 

for multidimensional concepts.  After this background, the following section addresses 



issues associated with developing internally consistent and transparent indicators.  

Specifically, Section 3 provides a critical review of how to construct a composite index 

that summarizes a multidimensional concept such as livability, paying special attention to 

issues that are relevant to transportation.  Section 4 discusses methods for developing 

externally valid indicators through capturing local context.  These methods include the 

multiactor multicriteria analysis (MAMCA), spatial analytical tools, spatial decision 

support systems and the Geodesign process for organizing tools and technologies as well 

as incorporating livability indicators into the broader planning process. Section 5 

concludes the paper with summary comments and directions for further research and 

application.  

 Although this paper focuses on livability measurement, we draw heavily from the 

literature on sustainability indicator construction since this latter problem is well-studied 

and has a mature body of theory and methodology with an admirable degree of rigor.  

Since sustainability and livability are closely related (arguably, the only difference is time 

scale; Litman 2010), lessons learned over four decades of sustainability measurement and 

accounting can provide valuable insights to the problem of livability indicator 

construction (as well as combined livability/sustainability indicators). Consequently, we 

use the term “livability” generically, although we use the term “sustainability” for 

references to that specific concept. 

 

 

2. Background  

Defining (urban) livability.  A scan of the literature and the web suggests few precise 

and consistent definitions of urban livability. Many authors and commentators point to 

ideal city types as examples of livable communities. These ideal communities are 

typically moderately dense, diverse, walkable, safe, affordable, accessible and well-

served by public transit systems; in other words, the qualities usually associated with 

New Urbanist and smart growth principals (Banister 2008).  For example, the Partnership 

for Sustainable Communities defines six principals of livability (USDOT 2009): 

 



• Provide more transportation choices.  Develop safe, reliable and economical 

transportation choices to decrease household transportation costs, reduce our 

nation’s dependence on foreign oil, improve air quality, reduce greenhouse gas 

emissions and promote public health. 

• Promote equitable, affordable housing.  Expand location- and energy-efficient 

housing choices for people of all ages, incomes, races and ethnicities to increase 

mobility and lower the combined cost of housing and transportation. 

• Enhance economic competitiveness.  Improve economic competitiveness 

through reliable and timely access to employment centers, educational 

opportunities, services and other basic needs by workers as well as expanded 

business access to markets. 

• Support existing communities.  Target federal funding toward existing 

communities – through such strategies as transit-oriented, mixed-use development 

and land recycling – to increase community revitalization, improve the efficiency 

of public works investments, and safeguard rural landscapes. 

• Coordinate policies and leverage investment.  Align federal policies and 

funding to remove barriers to collaboration, leverage funding and increase the 

accountability and effectiveness of all levels of government to plan for future 

growth, including making smart energy choices such as locally generated 

renewable energy. 

• Value communities and neighborhoods.  Enhance the unique characteristics of 

all communities by investing in healthy, safe and walkable neighborhoods – rural, 

urban or suburban. 

 

These principals are not a conceptualization of livability: rather, they are objectives that 

underlie a deeper but unstated definition that spans economic, social and environmental 

dimensions. This reflects a widely accepted consensus about the dimensions of 

sustainability and livability that was first and most famously articulated by the well-

known Brundtland Report on sustainable development (Brundtland 1987; Litman 2007; 

NRC 2002).   



  While livability and sustainability have general principles, the set of attributes 

that comprise a livable and/or sustainable community can vary from place to place and 

over time. Livability in particular has a strong local component due to the particular mix 

of attributes that emerge as people sort themselves among communities based on 

preference (and ability-to-pay), the importance of local trends in perceived quality of life, 

the local nature of politics, the varying availability of policy and planning prescriptions, 

and the need to ground these measures in local opinion for credibility (Myers 1987). 

Similarly, sustainability problems such as overconsumption and environmental 

degradation are not simply technical but have strong social and political components. 

Solutions to livability and sustainability problems occur within complex human and 

physical systems where local context can have dramatic effects on the outcomes (Prugh 

et al. 2000). The local component of livability does not mean that there are no general 

principles underlying livability indicators: rather, it suggests the relative importance of 

livability attributes can vary from place to place.   

 

Livability and transportation planning.  As a primary shaper of urban form and travel 

behavior, transportation systems have a key role to play in the development of livable and 

sustainable communities.  Livability in transportation is about using the quality, location, 

and type of transportation facilities and services available to help achieve broader 

community goals such as access to good jobs, affordable housing, quality schools, and 

safe streets (USDOT 2010).  

Although livability and sustainability have received heightened attention in recent 

years, livability in transportation is not new: community groups, developers and residents 

have long advocated for initiatives that promote accessibility, affordability, safety, smart 

growth and New Urbanism, with varying degrees of support from federal, state, and local 

agencies and planning organizations (USDOT 2010).  In fact, Litman (2010) points out 

that livability and sustainability goals harmonize well with transportation planning 

objectives; Table 1 illustrates these overlapping goals and objectives.  What has changed, 

more recently in the United States but earlier in Europe, is the mainstreaming of livability 

and sustainability concepts into the transportation planning (USDOT 2009, 2010).  This 



is raising new requirements for data and measures that can help guide the planning 

process by charting progress towards livability and sustainability goals.      

 

Table 1: Transportation planning objectives that support sustainability and 

livability goals (Litman 2010) 

 

   

 

Indicators in policy and planning.  The use of indicators to improve decision-making in 

policy analysis has a long tradition in applications such as economic development, 

quality-of-life assessment, environment and natural resource analysis and sustainability 

(Hezri and Dovers 2006).  Indicators can have five main purposes (Dovers 2001; Failing 

and Gregory 2003; Hezri and Dovers 2006):  

 

1. discriminating among competing hypotheses; 

2. structuring the understanding of issues and conceptualizing solutions; 

3. tracking performance towards goals and objectives; 

4. discriminating among alternative policies either for specific decisions or general 

policy directions; 

5. informing general users (public, stakeholders, community). 

       

Although indicators have recently received new attention in transportation 

planning, Black (2010) points out that an indicator-based approach to transportation 

planning has been common for much of the past century.  However, until recently, only 

one indicator was used, namely, operating speed or its inverse, congestion.  

Consequently, much of the effort involved in the traditional transportation analysis and 

planning process focused on predicting future points of congestion so they can be 

mitigated.  Unfortunately, an emphasis on operating speed in transportation planning has 

encouraged excess travel, contributed to urban sprawl and undermined society's 

environmental, energy, and growth management goals.  This has led to a shift from 

operating speed as the dominant transportation indicator to more comprehensive 



measures of personal mobility, accessibility, livability and sustainability across 

economic, social and environmental dimensions (Ewing 1993, 1996; Litman 2007).   

 

 

Indicators for multidimensional concepts.  There is a large literature on developing 

indicators for multidimensional concepts such as sustainability and livability (to a lesser 

degree) in policy and planning. Regardless of the specific methodology, all indicators 

share some common properties. These include the need to define the high-level 

dimensions of interest, identify the performance objectives within each dimension, 

construct individual indicators reflecting performance relative to the objectives, and 

measure variables for each indicator (Munda 2005; NRC 2002). Figure 1 illustrates these 

concepts and their linkages, including composite indicator construction (to be discussed 

below). Dashed arrows represent conceptual links, and solid arrows represent data flows. 

 

Figure 1: Conceptual foundation of multidimensional indicators 

 

For example, livability spans economic, socio-demographic and environment 

dimensions. Within each dimension, we need to define objectives such as maximize 

productivity (economic), minimize inequities (socio-demographic), and minimize 

environmental impact (environment). We then must define indicators relative to each 

objective, such as transportation cost (productivity), affordability (inequities) and air 

pollution (environment). Note that each objective may have more than one indicator. 

Finally, variables or indicator scores measure performance relative to an objective based 

on the stated indicator. For example, we might measure logistics cost relative to revenue, 

housing cost relative to income, or CO2 and PM-10 levels in an air shed (Munda 2005). 

After defining a set of indicators for a multidimensional concept such as 

livability, the next question is how to handle the collection of indicators.  Simple 

indicators maintain individual indicators as conceptually independent, while composite 

indicators combine individual indicators into a synoptic indicator (Zhou and Ang 2008).   

Non-composite or simple indicators consist of a single indicator or a set of 

indicators. There are two types of simple indicators. Indicator sets are measurements 



across multiple dimensions and indicators that are maintained separately as an array. An 

example is the 58 indicators of sustainable development developed by the United Nations 

Commission on Sustainable Development (UNCSD 2001). An indicator set can be 

complex and difficult to interpret and therefore unable to provide a concise, synoptic 

summary of the performance being measured (Zhou and Ang 2008).  A second type of 

non-composite indicator is an integrated indicator. These integrate multiple indicators by 

using a common unit across all indicators. A well-known integrated indicator is the 

ecological footprint proposed by Wackernagel and Rees (1996): this is the amount of 

land and water area a human population would hypothetically need to provide the 

resources consumed and the wastes produced. Another example is the genuine progress 

indicator (GPI): this indicator attempts to capture social and environmental factors not 

normally considered in gross domestic product accounting (Cobb et al. 1995). However, 

in practice it can be very difficult to find a common measurement unit across all 

dimensions and indicators of interest (Zhou and Ang 2008). 

A composite indicator (CI) attempts to resolve the problem of finding a common 

measurement unit across dimensions and indicators. A composite indicator uses 

mathematical techniques to synthesize a single indicator from individual indicators 

measured in their native units (Munda 2005). CIs have become an increasingly popular 

way to assess the performance of cities, states, countries or other geographic units with 

respect to multidimensional phenomena such as livability, sustainability and 

development. They are often used to rank entities based on relative performance, as well 

as track their progress or regress over time (Massam 2002; Saisana and Tarantola 2002; 

Zhou and Ang 2008). A well-known example is the United Nations Human Development 

Index (Sagar and Najam 1998). Other examples include the Mercer quality of living 

index for world cities (www.mercer.com) and Florida’s various creativity indices to 

assess a region’s overall standing and prospects in an economy that values innovation 

(Florida 2002).  

CIs have some disadvantages, including: i) sending misleading, non-robust policy 

messages if they are poorly constructed; ii) inviting simplistic policy conclusions; iii) 

subjective decisions in their construction; iv) disguising serious failings in some 

dimensions and make it more difficult to identify proper remedial action, and; v) they can 



lead to inappropriate policies if dimensions that are difficult to measure are ignored 

However, CIs have powerful advantages, including: i) summarizing complex or multi-

dimensional issues to support decision-making; ii) providing a “big picture” that is easier 

to interpret than an array of separate indicators; iii) allowing the ranking of entities with 

respect to performance across a wide range of dimensions, and; iv) attracting public 

interest by providing a summary figure with which to compare the performance and 

progress over time (Saisana et al. 2005; Zhou and Ang 2008).  These advantages can be 

maximized, and the disadvantages minimized, through proper CI construction.        

The next section of this paper focuses on the construction of internally-consistent 

and transparent CIs.  However, we do not advocate CIs as the singular solution to 

livability measurement in transportation planning. Single indicators and/or indicator sets 

are useful alternatives, and can also serve as supplements to a synoptic index such as a 

CI. For example, indicator sets can be useful when drilling-down into the database to help 

understand observed variations in overall livability suggested by a CI. Also, with the 

exception of the aggregation step, the principles of proper CI construction can also 

inform the construction of individual indicators or indicator sets. For example, it may be 

a good idea to normalize individual indicators or indicator arrays even if they are not 

aggregated into a CI. For example, normalization could be useful for indicator 

visualization in a summary, dashboard format. 

 

 

3. Constructing Consistent and Transparent Composite Indicators  

There are two main strategies for constructing CIs (Zhou and Ang 2008). The indirect 

approach involves normalizing the individual indicators, assigning weights reflecting 

their relative importance, and then combining the weighted normalized variables to 

derive a synthetic composite indicator. This process often involves methods from 

multicriteria analysis (MCA). MCA is a set of techniques for identifying choice 

alternatives satisfying the objectives of the parties involved in a multi-attribute decision-

making process, and reducing the set of feasible alternatives to identify the most 

preferred alternatives (Jankowski 1995; Nijkamp et al. 1990). In the case of CI 

construction, MCA provides techniques for identifying indicators, eliciting weights 



reflecting the relative importance of the indicators, aggregating the indicators to develop 

the CI, and conduct sensitivity analysis (Munda 2005; Zhou and Ang 2008).  

The direct approach to constructing CIs involves obtaining the composite 

indicator endogenously and unequivocally within a formal framework. The most 

common direct method for constructing CIs is data envelopment analysis (DEA). DEA is 

a non-parametric, linear programming-based technique used in operations research and 

economics to analyze the relative efficiency of firms based on their combined inputs and 

output and identify combinations of resource inputs that maximize efficiency. As part of 

this process, DEA calculates the shadow prices or hidden (unknown) costs associated 

with the given combination of resources. When applied to CI construction, the shadow 

prices are the desired indicator weights given an appropriate definition of efficiency 

(Cherchye et al. 2008).  

In this section of this paper, we will focus the discussion on the indirect method of 

constructing CIs for transportation. While direct methods such as DEA certainly have 

value, indirect methods offer a strong advantage: the capability for wider input into the 

livability measurement process. Given the contentious nature of many transportation 

projects, as well as the wide variety of stakeholders involved, a transparent and open 

process is essential if livability measurement is to be adopted in transportation policy and 

planning. In contrast, direct methods are vulnerable to rejection as technocratic and 

possibly elitist in public decision-making (although there have been some attempts to 

integrate the two approaches; see Ramanathan 2006; Zhou and Fan 2007). In addition to 

political acceptability, there are also ethical issues involved in the construction of a CI. 

The relative weights associated with indicators in a CI necessarily involve value 

judgments; therefore consistency and transparency relative to the assumptions used in 

constructing a CI should be a priority (Munda 2005). 

The major steps involved in constructing composite livability indicators using 

indirect methods based on multicriteria analysis (MCA) techniques include: i) identifying 

objectives, indicators and weights; ii) normalization; iii) aggregation of the weighted 

indicators, and; iv) sensitivity analysis. This is not necessarily a linear process: there may 

be feedback to earlier steps, particularly after sensitivity analysis (Munda 2005; Zhou and 

Ang 2008).  



 

3.1. Identifying objectives, indicators and weights 

A critical step in measuring livability is defining the objectives, the indicators that 

measure performance with respect to the objectives and the relative importance of the 

indicators in the composite livability indicator. These tasks are interrelated, and 

consequently can be conducted in an iterative manner. There are software environments 

for facilitating these tasks known as decision support systems (DSS). DSS allow decision 

makers to explore the consequences of their choices through software tools, graphics and 

visualizations, and can also provide services for supporting interaction and collaboration 

in group decision making (Jankowski et al. 1997; Witlox 2005). We will return to the 

topic of DSS in Section 5.  

 

Objectives and indicators. Identifying objectives and indicators is often conducted in an 

informal manner or semi-structured manner, such as interviews and “brain-storming” 

with focus groups and stakeholders. Another possible approach is to examine policy 

statements and secondary information sources from relevant stakeholder groups and 

analyze these to derive indicators to reflect their concerns. A third possibility is to 

conduct role-playing exercises where members of the decision team role play the position 

of key stakeholder groups to ensure their perspectives are included when deriving 

indicators (Dodgson et al. 2009).  

Regardless of how they are derived, unambiguous indicators should have the 

following properties (Keeney 1980; Malczewski 2000; also see Litman 2007):  

 

1. Comprehensible: An indicator is comprehensible if its level clearly indicates 

the degree of achievement for its associated objective. 

2. Measurable: An indicator is measurable if it is practical to assign a number to 

it performance and it is possible to assess preferences for different levels of 

the indicator value. 

3. Completeness: The indicators should cover all relevant aspects of the 

phenomenon being assessed, and adequately indicate the degree to which the 

overall objective is achieved. 



4. Operational: It should be practical to measure in the indicator in practice, 

e.g., the required data should not be unduly expensive to collect.  

5. Decomposable: Performance relative to one indicator can be evaluated 

independently of performance with respect to other indicators. 

6. Nonredundant: Indicators should be nonredundant to avoid problems of 

multiple counting. 

7. Minimal: The set of indicators should be as small as possible. 

 

Properties 6 and 7 should not suggest collecting only the minimal amount of data possible 

as a general policy. Rather, these properties dictate that the indicators that comprise an 

indicator set, an integrated indicator or aggregated into a CI should be nonredundant for 

parsimony and ease of understanding. Drilling-down for exploration and explanation will 

involve additional, perhaps redundant, data.  

 

Indicator weights. Closely associated with the problem of deriving an appropriate set of 

indicators is the relative importance or weights associated with each indicator. The 

weights should be scale-free, satisfying the properties  and  

where n is the number of indicators. Combined with variable normalization (see below) 

this allows the construction of a scale-free CI that varies between zero and one, 

enhancing clarity and interpretation.  

Another possibility is to choose weights that represent the monetary value of each 

indicator, with the result that the CI score for each entity is expressed as the overall 

monetary value associated with livability in that entity. Although this approach has merit 

– for example, real-world metrics such as dollars or euros can be meaningful to decision 

makers and the public at large – it has two substantial problems. First, it is misleading to 

express some livability and sustainability indicators (in particular, those within the social 

and environmental dimensions) in monetary units. This assumes that the particular 

indicator can be traded for money; in some cases, this is nonsensical (a topic we will 

return to below). Second, although there may be good reasons to compress multiple 

indicators into an overall score, expressing this score in monetary units brings the danger 

of reifying a synthetic construction. A real number score between zero and one that can 



be interpreted as a ratio value allows valuable quantitative comparisons, but leaves these 

comparisons within an abstract metric. This provides a persistent reminder not to reify the 

CI as anything other than a (carefully) constructed summary measure.  

There is a wide range of methods for eliciting attribute weights or rankings among 

attributes (see Figueria et al. 2005; Greene et al. 2011). A common method is analytical 

hierarchy process (AHP) (Saaty 1980, 1990). AHP decomposes a multi-attribute problem 

into a hierarchy of the overall goal, criteria, subcriteria and alternatives. Decision makers 

and stakeholders involved in the process are to conduct pairwise comparisons between 

subcriteria. Analysis of the resulting judgment matrix allows the derivation of the relative 

weights for each indicator, as well as a consistency index to assess the degree of 

consistency in the pairwise judgments (Duke and Aull-Hyde 2002). A possibility with 

AHP is rank reversal: this occurs when rankings among existing indicators change after 

the insertion of a new indicator. This can be interpreted as a problem with the 

methodology, or a reflection of real world behavior. Given the former interpretation, 

there are methods for avoiding this problem (e.g., see Schenkerman 1994; Wang and 

Elhag 2006).  

A problem in developing livability indicators is the ambiguity about the 

conceptual structure of objectives and dimensions. For example, it is possible that an 

objective may reflect more than one dimension, or an indicator may reflect more than one 

objective. For example, minimizing inequities could be interpreted as having both 

economic and social dimensions. Similarly, affordability could reflect the objectives of 

minimizing inequities and maximizing economic efficiency. A third example is that 

minimizing natural resources has both environmental as well as economic efficiency 

aspects. Fuzzy structure modeling (FSM) allows modeling of ambiguous relationships in 

the calculation of indicator weights (Sakamoto and Fukui 2004). 

Techniques for deriving preference weights in MCA are typically applied in 

group settings, comprising decision-makers, stakeholders and other parties interested in 

the definition or decision problem. The objective is to derive a single set of preference 

weights that reflect a consensus of the individual perspectives. However, given the wide 

range of stakeholders concerned with transportation, and the contentious nature of many 

transportation policies and projects, it is not guaranteed that these weights will be robust 



and uncontested, particular if there are differences in informal power and influence 

among stakeholders. The synthetic consensus preferences can mask crucial preferential 

differences among the stakeholders (de Chazal 2010; Macharis et al. 2009; Strager and 

Rosenberger 2006). The preference structure underlying complex concepts such as 

livability can also be contingent on contextual factors, and can consequently change over 

time (Allen 2010). For example, Shafer et al. (2000) found different perspectives on the 

impact of urban greenways on perceived quality-of-life based on the individual’s use of 

the facility (recreation versus commuting). Strager and Rosenberger (2006) found 

differences between the preferences of “outside experts” (who tended to focus on the 

general principles underlying the issue) and the preferences of “local stakeholders” (who 

tended to focus on context-specific knowledge about the issue in the local setting) with 

respect to a land conservation proposal.  

Rather than confounding the process, recognizing differences in influence and 

preference can be helpful in complex decision processes such as livability definition and 

measurement. The true consensus may be different from the aggregation of individual 

preferences if there is room for debate and change in the process.  For example, in the 

outside expert versus local stakeholder dynamic discussed above, Strager and 

Rosenberger (2006) found that the otherwise confounding phenomenon of rank reversal 

resulted from unmeasured criteria important to local stakeholders. Conversely, the 

process of obtaining consensus can raise awareness of some stakeholders to universal, 

broader issues. They conclude that although the objective of MCA is to simplify complex 

decisions, it is useful to also treat the process as a form of discursive democracy where 

preferences are explored and refined.  

 

 

3.2. Normalization  

Since individual indicators are often (if not always) measured in different metrics, 

normalization is essential. The objective is to develop metric free measures where higher 

positive values reflect greater desirability (i.e., better performance relative to the stated 

objective). Several normalization techniques are available, including Z-score 



transformations, linear normalization, and distance from the best and worst performer 

(Munda 2005; Zhou and Ang 2008). 

Although seemingly mundane, the normalization process can involve judgments 

and decisions that strongly impact the indicator. Normalization often involves choosing a 

reference point and a measure of difference from this reference. This reflects a judgment 

about ideal performance (or lack of performance). For example, decisions must be made 

regarding the best and worst performers in measuring distances to these extremes. One 

possibility is to follow a relative perspective and choose the empirical best and worst 

performers with respect to the current state of the system. However, if the performance is 

bad across the entire system (e.g., all cities are unlivable), the results are measures of 

relative differences in bad performance without a sense of progress with respect to a 

desired performance goal. Alternatively, we can follow an absolute perspective and 

choose the best and worst possible performances with respect to a stated ideal. However, 

these ideals may be difficult to ascertain or may be unrealistic, rendering the normalized 

measure meaningless.  

 

3.3. Aggregation 

The most common way to combine the indicators is through simple additive weighting 

(SAW): 

 

(1) 

 

where  is the normalized indicator j for entity i, and  is the normalized weight 

associated with indicator j, n is the number of indicators and m is the number of entities 

(e.g., geographic units such as cities or neighborhoods). SAW has some advantages, 

including simplicity and ease of understanding. However, SAW makes several strong 

assumptions regarding the indicators and dimension being measured by the index (Munda 

2005; Zhou and Ang 2008). Indicator weights in the SAW technique can be also be 

interpreted as trade-off ratios between the variables (Munda and Nardo 2005). This 

implies that preferences among the indicators and variables are compensatory: that is, bad 

performance in one dimension can be compensated by good performance in another. This 

is questionable in many circumstances, and perhaps no more than in livability and 



sustainability performance measurement. For example, how much CO2 in an urban air 

shed should be substituted for greater housing affordability? The linear combination in 

the SAW approach also assumes preference independence (Munda 2005). In reality, 

complex multifaceted decisions often have inter-attribute relationships such as 

conditional relevance (dependencies among attributes change in relevance due to the 

presence or absence of other attributes) and conceptual interaction (the relative 

importance of attributes changes depending on the values of other attributes; see Witlox 

et al. 2009).  

At the other extreme, we could alternatively assume that indicators across social, 

economic and environmental dimensions are strictly non-compensatory: they cannot be 

substituted in any precise manner. A weighted product (WP) aggregation assumes non-

compensatory relationships among indicators since poor performance in one indicator 

cannot be compensated by good performance in another (Ebert and Welsch 2004; Zhou 

and Ang 2008):  

 

(2) 

 

  

Compensatory versus non-compensatory aggregation of indicators parallels a 

conceptual debate in the sustainability literature between weak sustainability versus 

strong sustainability.  Compensatory aggregation is consistent with weak sustainability: 

this assumes unlimited substitutability between natural resources and human-made 

capital, with the implication that sustainability is obtained if the total net capital (both 

natural and human-made) remains positive.  Non-compensatory aggregation is consistent 

with strong sustainability: this perspective views substitutability with suspicion due to the 

irreplaceability of natural resources and the aversion of some individuals to natural 

resource loss regardless of compensation by human-made capital (Gútes 1996; Neumeyer 

2003).  There have been attempts to reconcile or modify these extreme positions to make 

them more practical for empirical evaluation, with varying degrees of success (see, e.g., 

Ekins et al. 2003; Hediger 1999; also see Neumeyer (2003) for analysis and discussion).   

Continued progress in the MCA literature have led to the creation of aggregation 

methods that allow greater flexibility and the possibility of intermediate solutions 



between the extreme positions of strict substitutability or strict non-substitutability across 

all indicators.  Weighted displaced ideal (WDI) and ordered weighted averaging (OWA) 

methods try to find compromises between compensatory and non-compensatory methods. 

WDI is based on the idea that the best system should have the least distance from the 

ideal system. WDI sums a distance function of the weighted indicators: 

 

(3) 

 

where  defines the distance metric. Specifying the distance metric determines 

the trade-off relationships among the indicators. If  WDI is equivalent to SAW. If 

, WDI is a non-linear aggregation of the individual indicators. As , 

 meaning that the entities are compared by their poorest performance 

across all indicators. The distance metric could be included as a parameter in the decision 

process: e.g., one could plot CI behavior as a function of p as well as drill-down and 

explore solutions for some parameter settings to support group consensus on the 

appropriate trade-off relationships to embody in the CI (Diaz-Balteiro and Romero 2004; 

Zeleny 1982; Zhou and Ang 2008; Zhou et al. 2006).  

 OWA is a set of aggregation operators that also allow a high degree of flexibility 

(Yager 1988). OWA involves SAW-like aggregation, but with weighted indicators 

ordered by value and additional weights reflecting their position in this sequence:  

 

(4) 

 

where  is the sequence of n weighted indicators 

 arranged in descending order, and  are a set of order 

weights. Similar to the indicator weights, order weights are also scale-free measures such 

that and . However, order weights reflect the importance of the 

indicator’s position when ranking them from best to worse performance for each entity. 

Different order weights reflect different logical operators applied to the weighted 

indicators. For example, if we choose the weights  then 

 or the minimum value of the weighted indicator set, meaning that 



entities are evaluated by the worse-performing and/or least important indicator. This is 

equivalent to the logical AND operator applied to the weighted indicators since entities 

must perform well on all indicators to perform well as a unit. Conversely, the weights 

 correspond to  or the maximum value of the set, 

meaning that entities are compared based on their best and/or most important indicator. 

This is equivalent to the logical OR operator since only one indicator must perform well 

for entities to perform well. Varying the order weights between the  and  

captures the entire range of possible MIN (OR) and MAX (AND) combinations between 

those extremes, including the SAW method (Malczewski et al. 2003; Rinner and 

Malczewski 2002).  

There are several methods for determining order weights, some based on fuzzy 

sets since this is the origin of the OWA method; see Jiang and Eastman (2000), Xu 

(2005), Yager (1988) and Yager (1997). Malczewski et al. (2003) developed a method 

based on a parameterization of MAXness (ORness). This parameter can be used to 

determine in optimal sets of weights based on a maximum entropy criterion. In addition, 

a function based on the MAXness parameter provides a systematic method for modifying 

the order weights and generate different solutions. Malczewski (2006) developed a fuzzy 

set approach that translates proportional linguistic quantifiers (e.g., the following classes: 

few, half, most, all) into a set of order weights. 

As noted previously, contentious dynamics can occur between professionals who 

emphasize generalities and citizens who emphasize context, as well as between outsiders 

who emphasize what is good overall and locals who emphasize neighborhood effects 

(Strager and Rosenberger 2006). Bell et al. (2007) illustrate how to capture these types of 

dynamics using the OWA technique. Standard indicator weights provided by professional 

experts reflect global considerations while the OWA order weights allow local, case-

specific, data-driven factors to have varying degrees of influence. They generate a range 

of scenarios with different levels of global versus local trade-offs by systematically 

varying the order weights.  

 

3.4. Uncertainty and sensitivity analysis 



The final step in constructing CI is conducting sensitivity and uncertainty analyses. 

Sources of uncertainty and sensitivity in CIs include: i) selection of indicators; ii) data 

selection and cleaning; iii) normalization; iv) weighting method; v) weights, and; vi) 

aggregation method. Uncertainty analysis focuses on how errors in the input measures 

propagate and affect the CI values, while sensitivity analysis assesses how much each 

individual source of uncertainty contributes to the output variance. The result of these 

analyses is a CI that is a distribution rather than a single point estimate. While this may 

appear to weaken the utility and especially the comparability of the CI, it can make the 

assessment more transparent and ultimately more robust (Saisana et al. 2005). Error 

propagation methods are available for the weighting methods, weights and normalization 

and information loss measures are available for the aggregation method (see 

Triantaphyllou and Sanchez 1997; Zhou et al. 2006). Saisana et al. (2005) developed an 

iterative methodology for CIs that combines uncertainty analysis and sensitivity analysis 

for assessing the effect of normalization, weighting method and weights.  However, 

uncertainty and sensitivity analysis is a relatively underdeveloped topic in the CI 

construction literature; in particular, there are no methods that can address spatial error 

propagation or sensitivity due to spatial aggregation and partitioning of the underlying 

units when applying these indicators to geographic entities such as neighborhoods, cities 

or regions.  

  

4. External Validity: Adapting Indicators to Local Context 

The techniques discussed previously in this paper are methods for constructing livability 

indicators that are coherent, transparent and externally valid. Following the principles of 

good indicator construction leads to indicators that are internally consistent and 

transparent. MCA techniques allow for external input regarding indicators and relative 

importance weights. While this is sufficient for many indicator applications such as 

ranking countries or cities based on livability or sustainability, application in 

transportation policy and planning requires some enhancements to these techniques, 

particularly if these indicators are used in policy and plan evaluation.  

One set of enhancements relate to the diverse stakeholders typically involved in 

the planning process. Transportation stakeholders can include metropolitan planning 



organizations, local, governmental units at all levels, transportation and transit agencies, 

businesses, community organizations and local citizens. These stakeholders can have 

widely diverse perspectives about livability and (in particular) what components of 

livability are important. Given the contentious nature of many transportation projects, 

attempting to reach a consensus on livability such as required in a standard MCA process 

may not only be difficult, but can also have the effect of reifying otherwise contingent 

definitions as somehow true and universal, with negative consequences for their political 

acceptability (Macharis et al. 2009). 

 Geographic context is also important to transportation planning. Transportation 

has strong geographic footprints, both explicitly with respect to the location of 

infrastructure and services, as well as implicitly with respect to impacts on human and 

physical systems such as land-use and the environment. Transportation system 

performance also varies by space and time: congestion is the most evident example. 

Finally, the distribution of people with respect to the transportation system is often sorted 

spatially and temporally according to socio-economic, demographic and cultural factors, 

meaning that transportation has varying impacts on social groups based on location. 

Assessing the impacts of transportation on livability therefore requires sensitivity to 

geographic context.  

This section discusses techniques for capturing local context in indicator 

construction and application. The first is a set of techniques for explicitly incorporating 

and maintaining individual stakeholder perspectives in the MCA process. The second are 

spatial analytical techniques that provide methods for capturing the geographic context of 

transportation systems and spatial relationships among livability indicators. The third set 

of techniques is spatial decision support systems (SDSS) that utilize digital maps, 

geovisualization and spatial analysis techniques to support complex, multi-attribute 

problem-solving for mappable phenomena such as transportation. Related to SDSS is the 

emerging concept of Geodesign that can provide an organizing framework for these tools 

and technologies as well as a framework for integrating livability indicators into the 

broader planning process.  

 

4.1. Incorporating stakeholder perspectives 



As noted previously in this paper, it is possible to explore different weighting scenarios in 

MCA; for example, the trade-offs between global principles and local context using the 

order weights in the OWA aggregation technique (see Bell et al. 2007). A more 

comprehensive approach is to build and maintain multiple stakeholder perspectives 

explicitly throughout the CI construction, evaluation and application process. This can 

lead to better understanding of different stakeholders’ perspectives and the trade-off 

required for a consensus. This can allow stakeholders to reflect on their objectives and 

consider more carefully their rationale for their conceptions and objectives. Also, the fact 

that stakeholders know that their preferences will be maintained and included in a 

comprehensive evaluation can motivate them to make more appropriate and reasonable 

assessments (de Chazal 2010; de Chazal et al. 2008; Macharis et al. 2009).  

The multi-actor multicriteria analysis (MAMCA) extends the MCA to explicitly 

incorporate and maintain diverse stakeholder viewpoints throughout the process instead 

of only during the initial stages of problem analysis, identification of objectives and 

indicators and derivation of weights (Macharis et al. 2009; Macharis et al. 2010). Figure 

2 illustrates the MAMCA process. It begins with the definition of dimensions and 

objectives as in the standard MCA process. However, it introduces a second step, namely, 

stakeholder analysis. This stage identifies stakeholders in the transportation project and 

conducts an in-depth analysis of their objectives and their relative importance. These are 

maintained in the next stage when indicators and weights are derived. However, in a 

MAMCA, the weights are defined as the importance the stakeholder attaches to her goals. 

Each stakeholder can be assigned a weight reflecting their importance in the indicators 

construction process. This could be equal for all stakeholders, although it some cases it is 

defensible to give a stakeholder greater weight (e.g., a governmental or regulatory 

agency).  

 

Figure 2: The multi-actor multicriteria analysis (MAMCA) process (Macharis 2007) 

 

 As an example, Witlox et al. (2010) apply the MAMCA method to a contentious 

logistics facility in Ghent, Belgium. Figure 3 illustrates the stakeholders and stakeholder 

weights associated based on interviews with 19 local organizations. The four stakeholders 



groups – receivers (customers), the transport sector, facility employees and society (city 

inhabitants, commuters, tourists, shoppers, governments) –were given equal weights. 

Figure 3 also illustrates the critical attributes and the preference weights derived for each 

stakeholder.  

 

 

Figure 3: Example MAMCA weights (Witlox et al. 2010) 

 

The facility considered five alternative operating policies: 1) day deliveries; 2) 

night deliveries; 3) evening off-peak deliveries; 4) morning off-peak deliveries, and; 5) 

night deliveries with mitigation efforts. Figure 4 illustrates the overall result: there is a 

clear preference for day deliveries mostly due to strong attitudes of the employees, while 

all off-peak alternatives score similarly. This raises the question of exploring alternative 

solutions. Figure 5 drills down and focuses on the preferences for two stakeholders, the 

transport sector and society. The plot illustrates the weighted attributes for each 

stakeholder and each policy’s relative performance across these attributes and overall. 

Both stakeholders share an aversion to daytime deliveries but disagree with respect to 

preference for morning versus evening off-peak deliveries.  

The stakeholder-based analysis in MAMCA facilitates the search for potential 

conflicts as well as aspects of agreement, as well as the reasons behind these agreements 

or disagreements, facilitating a discursive democratic approach to livability measurement 

in transportation planning. MAMCA techniques and visualizations could be used to 

support stakeholder weighting scenario analysis; e.g. changing stakeholder weights to 

reflect shifting emphasis between professionals and citizens or outsiders versus locals 

(Bell et al. 2007; Strager and Rosenberger 2006). As with standard sensitivity analysis in 

CI construction, a useful result could be the range of livability scores across different 

weighting in addition to a single compromise score.  

It is crucial to note we are not advocating “crowd rule” for livability measurement 

in transportation planning. As mentioned above, greater weights could be given to experts 

and government entities, especially regulatory authorities. We could also define an 

abstract stakeholder reflecting current scientific consensus on the concept and give this 



stakeholder an appropriate weight. In many situations it may be useful to think of 

MAMCA as adjusting rather than redefining global livability definitions, using local 

input to customize general principles derived from science and regulatory authority to 

better fit local context.  

 

Figure 4: MAMCA overall results across all stakeholders (Witlox et al. 2010) 

 

  

 

Figure 5: MAMCA stakeholder preferences: Transport sector (top) and society 

(bottom) (after Witlox et al. 2010). 

 

 

4.2. Incorporating geographic context 

GIS allows high-resolution and accurate representations of spatial objects and their 

interrelationships. Spatial objects such as transportation infrastructure, buildings, 

neighborhoods, cities, etc., can be represented in their natural form as points, lines, 

polygons or fields rather than through approximations such as centroids representing 

zones. GIS allows higher resolution and more accurate spatial relationships among 

entities such as distance, connectivity, shortest path and direction. This greatly expands 

the flexibility and power of analytical measures and methods built on these data (Miller 

and Wentz 2003).  

Highly aggregate indicators often fail to capture nuanced spatial effects since they 

mask heterogeneity in the underlying disaggregate distribution. Also, a large number of 

disaggregate spatial distributions can be consistent with the same aggregate state, 

meaning it is impossible in principle to untangle competing explanations and policy 

interventions (O’Kelly 2010). For example, commuting efficiency measures compare 

commuting distances to determine the degree of spatial match between residences and 

work locations. These measures are highly influenced by the spatial representation of the 

system; e.g., aggregate traffic analysis zones with Euclidean distances versus 

disaggregate neighborhoods with network-based distances (Horner 2004; Niedzielski 



2006). Spatial disaggregation also supports disaggregation by trip purpose, socio-

economic status, gender, age and other factors to capture social and cultural differences 

in this livability indicator (Horner and O’Kelly 2007; Horner 2002). Similarly, 

transportation performance measures such as travel time, congestion, level of service give 

different depictions when measured at the zone level, the corridor level or at level of the 

individual links (Zietsman and Rilett 2008). In addition to spatial disaggregation, 

temporal disaggregation is also becoming more feasible as frequently updated data and 

real-time data streams become increasingly available. This can allow greater sensitivity to 

the multi-level and complex dynamics that typify land-use, transportation and human 

activity systems (Geurs and van Wee 2004; Van Acker et al. 2007).  

Despite capabilities for high-resolution geospatial measurement, it is often 

necessary to use aggregate spatial units for data collection and reporting purposes. Some 

of these units, such as census units, traffic analysis zones, postal codes, and so on, are 

constructed by fiat and have a degree of arbitrariness with respect to the distribution of 

the property in the real world. This can drastically affect the results of livability mapping 

and analysis (see NRC 2002, Figures 3.2-3.6). The problem of arbitrary geographic units 

and their effects on measurement, mapping and analysis is known by the awkward label 

modifiable areal unit problem or MAUP (see Openshaw and Taylor 1979; Wong 2009). 

The problem is simple to state, but difficult to solve: if the units are defined using an 

arbitrary spatial scale and/or with arbitrary boundaries, than the results of the 

measurement and analysis are arbitrary: they can be changed by manipulating the scale or 

boundaries (Wong 2009). This issue has received little attention in the literature on 

constructing social indices (Schuurman et al. 2007). 

Unfortunately, there is no simple solution to the problem of arbitrary spatial units 

(Wong 2009). One possibility is to develop statistically optimal spatial units for reporting 

data, but this can vary by indicator type, and may not be practical or politically realistic 

(e.g., Openshaw 1978; Openshaw and Rao 1995).  Methods for addressing scale-related 

issues include assessing impacts of scale effects, development of scale-free fractal 

methods for spatial analysis, and the use of advanced geostatistical methods to model the 

scale effects. Spatial interpolation methods can be used to address problems with 

arbitrary boundaries by interpolating the data to more appropriate units (e.g., Flowerdew 



and Green 1992; Gotway and Young 2002).  A straightforward method facilitated by GIS 

software is to conduct sensitivity analysis using different scales and zoning systems; this 

could be part of the indicator construction process similar to sensitivity and uncertainty 

analysis based on weights, normalization and weighting methods.  Schuurman et al. 

(2007) conduct a sensitivity analysis of area-based deprivation indices and conclude that 

artifacts are best ameliorated by using large map scales (i.e., the smallest unit of analysis 

possible), a conclusion consistent with much of the broader literature on the MAUP.  

In addition to appropriate representation of spatial entities, spatial analytical 

techniques can capture spatial dependency relationships among attributes and indicators. 

Spatial dependency refers to the tendency for things that are spatially proximal to be 

more related. Observed positive or negative relationships between proximal locations can 

occur due to a casual relationship that is mitigated by space (e.g., active transportation 

spreading from a neighborhood to surrounding neighborhoods due to social contagion), 

because some unmeasured, underlying factor affects both locations because they are 

proximal (e.g., young, fit people tend to live in specific neighborhoods), or both. 

Understanding spatial dependencies among indicators is useful for both scientific 

understanding as well as policy since spatial associations can tell us both what and where 

to intervene (also when given the appropriate spatio-temporal data and methods).  

 Transportation is particularly subject to spatial dependency effects due to 

externalities: positive or negative effects that are not captured by the direct cost or benefit 

to the user. Air pollution, noise, accidents and sprawl are examples of negative 

externalities from transportation that accrue to others besides the system users. 

Transportation externalities can be multi-faceted and multi-scale. Passive use benefits are 

positive externalities that consist of three components: option values, indirect benefits, 

and existence benefits (Geurs and van Wee 2004). Option values are the benefits of 

having the option to use the transit investment, say, if the primary automobile mode is 

unavailable. Indirect benefits are effects accrued by others consuming services, such as 

transit consumption by passengers reducing congestion for automobile users. Existence 

benefits are effects related to potential future use or other people’s use. Positive and 

negative externalities often have a spatial expression, attenuating with distance from the 



process generating the externality with the scale of the effect depending on the externality 

type (Lakshmanan et al. 2001; Papageorgiou 1978).  

Spatial analysis techniques can be used to assess spatial dependency among 

livability indicators and assess the effects of transportation externalities, providing 

greater insight into livability and also suggesting policy interventions (e.g., what is the 

total, system-wide effect on livability from lowering traffic flows through a specific 

corridor?) (Black et al. 2002). Spatial dependency can be measured using both aggregate 

and disaggregate spatial autocorrelation statistics, the former providing a single summary 

assessment statistics and the latter capturing spatial heterogeneity in the dependency and 

allowing identification of “hot spots” with high degrees of high or low spatial association 

(see Anselin 1995; Fotheringham 2009). Spatial regression methods explicitly capture 

spatial dependency in their structural terms, error terms or both, allowing estimation of 

spatial associations in multivariate relationships (Fotheringham et al. 2000, 2002; LeSage 

and Pace 2009). Recent progress in modeling spatial externalities include hedonic price 

modeling for the indirect benefits on housing prices of pedestrian and transit design 

(Bartholomew and Ewing 2011), air quality (Kim et al. 2010), environmental quality 

(Carruthers and Clark 2010) and greenspaces (Conway et al. 2010). Other applications of 

spatial hedonic price models include willingness-to-pay studies for the benefits of river 

flows (Hanley et al. 2003), and use and non-use benefits of forest management policies 

(Horne et al. 2005)  

 

4.3. Spatial decision support and Geodesign  

Decision support systems (DSS) are digital environments that support MCA in single and 

multi-person decision situations (Turban 1993). DSS are often visually-oriented, 

supporting MCA techniques through intuitive user interfaces and graphics. Spatial 

decision support systems (SDSS) are digital environments that use GIS functionalities 

such as spatial database management, cartography and spatial analysis to support 

complex geographic decision problem-solving such as locating a new facility or 

configuring a transportation network.  

SDSS combine MCA techniques with the power of digital cartography. Solutions 

are typically visualized both as attribute plots as well as in map format, aiding 



understanding and helping to ground results in a familiar geographic context. In addition 

to the powerful technological benefits of GIS, there are deeper conceptual linkages 

between MCA and a traditional geographic technique known as suitability mapping. 

There is a natural correspondence between attributes in MCA and map layers in 

suitability mapping, and cartographic modeling and overlay techniques can implement 

aggregation functions such as SAW and OWA efficiently and effectively (Greene et al. 

2011; Jankowski 1995; Malczewski 2004; Nyerges and Jankowski 2010).  

In addition to supporting all aspects of the indicator construction process, SDSS 

are effective at collaborative spatial decision-making, primarily because the map provides 

an effective medium and language for group discussion and deliberation (Jankowski et al. 

1997). Collaborative SDSS can support group decision-making in a variety of modes, 

including at the same location/time (digitally-enhanced meetings), same location at 

different times (collaborative work environments and collaboratories), different locations 

at the same time (teleconferences, virtual meetings) and different locations at different 

times through the Internet and Web 2.0. The latter has potential to be more inclusive by 

obviating the need to take time from a busy schedule to travel and participate in physical 

meetings (Jankowski and Stasik 1997; Peng 2001; Rinner et al. 2008; Sakamoto and 

Fukui 2004). 

The emerging concept of Geodesign provides a framework for organizing 

methods and technologies for constructing livability indicators, as well as integrating 

livability measurement into the transportation planning process. Geodesign is a 

technology-enhanced planning method that tightly couples proposal and plan generation 

with impact simulations that are sensitive to geographic context (Flaxman 2010). 

Geodesign has its conceptual roots in the work of Carl Steinitz, a pioneer in the use of 

GIS for landscape analysis and urban planning, as well as in Ian McHarg’s Design with 

Nature ideas about constraints-based suitability mapping and map overlay techniques in 

planning and design (Dangermond 2009).  

Geodesign consists of several core functionalities embedded in a digital 

environment with workspaces, design tools, and supportive workflows that are tightly 

coupled and synched (Abukhater and Walker 2010; Dangermond 2009).  

 



1. Sketching or the ability to generate and share scenarios in a collaborative 

environment. Sketches are quickly-derived, low-resolution plans or scenarios 

based on approximations and assumptions in map form.  

2. Spatial models that can estimate the impacts and changes generated by the 

sketches, such as impacts on livability indicators 

3. Feedback from modeling the effects of a sketch, supporting brainstorming, 

engagement and collaboration among participants.  

4. Iteration or the ability to generate, test and adjust solutions repeatedly. This 

facilitates creative exploration of many alternatives, helps participants work 

together, and increases understanding of complex phenomena and measurement 

processes. 

 

The Geodesign strategy can facilitate the application of livability concepts in 

transportation planning by removing artificial barriers between the construction and 

application of livability indicators. A Geodesign environment can combine the power of 

SDSS and MCA techniques for indicator construction with the capabilities of GIS and 

spatial analysis techniques for simulating futures based on proposed scenarios and 

assessing the livability impacts of these scenarios using indicators. Geodesign does not 

add new methods to the battery of techniques for indicator construction and application 

but nevertheless can dramatically transform the ways in which these techniques are used 

in the planning process by facilitating rapid conceptualization, articulation, visualization, 

modeling and assessment (Vargas-Moreno 2010). 

While integrating livability concepts into transportation planning is laudable, 

these benefits can be dampened if livability indicators are simply inserted into the 

conventional linear, technocratic and rigid planning process that tends to discourage 

wider engagement (Nielsen 1995). As noted previously, livability and sustainability 

require balancing a wide spectrum of diverse and sometimes conflicting perspectives. 

Determining appropriate livability solutions – not just indicators - requires involvement 

from planners, experts, elected officials, citizens and other stakeholders in the indicator 

construction process as well as the application of indicators to determine strategies for 

creating livable communities. The construction process as described in this paper leads to 



internally consistent, transparent and external valid livability indicators; it does not 

describe how these indicators should be integrated into broader planning and decision 

processes. Geodesign can be a key component of a smarter livability planning process 

that is based not only on the proper measurement of this concept but also the 

collaborative search for livability solutions that are sensitive to local context (Abukhater 

and Walker 2010). 

 

5. Conclusion 

New emphases on livability and sustainability are creating demands for measuring and 

applying these concepts in transportation planning.  These are complex, multidimensional 

concepts that require careful measurement if they to be applied appropriately in plan 

evaluation and benchmarking. This paper provided a framework for constructing and 

applying quantitative livability indicators. We critically reviewed principles of 

constructing indicators to describe multidimensional concepts such as livability, 

including multicriteria analysis (MCA) methods for deriving appropriate attributes and 

their relative importance.  We focused on the construction of synoptic composite 

indicators (CI), although many of the principles can also be applied to individual 

indicators and indicator sets.  We also discussed methods for customizing indicators to 

capture local context; this includes multi-actor multi-criteria (MAMCA) methods for 

explicitly maintaining diverse stakeholder perspectives into indicator construction and 

spatial analytic tools for modeling key geographic entities and relationships involved in 

transportation. We also discussed spatial decision support systems and the Geodesign 

concept for organizing tools and technologies for supporting the construction and 

application of indicators in transportation planning.   

A direction for further research is empirical experience with MAMCA methods 

and the Geodesign process in the indicator construction and application processes, as well 

as tight integration of MAMCA methods into the Geodesign process.  The Geodesign 

process has generated a great deal of attention, including a major conference 

(www.geodesignsummit.com) but empirical applications and evaluations are few so far.  

Despite this lack of experience, these methods are promising: MAMCA and Geodesign 

harmonize with calls a more inclusive planning process to address equity and social 



sustainability issues, as well as gain legitimacy for the process (Boschmann and Kwan 

2008; Deka 2004; Martens 2006; NRC 2002).  The methods also have potential to 

address disconnections between planning at different scales (such as neighborhood, 

metropolitan and regional scales) by coupling sketch plans and models at different scales 

and facilitating scenario modeling with these linked representations and plans (Abukhater 

and Walker 2010).  

Another, longer-term research topic concerns developing dynamic indicator 

construction and analysis methods.  The ability to capture, store and process data about 

transportation systems on an ongoing basis are also increasing, including real-time data 

feeds and volunteer geographic information from “citizen-sensors” (Goodchild 2007).  

Tracking changes in an indicator over time can provide new insights, benchmark existing 

policies and suggest new policy remedies (Norman 2010).  Connecting livability or 

sustainability indicators with dynamic data updating and real-time data feeds is a natural 

progression.  It is possible that we can learn something new about complex concepts such 

as livability and sustainability when we see these indicators vary with respect to their 

natural dynamics rather than at artificial snapshots in time.  The dynamic behavior of 

indicators may also suggest new policy and planning interventions, as well as provide 

new ways to benchmark the effectiveness of implemented policies and plans.  This will 

require new advances not only in the cyberinfrastructure for managing these data flows 

but also in capabilities for exploring and analyzing multiscale spatial and temporal 

patterns.  Finer-grained updating of livability and sustainability data may also suggest 

more dynamic updating of the indicators, weights and aggregation methods to reflect 

changing reality as well as the accumulation of knowledge and insight that hopefully will 

occur from these new methods and decision strategies.    
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