83 research outputs found

    Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010-2011

    Full text link
    This review focuses on examples reported in the years 2010¿2011 dealing with the design of chromogenic and fluorogenic chemosensors or reagents for anions.Santos Figueroa, LE.; Moragues Pons, ME.; Climent Terol, E.; Agostini, A.; Martínez Mañez, R.; Sancenón Galarza, F. (2013). Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010-2011. Chemical Society Reviews. 42(8):3489-3613. doi:10.1039/C3CS35429FS34893613428Martínez-Máñez, R., & Sancenón, F. (2003). Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chemical Reviews, 103(11), 4419-4476. doi:10.1021/cr010421eKatayev, E. A., Ustynyuk, Y. A., & Sessler, J. L. (2006). Receptors for tetrahedral oxyanions. Coordination Chemistry Reviews, 250(23-24), 3004-3037. doi:10.1016/j.ccr.2006.04.013Suksai, C., & Tuntulani, T. (2003). Chromogenic anion sensors. Chemical Society Reviews, 32(4), 192. doi:10.1039/b209598jKim, S. K., Lee, D. H., Hong, J.-I., & Yoon, J. (2009). Chemosensors for Pyrophosphate. Accounts of Chemical Research, 42(1), 23-31. doi:10.1021/ar800003fBeer, P. (2000). Electrochemical and optical sensing of anions by transition metal based receptors. Coordination Chemistry Reviews, 205(1), 131-155. doi:10.1016/s0010-8545(00)00237-xZhou, Y., Xu, Z., & Yoon, J. (2011). Fluorescent and colorimetric chemosensors for detection of nucleotides, FAD and NADH: highlighted research during 2004–2010. Chemical Society Reviews, 40(5), 2222. doi:10.1039/c0cs00169dGunnlaugsson, T., Glynn, M., Tocci (née Hussey), G. M., Kruger, P. E., & Pfeffer, F. M. (2006). Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coordination Chemistry Reviews, 250(23-24), 3094-3117. doi:10.1016/j.ccr.2006.08.017Amendola, V., Esteban-Gómez, D., Fabbrizzi, L., & Licchelli, M. (2006). What Anions Do to N−H-Containing Receptors. Accounts of Chemical Research, 39(5), 343-353. doi:10.1021/ar050195lGunnlaugsson, T., Ali, H. D. P., Glynn, M., Kruger, P. E., Hussey, G. M., Pfeffer, F. M., … Tierney, J. (2005). Fluorescent Photoinduced Electron Transfer (PET) Sensors for Anions; From Design to Potential Application. Journal of Fluorescence, 15(3), 287-299. doi:10.1007/s10895-005-2627-yWiskur, S. L., Ait-Haddou, H., Lavigne, J. J., & Anslyn, E. V. (2001). Teaching Old Indicators New Tricks. Accounts of Chemical Research, 34(12), 963-972. doi:10.1021/ar9600796Nguyen, B. T., & Anslyn, E. V. (2006). Indicator–displacement assays. Coordination Chemistry Reviews, 250(23-24), 3118-3127. doi:10.1016/j.ccr.2006.04.009Xu, Z., Chen, X., Kim, H. N., & Yoon, J. (2010). Sensors for the optical detection ofcyanide ion. Chem. Soc. Rev., 39(1), 127-137. doi:10.1039/b907368jKaur, K., Saini, R., Kumar, A., Luxami, V., Kaur, N., Singh, P., & Kumar, S. (2012). Chemodosimeters: An approach for detection and estimation of biologically and medically relevant metal ions, anions and thiols. Coordination Chemistry Reviews, 256(17-18), 1992-2028. doi:10.1016/j.ccr.2012.04.013Zhou, Y., & Yoon, J. (2012). Recent progress in fluorescent and colorimetric chemosensors for detection ofamino acids. Chem. Soc. Rev., 41(1), 52-67. doi:10.1039/c1cs15159bMoragues, M. E., Martínez-Máñez, R., & Sancenón, F. (2011). Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009. Chemical Society Reviews, 40(5), 2593. doi:10.1039/c0cs00015aAldrey, A., Núñez, C., García, V., Bastida, R., Lodeiro, C., & Macías, A. (2010). Anion sensing properties of new colorimetric chemosensors based on macrocyclic ligands bearing three nitrophenylurea groups. Tetrahedron, 66(47), 9223-9230. doi:10.1016/j.tet.2010.09.054Odago, M. O., Colabello, D. M., & Lees, A. J. (2010). A simple thiourea based colorimetric sensor for cyanide anion. Tetrahedron, 66(38), 7465-7471. doi:10.1016/j.tet.2010.07.006Piątek, P. (2011). A selective chromogenic chemosensor for carboxylate salt recognition. Chemical Communications, 47(16), 4745. doi:10.1039/c0cc05537aHe, X., Herranz, F., Cheng, E. C.-C., Vilar, R., & Yam, V. W.-W. (2010). Design, Synthesis, Photophysics, and Anion-Binding Studies of Bis(dicyclohexylphosphino)methane-Containing Dinuclear Gold(I) Thiolate Complexes with Urea Receptors. Chemistry - A European Journal, 16(30), 9123-9131. doi:10.1002/chem.201000647Lin, W.-C., Tseng, Y.-P., Lin, C.-Y., & Yen, Y.-P. (2011). Synthesis of alanine-based colorimetric sensors and enantioselective recognition of aspartate and malate anions. Organic & Biomolecular Chemistry, 9(15), 5547. doi:10.1039/c1ob05135kRegueiro-Figueroa, M., Djanashvili, K., Esteban-Gómez, D., de Blas, A., Platas-Iglesias, C., & Rodríguez-Blas, T. (2010). Towards Selective Recognition of Sialic Acid Through Simultaneous Binding to Its cis-Diol and Carboxylate Functions. European Journal of Organic Chemistry, 2010(17), 3237-3248. doi:10.1002/ejoc.201000186Carasel, I. A., Yamnitz, C. R., Winter, R. K., & Gokel, G. W. (2010). Halide Ions Complex and Deprotonate Dipicolinamides and Isophthalamides: Assessment by Mass Spectrometry and UV−Visible Spectroscopy. The Journal of Organic Chemistry, 75(23), 8112-8116. doi:10.1021/jo101749aRostami, A., Colin, A., Li, X. Y., Chudzinski, M. G., Lough, A. J., & Taylor, M. S. (2010). N,N′-Diarylsquaramides: General, High-Yielding Synthesis and Applications in Colorimetric Anion Sensing. The Journal of Organic Chemistry, 75(12), 3983-3992. doi:10.1021/jo100104gAmendola, V., Bergamaschi, G., Boiocchi, M., Fabbrizzi, L., & Milani, M. (2010). The Squaramide versus Urea Contest for Anion Recognition. Chemistry - A European Journal, 16(14), 4368-4380. doi:10.1002/chem.200903190Sola, A., Orenes, R. A., García, M. A., Claramunt, R. M., Alkorta, I., Elguero, J., … Molina, P. (2011). Unprecedented 1,3-Diaza[3]ferrocenophane Scaffold as Molecular Probe for Anions. Inorganic Chemistry, 50(9), 4212-4220. doi:10.1021/ic102314rLee, D. Y., Singh, N., Satyender, A., & Jang, D. O. (2011). An azo dye-coupled tripodal chromogenic sensor for cyanide. Tetrahedron Letters, 52(51), 6919-6922. doi:10.1016/j.tetlet.2011.10.061Haridas, V., Sahu, S., & Praveen Kumar, P. P. (2011). Triazole-based chromogenic and non-chromogenic receptors for halides. Tetrahedron Letters, 52(51), 6930-6934. doi:10.1016/j.tetlet.2011.10.066Park, J. J., Kim, Y.-H., Rhim, S., & Kang, J. (2012). Anion receptors with viologen molecular scaffold. Tetrahedron Letters, 53(2), 247-252. doi:10.1016/j.tetlet.2011.11.040Amendola, V., Fabbrizzi, L., Mosca, L., & Schmidtchen, F.-P. (2011). Urea-, Squaramide-, and Sulfonamide-Based Anion Receptors: A Thermodynamic Study. Chemistry - A European Journal, 17(21), 5972-5981. doi:10.1002/chem.201003411You, J.-M., Jeong, H., Seo, H., & Jeon, S. (2010). A new fluoride ion colorimetric sensor based on dipyrrolemethanes. Sensors and Actuators B: Chemical, 146(1), 160-164. doi:10.1016/j.snb.2010.02.042Farinha, A. S. F., Tomé, A. C., & Cavaleiro, J. A. S. (2010). (E)-3-(meso-Octamethylcalix[4]pyrrol-2-yl)propenal: a versatile precursor for calix[4]pyrrole-based chromogenic anion sensors. Tetrahedron Letters, 51(16), 2184-2187. doi:10.1016/j.tetlet.2010.02.091Lee, G. W., Kim, N.-K., & Jeong, K.-S. (2010). Synthesis of Biindole−Diazo Conjugates as a Colorimetric Anion Receptor. Organic Letters, 12(11), 2634-2637. doi:10.1021/ol100830bBose, P., & Ghosh, P. (2010). Visible and near-infrared sensing of fluoride by indole conjugated urea/thiourea ligands. Chemical Communications, 46(17), 2962. doi:10.1039/b919128cWang, L., He, X., Guo, Y., Xu, J., & Shao, S. (2011). Tris(indolyl)methene molecule as an anion receptor and colorimetric chemosensor: tunable selectivity and sensitivity for anions. Org. Biomol. Chem., 9(3), 752-757. doi:10.1039/c0ob00472cTetilla, M. A., Aragoni, M. C., Arca, M., Caltagirone, C., Bazzicalupi, C., Bencini, A., … Meli, V. (2011). Colorimetric response to anions by a «robust» copper(ii) complex of a [9]aneN3 pendant arm derivative: CN− and I− selective sensing. Chemical Communications, 47(13), 3805. doi:10.1039/c0cc04500dKundu, T., Mobin, S. M., & Lahiri, G. K. (2010). Paramagnetic ruthenium-biimidazole derivatives [(acac)2RuIII(LHn)]m, n/m = 2/+, 1/0, 0/−. Synthesis, structures, solution properties and anion receptor features in solution state. Dalton Transactions, 39(17), 4232. doi:10.1039/b919036hLee, C.-H., Lee, S., Yoon, H., & Jang, W.-D. (2011). Strong Binding Affinity of a Zinc-Porphyrin-Based Receptor for Halides through the Cooperative Effects of Quadruple CH Hydrogen Bonds and Axial Ligation. Chemistry - A European Journal, 17(49), 13898-13903. doi:10.1002/chem.201101884Swinburne, A. N., Paterson, M. J., Fischer, K. H., Dickson, S. J., Wallace, E. V. B., Belcher, W. J., … Steed, J. W. (2010). Colourimetric Carboxylate Anion Sensors Derived from Viologen-Based Receptors. Chemistry - A European Journal, 16(5), 1480-1492. doi:10.1002/chem.200902609Kannappan, R., Bucher, C., Saint-Aman, E., Moutet, J.-C., Milet, A., Oltean, M., … Chaix, C. (2010). Viologen-based redox-switchable anion-binding receptors. New Journal of Chemistry, 34(7), 1373. doi:10.1039/b9nj00757aKumari, N., Jha, S., & Bhattacharya, S. (2011). Colorimetric Probes Based on Anthraimidazolediones for Selective Sensing of Fluoride and Cyanide Ion via Intramolecular Charge Transfer. The Journal of Organic Chemistry, 76(20), 8215-8222. doi:10.1021/jo201290aAmendola, V., Boiocchi, M., Fabbrizzi, L., & Fusco, N. (2011). Putting the Anion into the Cage - Fluoride Inclusion in the Smallest Trisimidazolium Macrotricycle. European Journal of Organic Chemistry, 2011(32), 6434-6444. doi:10.1002/ejoc.201100902Kumar, A., Kumar, V., & Upadhyay, K. K. (2011). A ninhydrin based colorimetric molecular switch for Hg2+ and CH3COO−/F−. Tetrahedron Letters, 52(50), 6809-6813. doi:10.1016/j.tetlet.2011.10.046Bao, X., & Zhou, Y. (2010). Synthesis and recognition properties of a class of simple colorimetric anion chemosensors containing OH and CONH groups. Sensors and Actuators B: Chemical, 147(2), 434-441. doi:10.1016/j.snb.2010.03.068Lou, X., Zhang, Y., Li, Q., Qin, J., & Li, Z. (2011). A highly specific rhodamine-based colorimetric probe for hypochlorites: a new sensing strategy and real application in tap water. Chemical Communications, 47(11), 3189. doi:10.1039/c0cc04911eShang, X.-F., Su, H., Lin, H., & Lin, H.-K. (2010). A supramolecular optic sensor for selective recognition AMP. Inorganic Chemistry Communications, 13(8), 999-1003. doi:10.1016/j.inoche.2010.04.006Mendy, J. S., Saeed, M. A., Fronczek, F. R., Powell, D. R., & Hossain, M. A. (2010). Anion Recognition and Sensing by a New Macrocyclic Dinuclear Copper(II) Complex: A Selective Receptor for Iodide. Inorganic Chemistry, 49(16), 7223-7225. doi:10.1021/ic100686mMahato, P., Ghosh, A., Mishra, S. K., Shrivastav, A., Mishra, S., & Das, A. (2011). Zn(II)−Cyclam Based Chromogenic Sensors for Recognition of ATP in Aqueous Solution Under Physiological Conditions and Their Application as Viable Staining Agents for Microorganism. Inorganic Chemistry, 50(9), 4162-4170. doi:10.1021/ic200223gMahato, P., Ghosh, A., Mishra, S. K., Shrivastav, A., Mishra, S., & Das, A. (2010). Zn(II) based colorimetric sensor for ATP and its use as a viable staining agent in pure aqueous media of pH 7.2. Chemical Communications, 46(48), 9134. doi:10.1039/c0cc01996hDalla Cort, A., Forte, G., & Schiaffino, L. (2011). Anion Recognition in Water with Use of a Neutral Uranyl-salophen Receptor. The Journal of Organic Chemistry, 76(18), 7569-7572. doi:10.1021/jo201213eDas, P., Mandal, A. K., Kesharwani, M. K., Suresh, E., Ganguly, B., & Das, A. (2011). Receptor design and extraction of inorganic fluoride ion from aqueous medium. Chemical Communications, 47(26), 7398. doi:10.1039/c1cc11458aBaumes, L. A., Buaki, M., Jolly, J., Corma, A., & Garcia, H. (2011). Fluorimetric detection and discrimination of α-amino acids based on tricyclic basic dyes and cucurbiturils supramolecular assembly. Tetrahedron Letters, 52(13), 1418-1421. doi:10.1016/j.tetlet.2011.01.071Baumes, L. A., Buaki Sogo, M., Montes-Navajas, P., Corma, A., & Garcia, H. (2010). A Colorimetric Sensor Array for the Detection of the Date-Rape Drug γ-Hydroxybutyric Acid (GHB): A Supramolecular Approach. Chemistry - A European Journal, 16(15), 4489-4495. doi:10.1002/chem.200903127Chifotides, H. T., Schottel, B. L., & Dunbar, K. R. (2010). The π-Accepting Arene HAT(CN)6 as a Halide Receptor through Charge Transfer: Multisite Anion Interactions and Self-Assembly in Solution and the Solid State. Angewandte Chemie International Edition, 49(40), 7202-7207. doi:10.1002/anie.201001755Gu, X., Liu, C., Zhu, Y.-C., & Zhu, Y.-Z. (2011). Development of a boron-dipyrromethene-Cu2+ ensemble based colorimetric probe toward hydrogen sulfide in aqueous media. Tetrahedron Letters, 52(39), 5000-5003. doi:10.1016/j.tetlet.2011.07.004Männel-Croisé, C., Meister, C., & Zelder, F. (2010). «Naked-Eye» Screening of Metal-Based Chemosensors for Biologically Important Anions. Inorganic Chemistry, 49(22), 10220-10222. doi:10.1021/ic1015115Watchasit, S., Kaowliew, A., Suksai, C., Tuntulani, T., Ngeontae, W., & Pakawatchai, C. (2010). Selective detection of pyrophosphate by new tripodal amine calix[4]arene-based Cu(II) complexes using indicator displacement strategy. Tetrahedron Letters, 51(26), 3398-3402. doi:10.1016/j.tetlet.2010.04.095Mateus, P., Delgado, R., Brandão, P., & Félix, V. (2011). Recognition of Oxalate by a Copper(II) Polyaza Macrobicyclic Complex. Chemistry - A European Journal, 17(25), 7020-7031. doi:10.1002/chem.201100428Chen, Z., Lu, Y., He, Y., & Huang, X. (2010). Recognition of pyrophosphate anion in aqueous solution using the competition displacement method. Sensors and Actuators B: Chemical, 149(2), 407-412. doi:10.1016/j.snb.2010.06.038Müller-Graff, P.-K., Szelke, H., Severin, K., & Krämer, R. (2010). Pattern-based sensing of sulfated glycosaminoglycans with a dynamic mixture of iron complexes. Organic & Biomolecular Chemistry, 8(10), 2327. doi:10.1039/c000420kHu, Z.-Q., Wang, X.-M., Feng, Y.-C., Ding, L., Li, M., & Lin, C.-S. (2011). A novel colorimetric and fluorescent chemosensor for acetate ions in aqueous media based on a rhodamine 6G–phenylurea conjugate in the presence of Fe(iii) ions. Chem. Commun., 47(5), 1622-1624. doi:10.1039/c0cc04136jSingh, N., & Jang, D. O. (2011). A selective ATP chromogenic sensor for use in an indicator displacement assay. Tetrahedron Letters, 52(39), 5094-5097. doi:10.1016/j.tetlet.2011.07.096Ghosh, K., & Ranjan Sarkar, A. (2011). Pyridinium-based symmetrical diamides as chemosensors in visual sensing of citrate through indicator displacement assay (IDA) and gel formation. Organic & Biomolecular Chemistry, 9(19), 6551. doi:10.1039/c1ob05707cAtta, A. K., Ahn, I.-H., Hong, A.-Y., Heo, J., Kim, C. K., & Cho, D.-G. (2012). Fluoride indicator that functions in mixed aqueous media: hydrogen bonding effects. Tetrahedron Letters, 53(5), 575-578. doi:10.1016/j.tetlet.2011.11.099Perry-Feigenbaum, R., Sella, E., & Shabat, D. (2011). Autoinductive Exponential Signal Amplification: A Diagnostic Probe for Direct Detection of Fluoride. Chemistry - A European Journal, 17(43), 12123-12128. doi:10.1002/chem.201101796Rajamalli, P., & Prasad, E. (2011). Low Molecular Weight Fluorescent Organogel for Fluoride Ion Detection. Organic Letters, 13(14), 3714-3717. doi:10.1021/ol201325jBhaumik, C., Das, S., Maity, D., & Baitalik, S. (2011). A terpyridyl-imidazole (tpy-HImzPh3) based bifunctional receptor for multichannel detection of Fe2+ and F− ions. Dalton Transactions, 40(44), 11795. doi:10.1039/c1dt10965kIsaad, J., & Perwuelz, A. (2010). New color chemosensors for cyanide based on water soluble azo dyes. Tetrahedron Letters, 51(44), 5810-5814. doi:10.1016/j.tetlet.2010.08.098Wade, C. R., & Gabbaï, F. P. (2010). Cyanide Anion Binding by a Triarylborane at the Outer Rim of a Cyclometalated Ruthenium(II) Cationic Complex. Inorganic Chemistry, 49(2), 714-720. doi:10.1021/ic9020349Ábalos, T., Jiménez, D., Moragues, M., Royo, S., Martínez-Máñez, R., Sancenón, F., … Gil, S. (2010). Multi-channel receptors based on thiopyrylium functionalised with macrocyclic receptors for the recognition of transition metal cations and anions. Dalton Transactions, 39(14), 3449. doi:10.1039/b921486kÁbalos, T., Royo, S., Martínez-Máñez, R., Sancenón, F., Soto, J., Costero, A. M., … Parra, M. (2009). Surfactant-assisted chromogenic sensing of cyanide in water. New Journal of Chemistry, 33(8), 1641. doi:10.1039/b909705hSumiya, S., Doi, T., Shiraishi, Y., & Hirai, T. (2012). Colorimetric sensing of cyanide anion in aqueous media with a fluorescein–spiropyran conjugate. Tetrahedron, 68(2), 690-696. doi:10.1016/j.tet.2011.10.097Shiraishi, Y., Itoh, M., & Hirai, T. (2011). Rapid colorimetric sensing of cyanide anion in aqueous media with a spiropyran derivative containing a dinitrophenolate moiety. Tetrahedron Letters, 52(13), 1515-1519. doi:10.1016/j.tetlet.2011.01.110Shiraishi, Y., Itoh, M., & Hirai, T. (2011). Colorimetric response of spiropyran derivative for anions in aqueous or organic media. Tetrahedron, 67(5), 891-897. doi:10.1016/j.tet.2010.12.021Isaad, J., & Achari, A. E. (2011). Biosourced 3-formyl chromenyl-azo dye as Michael acceptor type of chemodosimeter for cyanide in aqueous environment. Tetrahedron, 67(31), 5678-5685. doi:10.1016/j.tet.2011.05.083Isaad, J., & El Achari, A. (2011). A novel cyanide chemodosimeter based on trifluoroacetamide benzhydrol-2 as binding motif: importance of substituent positioning on intra-molecular charge transfer. Tetrahedron, 67(23), 4196-4201. doi:10.1016/j.tet.2011.04.059Park, I. S., Heo, E.-J., & Kim, J.-M. (2011). A photochromic phenoxyquinone based cyanide ion sensor. Tetrahedron Letters, 52(19), 2454-2457. doi:10.1016/j.tetlet.2011.02.105Tang, X., Liu, W., Wu, J., Zhao, W., Zhang, H., & Wang, P. (2011). A colorimetric chemosensor for fast detection of thiols based on intramolecular charge transfer. Tetrahedron Letters, 52(40), 5136-5139. doi:10.1016/j.tetlet.2011.07.111Wei, W., Liang, X., Hu, G., Guo, Y., & Shao, S. (2011). A highly selective colorimetric probe based on 2,2′,2″-trisindolylmethene for cysteine/homocysteine. Tetrahedron Letters, 52(13), 1422-1425. doi:10.1016/j.tetlet.2010.07.182Cui, K., Zhang, D., Zhang, G., & Zhu, D. (2010). A highly selective naked-eye probe for hypochlorite with the p-methoxyphenol-substituted aniline compound. Tetrahedron Letters, 51(46), 6052-6055. doi:10.1016/j.tetlet.2010.09.041Kim, M. H., Kim, S., Jang, H. H., Yi, S., Seo, S. H., & Han, M. S. (2010). A gold nanoparticle-based colorimetric sensing ensemble for the colorimetric detection of cyanide ions in aqueous solution. Tetrahedron Letters, 51(36), 4712-4716. doi:10.1016/j.tetlet.2010.07.002Zhang, S., Wang, J., Han, L., Li, C., Wang, W., & Yuan, Z. (2010). Colorimetric detection of bis-phosphorylated peptides using zinc(ii) dipicolylamine-appended gold nanoparticles. Sensors and Actuators B: Chemical, 147(2), 687-690. doi:10.1016/j.snb.2010.03.071Feng, D.-Q., Liu, G., Zheng, W., Liu, J., Chen, T., & Li, D. (2011). A highly selective and sensitive on–off sensor for silver ions and cysteine by light scattering technique of DNA-functionalized gold nanoparticles. Chemical Communications, 47(30), 8557. doi:10.1039/c1cc12377gCao, R., & Li, B. (2011). A simple and sensitive method for visual detection of heparin using positively-charged gold nanoparticles as colorimetric probes. Chemical Communications, 47(10), 2865. doi:10.1039/c0cc05094fLiu, C.-Y., & Tseng, W.-L. (2011). Colorimetric assay for cyanide and cyanogenic glycoside using polysorbate 40-stabilized gold nanoparticles. Chemical Communications, 47(9), 2550. doi:10.1039/c0cc04591hZhang, M., Liu, Y.-Q., & Ye, B.-C. (2011). Rapid and sensitive colorimetric visualization of phthalates using UTP-modified gold nanoparticles cross-linked by copper(ii). Chemical Communications, 47(43), 11849. doi:10.1039/c1cc14772bLi, H., Li, F., Han, C., Cui, Z., Xie, G., & Zhang, A. (2010). Highly sensitive and selective tryptophan colorimetric sensor based on 4,4-bipyridine-functionalized silver nanoparticles. Sensors and Actuators B: Chemical, 145(1), 194-199. doi:10.1016/j.snb.2009.11.062Sakai, R., Okade, S., Barasa, E. B., Kakuchi, R., Ziabka, M., Umeda, S., … Kakuchi, T. (2010). Efficient Colorimetric Anion Detection Based on Positive Allosteric System of Urea-Functionalized Poly(phenylacetylene) Receptor. Macromolecules, 43(18), 7406-7411. doi:10.1021/ma1016852Sakai, R., Sakai, N., Satoh, T., Li, W., Zhang, A., & Kakuchi, T. (2011). Strict Size Specificity in Colorimetric Anion Detection Based on Poly(phenylacetylene) Receptor Bearing Second Generation Lysine Dendrons. Macromolecules, 44(11), 4249-4257. doi:10.1021/ma200710rIsaad, J., & Salaün, F. (2011). Functionalized poly (vinyl alcohol) polymer as chemodosimeter material for the colorimetric sensing of cyanide in pure water. Sensors and Actuators B: Chemical, 157(1), 26-33. doi:10.1016/j.snb.2011.03.022Isaad, J., & El Achari, A. (2011). Colorimetric sensing of cyanide anions in aqueous media based on functional surface modification of natural cellulose materials. Tetrahedron, 67(26), 4939-4947. doi:10.1016/j.tet.2011.04.061Yao, Z., Bai, H., Li, C., & Shi, G. (2010). Analyte-induced aggregation of conjugated polyelectrolytes: role of the charged moieties and its sensing application. Chemical Communications, 46(28), 5094. doi:10.1039/c002188aKrishnamurthi, J., Ono, T., Amemori, S., Komatsu, H., Shinkai, S., & Sada, K. (2011). Thiourea-tagged poly(octadecyl acrylate) gels as fluoride and acetate responsive polymer gels through selective complexation. Chem. Commun., 47(5), 1571-1573. doi:10.1039/c0cc03256eVallejos, S., Estévez, P., García, F. C., Serna, F., de la Peña, J. L., & García, J. M. (201

    Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009

    Full text link
    This critical review is focused on examples reported in the year 2009 dealing with the design of chromogenic and fluorogenic chemosensors or reagents for anions (264 references). © 2011 The Royal Society of Chemistry.Moragues Pons, ME.; Martínez Mañez, R.; Sancenón Galarza, F. (2011). Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009. Chemical Society Reviews. 40(5):2593-2643. doi:10.1039/c0cs00015aS25932643405Schmidtchen, F. P., Gleich, A., & Schummer, A. (1989). Selective molecular hosts for anions. Pure and Applied Chemistry, 61(9), 1535-1546. doi:10.1351/pac198961091535Dietrich, B. (1993). Design of anion receptors: Applications. Pure and Applied Chemistry, 65(7), 1457-1464. doi:10.1351/pac199365071457Atwood, J. L., Holman, K. T., & Steed, J. W. (1996). Laying traps for elusive prey: recent advances in the non-covalent binding of anions. Chemical Communications, (12), 1401. doi:10.1039/cc9960001401Schmidtchen, F. P., & Berger, M. (1997). Artificial Organic Host Molecules for Anions. Chemical Reviews, 97(5), 1609-1646. doi:10.1021/cr9603845Antonisse, M. M. G., & Reinhoudt, D. N. (1998). Neutral anion receptors: design and application. Chemical Communications, (4), 443-448. doi:10.1039/a707529dGale, P. (2000). Anion coordination and anion-directed assembly: highlights from 1997 and 1998. Coordination Chemistry Reviews, 199(1), 181-233. doi:10.1016/s0010-8545(99)00149-6Gale, P. A. (2001). Anion receptor chemistry: highlights from 1999. Coordination Chemistry Reviews, 213(1), 79-128. doi:10.1016/s0010-8545(00)00364-7Gale, P. A. (2003). Anion and ion-pair receptor chemistry: highlights from 2000 and 2001. Coordination Chemistry Reviews, 240(1-2), 191-221. doi:10.1016/s0010-8545(02)00258-8Gale, P. A., & Quesada, R. (2006). Anion coordination and anion-templated assembly: Highlights from 2002 to 2004. Coordination Chemistry Reviews, 250(23-24), 3219-3244. doi:10.1016/j.ccr.2006.05.020Gale, P. A., García-Garrido, S. E., & Garric, J. (2008). Anion receptors based on organic frameworks: highlights from 2005 and 2006. Chem. Soc. Rev., 37(1), 151-190. doi:10.1039/b715825dCaltagirone, C., & Gale, P. A. (2009). Anion receptor chemistry: highlights from 2007. Chem. Soc. Rev., 38(2), 520-563. doi:10.1039/b806422aKubik, S. (2009). Amino acid containing anion receptors. Chem. Soc. Rev., 38(2), 585-605. doi:10.1039/b810531fSchmidtchen, F. P. (2005). Artificial Host Molecules for the Sensing of Anions. Anion Sensing, 1-29. doi:10.1007/b101160Schmidtchen, F. P. (2006). Reflections on the construction of anion receptors. Coordination Chemistry Reviews, 250(23-24), 2918-2928. doi:10.1016/j.ccr.2006.07.009Gale, P. A. (2006). Structural and Molecular Recognition Studies with Acyclic Anion Receptors†. Accounts of Chemical Research, 39(7), 465-475. doi:10.1021/ar040237qSessler, J. L., Camiolo, S., & Gale, P. A. (2003). Pyrrolic and polypyrrolic anion binding agents. Coordination Chemistry Reviews, 240(1-2), 17-55. doi:10.1016/s0010-8545(03)00023-7Bondy, C. R., & Loeb, S. J. (2003). Amide based receptors for anions. Coordination Chemistry Reviews, 240(1-2), 77-99. doi:10.1016/s0010-8545(02)00304-1Choi, K., & Hamilton, A. D. (2003). Macrocyclic anion receptors based on directed hydrogen bonding interactions. Coordination Chemistry Reviews, 240(1-2), 101-110. doi:10.1016/s0010-8545(02)00305-3Davis, A. P. (2006). Anion binding and transport by steroid-based receptors. Coordination Chemistry Reviews, 250(23-24), 2939-2951. doi:10.1016/j.ccr.2006.05.008Best, M. D., Tobey, S. L., & Anslyn, E. V. (2003). Abiotic guanidinium containing receptors for anionic species. Coordination Chemistry Reviews, 240(1-2), 3-15. doi:10.1016/s0010-8545(02)00256-4Llinares, J. M., Powell, D., & Bowman-James, K. (2003). Ammonium based anion receptors. Coordination Chemistry Reviews, 240(1-2), 57-75. doi:10.1016/s0010-8545(03)00019-5Schug, K. A., & Lindner, W. (2005). Noncovalent Binding between Guanidinium and Anionic Groups:  Focus on Biological- and Synthetic-Based Arginine/Guanidinium Interactions with Phosph[on]ate and Sulf[on]ate Residues. Chemical Reviews, 105(1), 67-114. doi:10.1021/cr040603jYoon, J., Kim, S. K., Singh, N. J., & Kim, K. S. (2006). Imidazolium receptors for the recognition of anions. Chemical Society Reviews, 35(4), 355. doi:10.1039/b513733kBlondeau, P., Segura, M., Pérez-Fernández, R., & de Mendoza, J. (2007). Molecular recognition of oxoanions based on guanidinium receptors. Chem. Soc. Rev., 36(2), 198-210. doi:10.1039/b603089kXu, Z., Kim, S. K., & Yoon, J. (2010). Revisit to imidazolium receptors for the recognition of anions: highlighted research during 2006–2009. Chemical Society Reviews, 39(5), 1457. doi:10.1039/b918937hGarcía-España, E., Díaz, P., Llinares, J. M., & Bianchi, A. (2006). Anion coordination chemistry in aqueous solution of polyammonium receptors. Coordination Chemistry Reviews, 250(23-24), 2952-2986. doi:10.1016/j.ccr.2006.05.018Schmuck, C. (2006). How to improve guanidinium cations for oxoanion binding in aqueous solution? Coordination Chemistry Reviews, 250(23-24), 3053-3067. doi:10.1016/j.ccr.2006.04.001Amendola, V. (2001). Anion recognition by dimetallic cryptates. Coordination Chemistry Reviews, 219-221, 821-837. doi:10.1016/s0010-8545(01)00368-xBeer, P. D., & Hayes, E. J. (2003). Transition metal and organometallic anion complexation agents. Coordination Chemistry Reviews, 240(1-2), 167-189. doi:10.1016/s0010-8545(02)00303-xSteed, J. W. (2009). Coordination and organometallic compounds as anion receptors and sensors. Chem. Soc. Rev., 38(2), 506-519. doi:10.1039/b810364jO’Neil, E. J., & Smith, B. D. (2006). Anion recognition using dimetallic coordination complexes. Coordination Chemistry Reviews, 250(23-24), 3068-3080. doi:10.1016/j.ccr.2006.04.006Rice, C. R. (2006). Metal-assembled anion receptors. Coordination Chemistry Reviews, 250(23-24), 3190-3199. doi:10.1016/j.ccr.2006.05.017Amendola, V., & Fabbrizzi, L. (2009). Anion receptors that contain metals as structural units. Chem. Commun., (5), 513-531. doi:10.1039/b808264mMartínez-Máñez, R., & Sancenón, F. (2003). Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chemical Reviews, 103(11), 4419-4476. doi:10.1021/cr010421eKatayev, E. A., Ustynyuk, Y. A., & Sessler, J. L. (2006). Receptors for tetrahedral oxyanions. Coordination Chemistry Reviews, 250(23-24), 3004-3037. doi:10.1016/j.ccr.2006.04.013Suksai, C., & Tuntulani, T. (2003). Chromogenic anion sensors. Chemical Society Reviews, 32(4), 192. doi:10.1039/b209598jKim, S. K., Lee, D. H., Hong, J.-I., & Yoon, J. (2009). Chemosensors for Pyrophosphate. Accounts of Chemical Research, 42(1), 23-31. doi:10.1021/ar800003fBeer, P. (2000). Electrochemical and optical sensing of anions by transition metal based receptors. Coordination Chemistry Reviews, 205(1), 131-155. doi:10.1016/s0010-8545(00)00237-xBeer, P. D. (1996). Anion selective recognition and optical/electrochemical sensing by novel transition-metal receptor systems. Chemical Communications, (6), 689. doi:10.1039/cc9960000689De Silva, A. P., Gunaratne, H. Q. N., Gunnlaugsson, T., Huxley, A. J. M., McCoy, C. P., Rademacher, J. T., & Rice, T. E. (1997). Signaling Recognition Events with Fluorescent Sensors and Switches. Chemical Reviews, 97(5), 1515-1566. doi:10.1021/cr960386pGunnlaugsson, T., Glynn, M., Tocci (née Hussey), G. M., Kruger, P. E., & Pfeffer, F. M. (2006). Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coordination Chemistry Reviews, 250(23-24), 3094-3117. doi:10.1016/j.ccr.2006.08.017Amendola, V., Esteban-Gómez, D., Fabbrizzi, L., & Licchelli, M. (2006). What Anions Do to N−H-Containing Receptors. Accounts of Chemical Research, 39(5), 343-353. doi:10.1021/ar050195lGunnlaugsson, T., Ali, H. D. P., Glynn, M., Kruger, P. E., Hussey, G. M., Pfeffer, F. M., … Tierney, J. (2005). Fluorescent Photoinduced Electron Transfer (PET) Sensors for Anions; From Design to Potential Application. Journal of Fluorescence, 15(3), 287-299. doi:10.1007/s10895-005-2627-yWiskur, S. L., Ait-Haddou, H., Lavigne, J. J., & Anslyn, E. V. (2001). Teaching Old Indicators New Tricks. Accounts of Chemical Research, 34(12), 963-972. doi:10.1021/ar9600796Nguyen, B. T., & Anslyn, E. V. (2006). Indicator–displacement assays. Coordination Chemistry Reviews, 250(23-24), 3118-3127. doi:10.1016/j.ccr.2006.04.009Xu, Z., Chen, X., Kim, H. N., & Yoon, J. (2010). Sensors for the optical detection ofcyanide ion. Chem. Soc. Rev., 39(1), 127-137. doi:10.1039/b907368jMartínez-Máñez, R., & Sancenón, F. (2005). New Advances in Fluorogenic Anion Chemosensors. Journal of Fluorescence, 15(3), 267-285. doi:10.1007/s10895-005-2626-zHijji, Y. M., Barare, B., Kennedy, A. P., & Butcher, R. (2009). Synthesis and photophysical characterization of a Schiff base as anion sensor. Sensors and Actuators B: Chemical, 136(2), 297-302. doi:10.1016/j.snb.2008.11.045Zhang, Y.-M., Lin, Q., Wei, T.-B., Wang, D.-D., Yao, H., & Wang, Y.-L. (2009). Simple colorimetric sensors with high selectivity for acetate and chloride in aqueous solution. Sensors and Actuators B: Chemical, 137(2), 447-455. doi:10.1016/j.snb.2009.01.015Anzenbacher, P., Nishiyabu, R., & Palacios, M. A. (2006). N-confused calix[4]pyrroles. Coordination Chemistry Reviews, 250(23-24), 2929-2938. doi:10.1016/j.ccr.2006.09.001Anzenbacher,, P., Try, A. C., Miyaji, H., Jursíková, K., Lynch, V. M., Marquez, M., & Sessler, J. L. (2000). Fluorinated Calix[4]pyrrole and Dipyrrolylquinoxaline:  Neutral Anion Receptors with Augmented Affinities and Enhanced Selectivities. Journal of the American Chemical Society, 122(42), 10268-10272. doi:10.1021/ja002112wBlack, C. B., Andrioletti, B., Try, A. C., Ruiperez, C., & Sessler, J. L. (1999). Dipyrrolylquinoxalines:  Efficient Sensors for Fluoride Anion in Organic Solution. Journal of the American Chemical Society, 121(44), 10438-10439. doi:10.1021/ja992579aMizuno, T., Wei, W.-H., Eller, L. R., & Sessler, J. L. (2002). Phenanthroline Complexes Bearing Fused Dipyrrolylquinoxaline Anion Recognition Sites:  Efficient Fluoride Anion Receptors. Journal of the American Chemical Society, 124(7), 1134-1135. doi:10.1021/ja017298tMaeda, H., & Kusunose, Y. (2005). Dipyrrolyldiketone Difluoroboron Complexes: Novel Anion Sensors With C-H⋅⋅⋅X− Interactions. Chemistry - A European Journal, 11(19), 5661-5666. doi:10.1002/chem.200500627Ghosh, T., Maiya, B. G., & Samanta, A. (2006). A colorimetric chemosensor for both fluoride and transition metal ions based on dipyrrolyl derivative. Dalton Transactions, (6), 795. doi:10.1039/b510469fAldakov, D., & Anzenbacher, P. (2004). Sensing of Aqueous Phosphates by Polymers with Dual Modes of Signal Transduction. Journal of the American Chemical Society, 126(15), 4752-4753. doi:10.1021/ja039934oSessler, J. L., Cho, D.-G., & Lynch, V. (2006). Diindolylquinoxalines:  Effective Indole-Based Receptors for Phosphate Anion. Journal of the American Chemical Society, 128(51), 16518-16519. doi:10.1021/ja067720bChauhan, S. M. S., Bisht, T., & Garg, B. (2009). 1-Arylazo-5,5-dimethyl dipyrromethanes: Versatile chromogenic probes for anions. Sensors and Actuators B: Chemical, 141(1), 116-123. doi:10.1016/j.snb.2009.06.013Liu, W.-X., Yang, R., Li, A.-F., Li, Z., Gao, Y.-F., Luo, X.-X., … Jiang, Y.-B. (2009). N-(Acetamido)thiourea based simple neutral hydrogen-bonding receptors for anions. Organic & Biomolecular Chemistry, 7(19), 4021. doi:10.1039/b910255hBabu, J. N., Bhalla, V., Kumar, M., Puri, R. K., & Mahajan, R. K. (2009). Chloride ion recognition using thiourea/urea based receptors incorporated into 1,3-disubstituted calix[4]arenes. New Journal of Chemistry, 33(3), 675. doi:10.1039/b816610bBoiocchi, M., Fabbrizzi, L., Garolfi, M., Licchelli, M., Mosca, L., & Zanini, C. (2009). Templated Synthesis of Copper(II) Azacyclam Complexes Using Urea as a Locking Fragment and Their Metal-Enhanced Binding Tendencies towards Anions. Chemistry - A European Journal, 15(42), 11288-11297. doi:10.1002/chem.200901364Lin, Y.-S., Tu, G.-M., Lin, C.-Y., Chang, Y.-T., & Yen, Y.-P. (2009). Colorimetric anion chemosensors based on anthraquinone: naked-eye detection of isomeric dicarboxylate and tricarboxylate anions. New Journal of Chemistry, 33(4), 860. doi:10.1039/b811172cQing, G.-Y., Sun, T.-L., Wang, F., He, Y.-B., & Yang, X. (2009). Chromogenic Chemosensors forN-Acetylaspartate Based on Chiral Ferrocene-Bearing Thiourea Derivatives. European Journal of Organic Chemistry, 2009(6), 841-849. doi:10.1002/ejoc.200800961Lu, Q.-S., Dong, L., Zhang, J., Li, J., Jiang, L., Huang, Y., … Yu, X.-Q. (2009). Imidazolium-Functionalized BINOL as a Multifunctional Receptor for Chromogenic and Chiral Anion Recognition. Organic Letters, 11(3), 669-672. doi:10.1021/ol8027303Bao, X., Yu, J., & Zhou, Y. (2009). Selective colorimetric sensing for F− by a cleft-shaped anion receptor containing amide and hydroxyl as recognition units. Sensors and Actuators B: Chemical, 140(2), 467-472. doi:10.1016/j.snb.2009.04.056Bhardwaj, V. K., Hundal, M. S., & Hundal, G. (2009). A tripodal receptor bearing catechol groups for the chromogenic sensing of F− ions via frozen proton transfer. Tetrahedron, 65(41), 8556-8562. doi:10.1016/j.tet.2009.08.023Caltagirone, C., Mulas, A., Isaia, F., Lippolis, V., Gale, P. A., & Light, M. E. (2009). Metal-induced pre-organisation for anion recognition in a neutral platinum-containing receptor. Chemical Communications, (41), 6279. doi:10.1039/b912942aShiraishi, Y., Maehara, H., Sugii, T., Wang, D., & Hirai, T. (2009). A BODIPY–indole conjugate as a colorimetric and fluorometric probe for selective fluoride anion detection. Tetrahedron Letters, 50(29), 4293-4296. doi:10.1016/j.tetlet.2009.05.018Shiraishi, Y., Maehara, H., & Hirai, T. (2009). Indole-azadiene conjugate as a colorimetric and fluorometric probe for selective fluoride ion sensing. Organic & Biomolecular Chemistry, 7(10), 2072. doi:10.1039/b821466bBhosale, S. V., Bhosale, S. V., Kalyankar, M. B., & Langford, S. J. (2009). A Core-Substituted Naphthalene Diimide Fluoride Sensor. Organic Letters, 11(23), 5418-5421. doi:10.1021/ol9022722Lin, Z., Chen, H. C., Sun, S.-S., Hsu, C.-P., & Chow, T. J. (2009). Bifunctional maleimide dyes as selective anion sensors. Tetrahedron, 65(27), 5216-5221. doi:10.1016/j.tet.2009.04.090Yoo, J., Kim, M.-S., Hong, S.-J., Sessler, J. L., & Lee, C.-H. (2009). Selective Sensing of Anions with Calix[4]pyrroles Strapped with Chromogenic Dipyrrolylquinoxalines. The Journal of Organic Chemistry, 74(3), 1065-1069. doi:10.1021/jo802059cShang, X.-F., Li, J., Lin, H., Jiang, P., Cai, Z.-S., & Lin, H.-K. (2009). Anion recognition and sensing of ruthenium(ii) and cobalt(ii) sulfonamido complexes. Dalton Transactions, (12), 2096. doi:10.1039/b804445gDydio, P., Zieliński, T., & Jurczak, J. (2009). Bishydrazide Derivatives of Isoindoline as Simple Anion Receptors. The Journal of Organic Chemistry, 74(4), 1525-1530. doi:10.1021/jo802288uZimmermann-Dimer, L. M., Reis, D. C., Machado, C., & Machado, V. G. (2009). Chromogenic anionic chemosensors based on protonated merocyanine solvatochromic dyes in trichloromethane and in trichloromethane–water biphasic system. Tetrahedron, 65(21), 4239-4248. doi:10.1016/j.tet.2009.03.049Goswami, S., Hazra, A., Chakrabarty, R., & Fun, H.-K. (2009). Recognition of Carboxylate Anions and Carboxylic Acids by Selenium-Based New Chromogenic Fluorescent Sensor: A Remarkable Fluorescence Enhancement of Hindered Carboxylates. Organic Letters, 11(19), 4350-4353. doi:10.1021/ol901737sBarnard, A., Dickson, S. J., Paterson, M. J., Todd, A. M., & Steed, J. W. (2009). Enantioselective lactate binding by chiral tripodal anion hosts derived from amino acids. Organic & Biomolecular Chemistry, 7(8), 1554. doi:10.1039/b817889eHung, C.-Y., Singh, A. S., Chen, C.-W., Wen, Y.-S., & Sun, S.-S. (2009). Colorimetric and luminescent sensing of F− anion through strong anion–π interaction inside the π-acidic cavity of a pyridyl-triazine bridged trinuclear Re(i)–tricarbonyl diimine complex. Chemical Communications, (12), 1511. doi:10.1039/b820234fMetzger, A., & Anslyn, E. V. (1998). A Chemosensor for Citrate in Beverages. Angewandte Chemie International Edition, 37(5), 649-652. doi:10.1002/(sici)1521-3773(19980316)37:53.0.co;2-hNiikura, K., Metzger, A., & Anslyn, E. V. (1998). Chemosensor Ensemble with Selectivity for Inositol-Trisphosphate. Journal of the American Chemical Society, 120(33), 8533-8534. doi:10.1021/ja980990cAït-Haddou, H., Wiskur, S. L., Lynch, V. M., & Anslyn, E. V. (2001). Achieving Large Color Changes in Response to the Presence of Amino Acids:  A Molecular Sensing Ensemble with Selectivity for Aspartate. Journal of the American Chemical Society, 123(45), 11296-11297. doi:10.1021/ja011905vWiskur, S. L., & Anslyn, E. V. (2001). Using a Synthetic Receptor to Create an Optical-Sensing Ensemble for a Class of Analytes:  A Colorimetric Assay for the Aging of Scotch. Journal of the American Chemical Society, 123(41), 10109-10110. doi:10.1021/ja011800sZhong, Z., & Anslyn, E. V. (2002). A Colorimetric Sensing Ensemble for Heparin. Journal of the American Chemical Society, 124(31), 9014-9015. doi:10.1021/ja020505kLavigne, J. J., & Anslyn, E. V. (1999). Teaching Old Indicators New Tricks: A Colorimetric Chemosensing Ensemble for Tartrate/Malate in Beverages. Angewandte Chemie International Edition, 38(24), 3666-3669. doi:10.1002/(sici)1521-3773(19991216)38:243.0.co;2-eWiskur, S. L., Floriano, P. N., Anslyn, E. V., & McDevitt, J. T. (2003). A Multicomponent Sensing Ensemble in Solution: Differentiation between Structurally Similar Analytes. Angewandte Chemie International Edition, 42(18), 2070-2072. doi:10.1002/anie.200351058Fabbrizzi, L., Marcotte, N., Stomeo, F., & Taglietti, A. (2002). Pyrophosphate Detection in Water by Fluorescence Competition Assays: Inducing Selectivity through the Choice of the Indicator. Angewandte Chemie International Edition, 41(20), 3811-3814. doi:10.1002/1521-3773(20021018)41:203.0.co;2-wHortalá, M. A., Fabbrizzi, L., Marcotte, N., Stomeo, F., & Taglietti, A. (2003). Designing the Selectivity of the Fluorescent Detection of Amino Acids:  A Chemosensing Ensemble for Histidine. Journal of the American Chemical Society, 125(1), 20-21. doi:10.1021/ja027110lFabbrizzi, L., Leone, A., & Taglietti, A. (2001). A Chemosensing Ensemble for Selective Carbonate Detection in Water Based on Metal-Ligand Interactions. Angewandte Chemie International Edition, 40(16), 3066-3069. doi:10.1002/1521-3773(20010817)40:163.0.co;2-0Kim, S. Y., & Hong, J.-I. (2009). Dual signal (color change and fluorescence ON–OFF) ensemble system based on bis(Dpa-CuII) complex for detection of PPi in water. Tetrahedron Letters, 50(17), 1951-1953. doi:10.1016/j.tetlet.2009.02.036Khatua, S., Kim, K., Kang, J., Huh, J. O., Hong, C. S., & Churchill, D. G. (2009). Synthesis, Structure, Magnetic Properties and Aqueous Optical Citrate Detection of Chiral Dinuclear CuIIComplexes. European Journal of Inorganic Chemistry, 2009(22), 3266-3274. doi:10.1002/ejic.200900357Wright, A. T., & Anslyn, E. V. (2006). Differential receptor arrays and assays for solution-based molecular recognition. Chem. Soc. Rev., 35(1), 14-28. doi:10.1039/b505518kKitamura, M., Shabbir, S. H., & Anslyn, E. V. (2009). Guidelines for Pattern Recognition Using Differential Receptors and Indicator Displacement Assays. The Journal of Organic Chemistry, 74(12), 4479-4489. doi:10.1021/jo900433jZhang, T., Edwards, N. Y., Bonizzoni, M., & Anslyn, E. V. (2009). The Use of Differential Receptors to Pattern Peptide Phosphorylation. Journal of the American Chemical Society, 131(33), 11976-11984. doi:10.1021/ja9041675Zhang, D. (2009). Highly selective colorimetric detection of cysteine and homocysteine in water through a direct displacement approach. Inorganic Chemistry Communications, 12(12), 1255-1258. doi:10.1016/j.inoche.2009.09.035Li, S., Zhou, Y., Yu, C., Chen, F., & Xu, J. (2009). Switching the ligand-exchange reactivities of chloro-bridged cyclopalladated azobenzenes for the colorimetric sensing of thiocyanate. New Journal of Chemistry, 33(7), 1462. doi:10.1039/b903752gMännel-Croisé, C., & Zelder, F. (2009). Side Chains of Cobalt Corrinoids Control the Sensitivity and Selectivity in the Colorimetric Detection of Cyanide. Inorganic Chemistry, 48(4), 1272-1274. doi:10.1021/ic900053hMullen, K. M., Davis, J. J., & Beer, P. D. (2009). Anion induced displacement studies in naphthalene diimide containing interpenetrated and interlocked structures. New Journal of Chemistry, 33(4), 769. doi:10.1039/b819322cSancenón, F., Martínez-Máñez, R., Miranda, M. A., Seguí, M.-J., & Soto, J. (2003). Towards the Development of Colorimetric Probes to Discriminate between Isomeric Dicarboxylates. Angewandte Chemie International Edition, 42(6), 647-650. doi:10.1002/anie.200390178Jiménez, D., Martínez-Máñez, R., Sancenón, F., Ros-Lis, J. V., Benito, A., & Soto, J. (2003). A New Chromo-chemodosimeter Selective for Sulfide Anion. Journal of the American Chemical Society, 125(30), 9000-9001. doi:10.1021/ja0347336Solé, S., & Gabbaï, F. P. (2004). A bidentate borane as colorimetric fluoride ion sensor. Chem. Commun., (11), 1284-1285. doi:10.1039/b403596hWang, W., Escobedo, J. O., Lawrence, C. M., & Strongin, R. M. (2004). Direct Detection of Homocysteine. Journal of the American Chemical Society, 126(11), 3400-3401. doi:10.1021/ja0318838Zhang, M., Yu, M., Li, F., Zhu, M., Li, M., Gao, Y., … Huang, C. (2007). A Highly Selective Fluorescence Turn-on Sensor for Cysteine/Homocysteine and Its Application in Bioimaging. Journal of the American Chemical Society, 129(34), 10322-10323. doi:10.1021/ja073140iCho, D.-G., Kim, J. H., & Sessler, J. L. (20

    Synthesis and evaluation of arylfuryl-bis(indolyl)methanes as selective chromogenic and fluorogenic ratiometric receptors for mercury ion in aqueous solution

    Get PDF
    A series of arylfuryl-bis(indolyl)methane derivatives were prepared in good yields by electrophilic substitution of indole with furyl aldehydes through a simple and mild hydrogensulfate-catalysed reaction and studied as chemosensors for transition metal cations by performing spectrophotometric and spectrofluorimetric titrations. Selective recognition of Hg2+ was achieved in organic aqueous mixture (CH3CN/H2O, 7:3) for the various receptors, with an easily detectable colour change from colourless to purple and also through a fluorescence quenching, making these compounds suitable for dual chromoand fluorogenic ratiometric sensing of Hg2+. The binding stoichiometry between the receptors and Hg2+ was found to be 1:1. The binding process was also followed by 1H NMR titrations which corroborated the previous findings.Fundação para a Ciência e a Tecnologia (FCT

    New approaches for the development of chromo-fluorogenic sensors for chemical species of biological, industrial and environmental interest

    Full text link
    Tesis por compendioEl presente proyecto de investigación está enfocado al desarrollo de sensores químicos fluoro-cromogénicos, para la detección y determinación de especies químicas de interés biológico, industrial y medioambiental de forma selectiva y con alta sensibilidad. En forma general, se busca el diseñar nuevos sistemas sensores basados en compuestos (receptores) formados por dos unidades: una unidad coordinante que interacciona con el anión a determinar y una unidad generadora de señal que alerta del reconocimiento molecular efectuado. Durante este estudio se están preparando diversas moléculas receptoras funcionalizandas con grupos modificadores de estructura para evaluar su influencia sobre las capacidades de detección y selectividad como receptores de especies específicas en diferentes condiciones y medios. Las diferentes aproximaciones en prueba implican a su vez el diseño y síntesis molecular, así como el análisis de las diferentes señales ópticas producidas en el reconocimiento, con el fin de diseñar sistemas de alta eficacia y eficiencia, y con posibilidades reales de aplicación.Santos Figueroa, LE. (2014). New approaches for the development of chromo-fluorogenic sensors for chemical species of biological, industrial and environmental interest [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/43216TESISPremios Extraordinarios de tesis doctoralesCompendi

    Molecular probes and ruthenium (II) and osmium(II) complexes for the chromofluorogenic sensing of charged species and carbon monoxide

    Full text link
    Tesis por compendioLa presente tesis doctoral titulada "Sondas moleculares y complejos de rutenio (II) y osmio (II) para la detección cromo-fluorogénica de especies cargadas y monóxido de carbono" se centra en el desarrollo de sensores químicos moleculares. El trabajo realizado se puede dividir en dos partes: (i) síntesis y caracterización de sondas moleculares multifuncionales para la detección óptica de aniones y cationes metálicos y, (ii) preparación de complejos de rutenio (II) y osmio (II) para la detección cromo-fluorogénica de monóxido de carbono. La primera familia de sondas moleculares, a la cual se hace referencia en el capítulo 2, se basa en el uso de imidazoantraquinonas como subunidad indicadora. Empleando este fragmento molecular se prepararon y caracterizaron cuatro sondas (2a-2d). De todos los aniones que se ensayaron, sólo el fluoruro es capaz de inducir la aparición de una banda de absorción (lo cual se refleja en diferentes cambios de color) y bandas de emisión desplazadas hacia el rojo. Estos cambios se atribuyen a la desprotonación del grupo N-H del anillo de imidazol inducida por el fluoruro. También los cationes Fe3+, Al3+ y Cr3+ son capaces de producir desplazamientos moderados hacia el azul de las bandas de absorción de los cuatro receptores, así como una desactivación marcada de la emisión a causa de su coordinación (con los átomos de oxígeno y nitrógeno del cromóforo imidazoantraquinona). El segundo capítulo también está dedicado al estudio del comportamiento de coordinación frente a aniones y cationes de una segunda familia de sondas (3a-3d) basadas en derivados de imidazoquinolina. Nuevamente el anión fluoruro promueve la desprotonación de estos compuestos, lo cual se refleja en la aparición de bandas de absorción y de emisión desplazadas hacia el rojo. En cuanto a la respuesta óptica en presencia de cationes metálicos es muy poco selectiva, observándose cambios en las bandas UV-visible y una desactivación de las bandas de emisión en presencia de Hg2+, Cu2+, Co2+, Fe3+, Fe2+, Zn2+, Pb2+, Cd2+, Cr3+ y Al3+. A lo largo del capítulo 3 se presenta la síntesis, caracterización y comportamiento cromo-fluorogénico frente al monóxido de carbono de dos conjuntos de complejos de rutenio (II) y osmio (II) que tienen en su esfera de coordinación los fluróforos 2,1,3-benzotiadiazol (BTD) y 5-(3-tienil)-2,1,3-benzotiadiazol (TBTD). En la primera parte de este capítulo se prepararon ocho compuestos con el ligando BTD (1-8). Al burburjearles CO, las disoluciones de cloroformo de dichos complejos mostraron notables cambios de color. Además, su emisión se vio incrementada debido a la coordinación de los complejos con el CO y el desplazamiento del fluoróforo BTD. Por otro lado, la adsorción de los complejos en sílice dio lugar a sólidos que presentaron importantes cambios de color permitiendo la detección de CO en fase gas a simple vista y con alta selectividad y sensitividad. El segundo conjunto de complejos de rutenio (II) y osmio (II) contiene el fluróforo TBTD (3-7). Éstos también son capaces de detectar CO cuando se encuentran disueltos en cloroformo y adsorbidos en sílice a través de cambios de color y fluorescencia. Por otra parte, se prepararon dos nuevos complejos (8 y 9) funcionalizados con una cadena de polietilenglicol. Ambos complejos son solubles en agua y permiten la detección de CO en este disolvente altamente competitivo. Además, los compuestos 8 y 9 no son tóxicos y se emplearon con éxito en la detección de CO en células HeLa.The present PhD thesis entitled "Molecular probes and ruthenium (II) and osmium (II) complexes for the chromo-fluorogenic sensing of charged species and carbon monoxide" is focused on the development of molecular chemosensors. More in detail, the work carried out is clearly divided into two independent parts: (i) the synthesis and characterization of multifunctional molecular probes for the optical detection of anions and metal cations and, (ii) the preparation of ruthenium (II) and osmium (II) complexes for the chromo-fluorogenic sensing of carbon monoxide. The first family of molecular probes, reported in chapter 2, is based on the use of imidazoanthraquinone as signaling subunit. Using this molecular fragment four probes (2a-2d) are prepared and characterized. Of all the anions tested, only fluoride is able to induce the appearance of red-shifted absorption (reflected in marked color changes) and emission bands. These changes are ascribed to a fluoride-induced deprotonation of the N-H moiety of the imidazole ring. Also Fe3+, Al3+ and Cr3+ were able to induce moderate blue-shifts of the absorption bands of the four receptors upon coordination (with the oxygen and nitrogen atoms of the imidazoanthraquinone chromophore) and marked emission quenching. The second chapter is also devoted to study the coordination behavior toward anions and cations of a second family of probes (3a-3d) containing imidazoquinoline derivatives. Again, fluoride anion promoted the deprotonation on the probes that are reflected in the apperacence of red-shifted absorption and emission bands. The optical response in the presence of metal cations is quite unselective and UV-visible shifts and emission quenchings are observed in the presence of Hg2+, Cu2+, Co2+, Fe3+, Fe2+, Zn2+, Pb2+, Cd2+, Cr3+ and Al3+. Chapter 3 presents the synthesis, characterization and chromo-fluorogenic behavior toward of carbon monoxide of two set of ruthenium (II) and osmium (II) complexes bearing 2,1,3-benzothiadiazole (BTD) and 5-(3-thienyl)-2,1,3-benzothiadiazole (TBTD) fluorophores. Eight complexes functionalized with BTD ligand (1-8) are prepared in the first part of this chapter. Chloroform solutions of the complexes underwent remarkable color changes when CO is bubbled. Also, significative emission enhancements are obserbed due to coordination of CO and displacement of BTD fluorophore. Besides, the adsorption of the complexes on silica yielded solids that presented remarkable color changes that allowed a naked eye detection of CO in gas phase. The second set of ruthenium (II) and osmium (II) complexes contains TBTD fluorophore (3-7). Also these complexes are able to detect CO in chloroform solution and in gas phase when adsorbed on silica through color and fluorescence changes. Moreover, two new complexes (8 and 9) containing a poly(ethylene) glycol chain are prepared. Both complexes are water soluble and allowed CO detection in this highly competitive solvent. Besides, 8 and 9 are non-toxic and are successfully used for CO detection in HeLa cells.La present tesi doctoral titulada "Sondas moleculars i complexos de ruteni (II) i osmi (II) per a la detecció cromo-fluorogènica d'espècies carregades i monòxid de carboni" es centra en el desenvolupament de sensors químics moleculars. El treball realizat es pot dividir en dues parts: (i) síntesi i caracterització de sondes moleculars multifuncionals per a la detecció òptica d'anions i cations metàli·lics i, (ii) preparació de complexos de ruteni (II) i osmi (II) per a la detecció cromo-fluorogènica de monòxid de carboni. La primera família de sondes moleculars, a la qual es fa referència en el capítol 2, es basa en l'ús d'imidazoantraquinones com a subunitat indicadora. Emprant aquest fragment molecular es van preparar i caracteritzar quatre sondes (2a-2d). De tots els anions que es van assajar, només el fluorur és capaç d'induir l'aparició d'una banda d'absorció (la qual cosa es reflecteix en diferents canvis de color) i bandes d'emissió desplaçades cap al roig. Aquestos canvis s'atribuïxen a la desprotonació del grup NH de l'anell d'imidazol induïda pel fluorur. També els cations Fe3+, Al3+ i Cr3+ són capaços de produir desplaçaments moderats cap al blau de les bandes d'adsorció dels quatre receptors, així com una desactivació marcada de l'emissió a causa de la seua coordinació (amb els àtoms d'oxigen i nitrogen del cromòfor imidazoantraquinona). El segon capítol també està dedicat a l'estudi del comportament de coordinació en presència d'anions i cations d'una segona família de sondes (3a-3d) basades en derivats d'imidazoquinolina. Novament l'anió fluorur promou la desprotonació d'aquestos compostos, la qual cosa es reflecteix en l'aparició de bandes d'absorció i d'emissió desplaçades cap al roig. Quant a la resposta òptica en presència de cations metàl·lics és molt poc selectiva, observant-se canvis en les bandes UV-visible i una desactivació de les bandes d'emissió en presència de Hg2+, Cu2+, Co2+, Fe3+, Fe2+, Zn2+, Pb2+, Cd2+, Cr3+ i Al3+. Al capítol 3 es presenta la síntesi, caracterització i comportament cromo-fluorogènic en presència de monòxid de carboni de dos conjunts de complexos de ruteni (II) i osmi (II) que tenen a la seua esfera de coordinació els fluoròfors 2,1,3-benzotiadiazol (BTD) i 5-(3-tienil)-1,2,3-benzotiadiazol (TBTD). A la primera part d'aquest capítol es van preparar huit compostos amb el lligant BTD (1-8). Al bambollejar-les CO, les dissolucions de cloroform d'aquestos complexos van mostrar notables canvis de color. A més, la seua emissió es va veure incrementada a causa de la coordinació dels complexos amb el CO i el desplaçament del fluoròfor BTD. D'altra banda, l'adsorció dels complexos en sílice va donar lloc a sòlids que van presentar importants canvis de color premetent la detecció de CO en fase gas a simple vista i amb alta selectivitat i sensitivitat. El segon conjunt de complexos de ruteni (II) i osmi (II) conté el fluoròfor TBTD (3-7). Aquestos també són capaços de detectar CO quan es troben dissolts en cloroform i adsorbits en sílice a través de canvis de color i fluorescència. D'altra banda, es van preparar dos nous complexos (8 i 9) funcionalitzats amb una cadena de polietilenglicol. Ambdós complexos són solubles en aigua i permeten la detecció de CO en aquest dissolvent altament competitiu. A més, els compostos 8 i 9 no són tòxics i es van emprar amb èxit en la detecció de CO en cèl·lules HeLa.Marín Hernández, C. (2017). Molecular probes and ruthenium (II) and osmium(II) complexes for the chromofluorogenic sensing of charged species and carbon monoxide [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/95407TESISCompendi

    Octatosylaminophthalocyanine: a reusable chromogenic anion chemosensor

    Get PDF
    Detailed herein is the use of 2,3,9,10,16,17,23,24-octatosylaminophthalocyanine as a chromogenic chemosensor for anions. The host:guest complexes formed during the sensing event can be regenerated by acid treatment without loss of the sensing ability. This allows the phthalocyanine chemosensor to be reused. This system also responds in a colorimetric manner when exposed to the neutral solvent molecules, dimethyl sulfoxide and methanol. A single-crystal X-ray structure of the Pc 1:2 MeOH complex was obtained. It illustrates the main interactions between the host:guest species in the solid state. Fits of the binding curves are consistent with this stoichiometry predominating in the solution state

    Optical chemosensors and reagents to detect explosives

    Full text link
    [EN] This critical review is focused on examples reported from 1947 to 2010 related to the design of chromo-fluorogenic chemosensors and reagents for explosives (141 references). © 2012 The Royal Society of Chemistry.Financial support from the Spanish Government (project MAT2009-14564-C04) and the Generalitat Valencia (project PROMETEO/2009/016) is gratefully acknowledged. Y.S. is grateful to the Spanish Ministry of Science and Innovation for her grant.Salinas Soler, Y.; Martínez Mañez, R.; Marcos Martínez, MD.; Sancenón Galarza, F.; Costero Nieto, AM.; Parra Álvarez, M.; Gil Grau, S. (2012). Optical chemosensors and reagents to detect explosives. Chemical Society Reviews. 41(3):1261-1296. https://doi.org/10.1039/c1cs15173hS12611296413Furton, K. (2001). The scientific foundation and efficacy of the use of canines as chemical detectors for explosives. Talanta, 54(3), 487-500. doi:10.1016/s0039-9140(00)00546-4H�kansson, K., Coorey, R. V., Zubarev, R. A., Talrose, V. L., & H�kansson, P. (2000). Low-mass ions observed in plasma desorption mass spectrometry of high explosives. Journal of Mass Spectrometry, 35(3), 337-346. doi:10.1002/(sici)1096-9888(200003)35:33.0.co;2-7Walsh, M. (2001). Determination of nitroaromatic, nitramine, and nitrate ester explosives in soil by gas chromatography and an electron capture detector. Talanta, 54(3), 427-438. doi:10.1016/s0039-9140(00)00541-5Sylvia, J. M., Janni, J. A., Klein, J. D., & Spencer, K. M. (2000). Surface-Enhanced Raman Detection of 2,4-Dinitrotoluene Impurity Vapor as a Marker To Locate Landmines. Analytical Chemistry, 72(23), 5834-5840. doi:10.1021/ac0006573Yinon, J. (1982). Mass spectrometry of explosives: Nitro compounds, nitrate esters, and nitramines. Mass Spectrometry Reviews, 1(3), 257-307. doi:10.1002/mas.1280010304Mathurin, J. C., Faye, T., Brunot, A., Tabet, J. C., Wells, G., & Fuché, C. (2000). High-Pressure Ion Source Combined with an In-Axis Ion Trap Mass Spectrometer. 1. Instrumentation and Applications. Analytical Chemistry, 72(20), 5055-5062. doi:10.1021/ac000171mHallowell, S. (2001). Screening people for illicit substances: a survey of current portal technology. Talanta, 54(3), 447-458. doi:10.1016/s0039-9140(00)00543-9Vourvopoulos, G. (2001). Pulsed fast/thermal neutron analysis: a technique for explosives detection. Talanta, 54(3), 459-468. doi:10.1016/s0039-9140(00)00544-0Krausa, M., & Schorb, K. (1999). Trace detection of 2,4,6-trinitrotoluene in the gaseous phase by cyclic voltammetry. Journal of Electroanalytical Chemistry, 461(1-2), 10-13. doi:10.1016/s0022-0728(98)00162-4Steinfeld, J. I., & Wormhoudt, J. (1998). EXPLOSIVES DETECTION: A Challenge for Physical Chemistry. Annual Review of Physical Chemistry, 49(1), 203-232. doi:10.1146/annurev.physchem.49.1.203Moore, D. S. (2004). Instrumentation for trace detection of high explosives. Review of Scientific Instruments, 75(8), 2499-2512. doi:10.1063/1.1771493Martínez-Máñez, R., Sancenón, F., Hecht, M., Biyikal, M., & Rurack, K. (2010). Nanoscopic optical sensors based on functional supramolecular hybrid materials. Analytical and Bioanalytical Chemistry, 399(1), 55-74. doi:10.1007/s00216-010-4198-2Moragues, M. E., Martínez-Máñez, R., & Sancenón, F. (2011). Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009. Chemical Society Reviews, 40(5), 2593. doi:10.1039/c0cs00015aMartínez-Máñez, R., & Sancenón, F. (2005). New Advances in Fluorogenic Anion Chemosensors. Journal of Fluorescence, 15(3), 267-285. doi:10.1007/s10895-005-2626-zXu, Z., Chen, X., Kim, H. N., & Yoon, J. (2010). Sensors for the optical detection ofcyanide ion. Chem. Soc. Rev., 39(1), 127-137. doi:10.1039/b907368jNolan, E. M., & Lippard, S. J. (2008). Tools and Tactics for the Optical Detection of Mercuric Ion. Chemical Reviews, 108(9), 3443-3480. doi:10.1021/cr068000qPallavicini, P., Diaz-Fernandez, Y. A., & Pasotti, L. (2009). Micelles as nanosized containers for the self-assembly of multicomponent fluorescent sensors. Coordination Chemistry Reviews, 253(17-18), 2226-2240. doi:10.1016/j.ccr.2008.11.010Que, E. L., & Chang, C. J. (2010). Responsive magnetic resonance imaging contrast agents as chemical sensors for metals in biology and medicine. Chem. Soc. Rev., 39(1), 51-60. doi:10.1039/b914348nMohr, G. J. (2004). Tailoring the sensitivity and spectral properties of a chromoreactand for the detection of amines and alcohols. Analytica Chimica Acta, 508(2), 233-237. doi:10.1016/j.aca.2003.12.005Martínez-Máñez, R., & Sancenón, F. (2003). Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chemical Reviews, 103(11), 4419-4476. doi:10.1021/cr010421eJ. P. Agrawal and R. D.Hodgson, Organic Chemistry of Explosives, John Wiley & Sons, Chichester, 2007, ISBN-13, 978, 0-470-02967-1, HBCumming, C. J., Aker, C., Fisher, M., Fok, M., la Grone, M. J., Reust, D., … Williams, V. (2001). Using novel fluorescent polymers as sensory materials for above-ground sensing of chemical signature compounds emanating from buried landmines. IEEE Transactions on Geoscience and Remote Sensing, 39(6), 1119-1128. doi:10.1109/36.927423Toal, S. J., & Trogler, W. C. (2006). Polymer sensors for nitroaromatic explosives detection. Journal of Materials Chemistry, 16(28), 2871. doi:10.1039/b517953jMcQuade, D. T., Pullen, A. E., & Swager, T. M. (2000). Conjugated Polymer-Based Chemical Sensors. Chemical Reviews, 100(7), 2537-2574. doi:10.1021/cr9801014Zhou, Q., & Swager, T. M. (1995). Method for enhancing the sensitivity of fluorescent chemosensors: energy migration in conjugated polymers. Journal of the American Chemical Society, 117(26), 7017-7018. doi:10.1021/ja00131a031Yang, J.-S., & Swager, T. M. (1998). Porous Shape Persistent Fluorescent Polymer Films:  An Approach to TNT Sensory Materials. Journal of the American Chemical Society, 120(21), 5321-5322. doi:10.1021/ja9742996Yang, J.-S., & Swager, T. M. (1998). Fluorescent Porous Polymer Films as TNT Chemosensors:  Electronic and Structural Effects. Journal of the American Chemical Society, 120(46), 11864-11873. doi:10.1021/ja982293qYamaguchi, S., & Swager, T. M. (2001). Oxidative Cyclization of Bis(biaryl)acetylenes:  Synthesis and Photophysics of Dibenzo[g,p]chrysene-Based Fluorescent Polymers. Journal of the American Chemical Society, 123(48), 12087-12088. doi:10.1021/ja016692oZahn, S., & Swager, T. M. (2002). Three-Dimensional Electronic Delocalization in Chiral Conjugated Polymers. Angewandte Chemie International Edition, 41(22), 4225-4230. doi:10.1002/1521-3773(20021115)41:223.0.co;2-3Amara, J. P., & Swager, T. M. (2005). Synthesis and Properties of Poly(phenylene ethynylene)s with Pendant Hexafluoro-2-propanol Groups. Macromolecules, 38(22), 9091-9094. doi:10.1021/ma051562bZhao, D., & Swager, T. M. (2005). Sensory Responses in Solution vs Solid State:  A Fluorescence Quenching Study of Poly(iptycenebutadiynylene)s. Macromolecules, 38(22), 9377-9384. doi:10.1021/ma051584yThomas III, S. W., Amara, J. P., Bjork, R. E., & Swager, T. M. (2005). Amplifying fluorescent polymer sensors for the explosives taggant 2,3-dimethyl-2,3-dinitrobutane (DMNB). Chemical Communications, (36), 4572. doi:10.1039/b508408cNarayanan, A., Varnavski, O. P., Swager, T. M., & Goodson, T. (2008). Multiphoton Fluorescence Quenching of Conjugated Polymers for TNT Detection. The Journal of Physical Chemistry C, 112(4), 881-884. doi:10.1021/jp709662wChen, S., Zhang, Q., Zhang, J., Gu, J., & Zhang, L. (2010). Synthesis of two conjugated polymers as TNT chemosensor materials. Sensors and Actuators B: Chemical, 149(1), 155-160. doi:10.1016/j.snb.2010.06.007Long, Y., Chen, H., Yang, Y., Wang, H., Yang, Y., Li, N., … Liu, F. (2009). Electrospun Nanofibrous Film Doped with a Conjugated Polymer for DNT Fluorescence Sensor. Macromolecules, 42(17), 6501-6509. doi:10.1021/ma900756wChang, C.-P., Chao, C.-Y., Huang, J. H., Li, A.-K., Hsu, C.-S., Lin, M.-S., … Su, A.-C. (2004). Fluorescent conjugated polymer films as TNT chemosensors. Synthetic Metals, 144(3), 297-301. doi:10.1016/j.synthmet.2004.04.003Levitsky, I. A., Euler, W. B., Tokranova, N., & Rose, A. (2007). Fluorescent polymer-porous silicon microcavity devices for explosive detection. Applied Physics Letters, 90(4), 041904. doi:10.1063/1.2432247Chen, L., McBranch, D., Wang, R., & Whitten, D. (2000). Surfactant-induced modification of quenching of conjugated polymer fluorescence by electron acceptors: applications for chemical sensing. Chemical Physics Letters, 330(1-2), 27-33. doi:10.1016/s0009-2614(00)00970-2Rose, A., Zhu, Z., Madigan, C. F., Swager, T. M., & Bulović, V. (2005). Sensitivity gains in chemosensing by lasing action in organic polymers. Nature, 434(7035), 876-879. doi:10.1038/nature03438Tamao, K., Uchida, M., Izumizawa, T., Furukawa, K., & Yamaguchi, S. (1996). Silole Derivatives as Efficient Electron Transporting Materials. Journal of the American Chemical Society, 118(47), 11974-11975. doi:10.1021/ja962829cSohn, H., Huddleston, R. R., Powell, D. R., West, R., Oka, K., & Yonghua, X. (1999). An Electroluminescent Polysilole and Some Dichlorooligosiloles. Journal of the American Chemical Society, 121(12), 2935-2936. doi:10.1021/ja983350iOhshita, J., & Kunai, A. (1998). Polymers with alternating organosilicon and π-conjugated units. Acta Polymerica, 49(8), 379-403. doi:10.1002/(sici)1521-4044(199808)49:83.0.co;2-zToal, S. J., Magde, D., & Trogler, W. C. (2005). Luminescent oligo(tetraphenyl)silole nanoparticles as chemical sensors for aqueous TNT. Chemical Communications, (43), 5465. doi:10.1039/b509404fSohn, H., Sailor, M. J., Magde, D., & Trogler, W. C. (2003). Detection of Nitroaromatic Explosives Based on Photoluminescent Polymers Containing Metalloles. Journal of the American Chemical Society, 125(13), 3821-3830. doi:10.1021/ja021214eSanchez, J. C., DiPasquale, A. G., Rheingold, A. L., & Trogler, W. C. (2007). Synthesis, Luminescence Properties, and Explosives Sensing with 1,1-Tetraphenylsilole- and 1,1-Silafluorene-vinylene Polymers. Chemistry of Materials, 19(26), 6459-6470. doi:10.1021/cm702299gSanchez, J. C., Urbas, S. A., Toal, S. J., DiPasquale, A. G., Rheingold, A. L., & Trogler, W. C. (2008). Catalytic Hydrosilylation Routes to Divinylbenzene Bridged Silole and Silafluorene Polymers. Applications to Surface Imaging of Explosive Particulates. Macromolecules, 41(4), 1237-1245. doi:10.1021/ma702274cSanchez, J. C., & Trogler, W. C. (2008). Efficient blue-emitting silafluorene–fluorene-conjugated copolymers: selective turn-off/turn-on detection of explosives. Journal of Materials Chemistry, 18(26), 3143. doi:10.1039/b802623hLiu, J., Zhong, Y., Lam, J. W. Y., Lu, P., Hong, Y., Yu, Y., … Tang, B. Z. (2010). Hyperbranched Conjugated Polysiloles: Synthesis, Structure, Aggregation-Enhanced Emission, Multicolor Fluorescent Photopatterning, and Superamplified Detection of Explosives. Macromolecules, 43(11), 4921-4936. doi:10.1021/ma902432mLu, P., Lam, J. W. Y., Liu, J., Jim, C. K. W., Yuan, W., Xie, N., … Tang, B. Z. (2010). Aggregation-Induced Emission in a Hyperbranched Poly(silylenevinylene) and Superamplification in Its Emission Quenching by Explosives. Macromolecular Rapid Communications, 31(9-10), 834-839. doi:10.1002/marc.200900794Liu, Y., Mills, R. C., Boncella, J. M., & Schanze, K. S. (2001). Fluorescent Polyacetylene Thin Film Sensor for Nitroaromatics. Langmuir, 17(24), 7452-7455. doi:10.1021/la010696pToy, L. G., Nagai, K., Freeman, B. D., Pinnau, I., He, Z., Masuda, T., … Yampolskii, Y. P. (2000). Pure-Gas and Vapor Permeation and Sorption Properties of Poly[1-phenyl-2-[p-(trimethylsilyl)phenyl]acetylene] (PTMSDPA). Macromolecules, 33(7), 2516-2524. doi:10.1021/ma991566eSaxena, A., Fujiki, M., Rai, R., & Kwak, G. (2005). Fluoroalkylated Polysilane Film as a Chemosensor for Explosive Nitroaromatic Compounds. Chemistry of Materials, 17(8), 2181-2185. doi:10.1021/cm048319wSaxena, A., Rai, R., Kim, S.-Y., Fujiki, M., Naito, M., Okoshi, K., & Kwak, G. (2006). Weak noncovalent Si···FC interactions stabilized fluoroalkylated rod-like polysilanes as ultrasensitive chemosensors. Journal of Polymer Science Part A: Polymer Chemistry, 44(17), 5060-5075. doi:10.1002/pola.21607Toal, S. J., Sanchez, J. C., Dugan, R. E., & Trogler, W. C. (2007). Visual Detection of Trace Nitroaromatic Explosive Residue Using Photoluminescent Metallole-Containing Polymers. Journal of Forensic Sciences, 52(1), 79-83. doi:10.1111/j.1556-4029.2006.00332.xStringer, R. C., Gangopadhyay, S., & Grant, S. A. (2010). Detection of Nitroaromatic Explosives Using a Fluorescent-Labeled Imprinted Polymer. Analytical Chemistry, 82(10), 4015-4019. doi:10.1021/ac902838cLi, J., Kendig, C. E., & Nesterov, E. E. (2007). Chemosensory Performance of Molecularly Imprinted Fluorescent Conjugated Polymer Materials. Journal of the American Chemical Society, 129(51), 15911-15918. doi:10.1021/ja0748027Bunte, G., Hürttlen, J., Pontius, H., Hartlieb, K., & Krause, H. (2007). Gas phase detection of explosives such as 2,4,6-trinitrotoluene by molecularly imprinted polymers. Analytica Chimica Acta, 591(1), 49-56. doi:10.1016/j.aca.2007.02.014Zhang, X., & Jenekhe, S. A. (2000). Electroluminescence of Multicomponent Conjugated Polymers. 1. Roles of Polymer/Polymer Interfaces in Emission Enhancement and Voltage-Tunable Multicolor Emission in Semiconducting Polymer/Polymer Heterojunctions. Macromolecules, 33(6), 2069-2082. doi:10.1021/ma991913kHou, S., Ding, M., & Gao, L. (2003). Synthesis and Properties of Polyquinolines and Polyanthrazolines Containing Pyrrole Units in the Main Chain. Macromolecules, 36(11), 3826-3832. doi:10.1021/ma025768dKim, T. H., Kim, H. J., Kwak, C. G., Park, W. H., & Lee, T. S. (2006). Aromatic oxadiazole-based conjugated polymers with excited-state intramolecular proton transfer: Their synthesis and sensing ability for explosive nitroaromatic compounds. Journal of Polymer Science Part A: Polymer Chemistry, 44(6), 2059-2068. doi:10.1002/pola.21319Nie, H., Zhao, Y., Zhang, M., Ma, Y., Baumgarten, M., & Müllen, K. (2011). Detection of TNT explosives with a new fluorescent conjugated polycarbazole polymer. Chem. Commun., 47(4), 1234-1236. doi:10.1039/c0cc03659eQin, A., Lam, J. W. Y., Tang, L., Jim, C. K. W., Zhao, H., Sun, J., & Tang, B. Z. (2009). Polytriazoles with Aggregation-Induced Emission Characteristics: Synthesis by Click Polymerization and Application as Explosive Chemosensors. Macromolecules, 42(5), 1421-1424. doi:10.1021/ma8024706Kumar, A., Pandey, M. K., Anandakathir, R., Mosurkal, R., Parmar, V. S., Watterson, A. C., & Kumar, J. (2010). Sensory response of pegylated and siloxanated 4,8-dimethylcoumarins: A fluorescence quenching study by nitro aromatics. Sensors and Actuators B: Chemical, 147(1), 105-110. doi:10.1016/j.snb.2010.02.004Nguyen, H. H., Li, X., Wang, N., Wang, Z. Y., Ma, J., Bock, W. J., & Ma, D. (2009). Fiber-Optic Detection of Explosives Using Readily Available Fluorescent Polymers. Macromolecules, 42(4), 921-926. doi:10.1021/ma802460qAlbert, K. J., & Walt, D. R. (2000). High-Speed Fluorescence Detection of Explosives-like Vapors. Analytical Chemistry, 72(9), 1947-1955. doi:10.1021/ac991397wGao, D., Wang, Z., Liu, B., Ni, L., Wu, M., & Zhang, Z. (2008). Resonance Energy Transfer-Amplifying Fluorescence Quenching at the Surface of Silica Nanoparticles toward Ultrasensitive Detection of TNT. Analytical Chemistry, 80(22), 8545-8553. doi:10.1021/ac8014356Fang, Q., Geng, J., Liu, B., Gao, D., Li, F., Wang, Z., … Zhang, Z. (2009). Inverted Opal Fluorescent Film Chemosensor for the Detection of Explosive Nitroaromatic Vapors through Fluorescence Resonance Energy Transfer. Chemistry - A European Journal, 15(43), 11507-11514. doi:10.1002/chem.200901488Geng, J., Liu, P., Liu, B., Guan, G., Zhang, Z., & Han, M.-Y. (2010). A Reversible Dual-Response Fluorescence Switch for the Detection of Multiple Analytes. Chemistry - A European Journal, 16(12), 3720-3727. doi:10.1002/chem.200902721Yang, J., Aschemeyer, S., Martinez, H. P., & Trogler, W. C. (2010). Hollow silica nanospheres containing a silafluorene–fluorene conjugated polymer for aqueous TNT and RDX detection. Chemical Communications, 46(36), 6804. doi:10.1039/c0cc01906bFeng, J., Li, Y., & Yang, M. (2010). Conjugated polymer-grafted silica nanoparticles for the sensitive detection of TNT. Sensors and Actuators B: Chemical, 145(1), 438-443. doi:10.1016/j.snb.2009.12.056Tao, S., Shi, Z., Li, G., & Li, P. (2006). Hierarchically Structured Nanocomposite Films as Highly Sensitive Chemosensory Materials for TNT Detection. ChemPhysChem, 7(9), 1902-1905. doi:10.1002/cphc.200600185Tao, S., Yin, J., & Li, G. (2008). High-performance TNT chemosensory materials based on nanocomposites with bimodal porous structures. Journal of Materials Chemistry, 18(40), 4872. doi:10.1039/b802486cTao, S., Li, G., & Zhu, H. (2006). Metalloporphyrins as sensing elements for the rapid detection of trace TNT vapor. Journal of Materials Chemistry, 16(46), 4521. doi:10.1039/b606061gTao, S., & Li, G. (2007). Porphyrin-doped mesoporous silica films for rapid TNT detection. Colloid and Polymer Science, 285(7), 721-728. doi:10.1007/s00396-007-1643-7Yildirim, A., Budunoglu, H., Deniz, H., O. Guler, M., & Bayindir, M. (2010). Template-Free Synthesis of Organically Modified Silica Mesoporous Thin Films for TNT Sensing. ACS Applied Materials & Interfaces, 2(10), 2892-2897. doi:10.1021/am100568cLi, H., Wang, J., Pan, Z., Cui, L., Xu, L., Wang, R., … Jiang, L. (2011). Amplifying fluorescence sensing based on inverse opal photonic crystal toward trace TNT detection. J. Mater. Chem., 21(6), 1730-1735. doi:10.1039/c0jm02554bTao, S., Li, G., & Yin, J. (2007). Fluorescent nanofibrous membranes for trace detection of TNT vapor. Journal of Materials Chemistry, 17(26), 2730. doi:10.1039/b618122hNaddo, T., Che, Y., Zhang, W., Balakrishnan, K., Yang, X., Yen, M., … Zang, L. (2007). Detection of Explosives with a Fluorescent Nanofibril Film. Journal of the American Chemical Society, 129(22), 6978-6979. doi:10.1021/ja070747qContent, S., Trogler, W. C., & Sailor, M. J. (2000). Detection of Nitrobenzene, DNT, and TNT Vapors by Quenching of Porous Silicon Photoluminescence. Chemistry - A European Journal, 6(12), 2205-2213. doi:10.1002/1521-3765(20000616)6:123.0.co;2-aKang, J., Ding, L., Lü, F., Zhang, S., & Fang, Y. (2006). Dansyl-based fluorescent film sensor for nitroaromatics in aqueous solution. Journal of Physics D: Applied Physics, 39(23), 5097-5102. doi:10.1088/0022-3727/39/23/030Zhang, S., Lü, F., Gao, L., Ding, L., & Fang, Y. (2007). Fluorescent Sensors for Nitroaromatic Compounds Based on Monolayer Assembly of Polycyclic Aromatics. Langmuir, 23(3), 1584-1590. doi:10.1021/la062773sHe, G., Zhang, G., Lü, F., & Fang, Y. (2009). Fluorescent Film Sensor for Vapor-Phase Nitroaromatic Explosives via Monolayer Assembly of Oligo(diphenylsilane) on Glass Plate Surfaces. Chemistry of Materials, 21(8), 1494-1499. doi:10.1021/cm900013fGoodpaster, J. V., & McGuffin, V. L. (2001). Fluorescence Quenching as an Indirect Detection Method for Nitrated Explosives. Analytical Chemistry, 73(9), 2004-2011. doi:10.1021/ac001347nHughes, A. D., Glenn, I. C., Patrick, A. D., Ellington, A., & Anslyn, E. V. (2008). A Pattern Recognition Based Fluorescence Quenching Assay for the Detection and Identification of Nitrated Explosive Analytes. Chemistry - A European Journal, 14(6), 1822-1827. doi:10.1002/chem.200701546Malashikhin, S., & Finney, N. S. (2008). Fluorescent Signaling Based on Sulfoxide Profluorophores: Application to the Visual Detection of the Explosive TATP. Journal of the American Chemical Society, 130(39), 12846-12847. doi:10.1021/ja802989vFocsaneanu, K.-S., & Scaiano, J. C. (2005). Potential analytical applications of differential fluorescence quenching: pyrene monomer and excimer emissions as sensors for electron deficient molecules. Photochemical & Photobiological Sciences, 4(10), 817. doi:10.1039/b505249aLee, Y. H., Liu, H., Lee, J. Y., Kim, S. H., Kim, S. K., Sessler, J. L., … Kim, J. S. (2010). Dipyrenylcalix[4]arene-A Fluorescence-Based Chemosensor for Trinitroaromatic Explosives. Chemistry - A European Journal, 16(20), 5895-5901. doi:10.1002/chem.200903439Jian, C., & Seitz, W. R. (1990). Membrane for in situ optical detection of organic nitro compounds based on fluorescence quenching. Analytica Chimica Acta, 237, 265-271. doi:10.1016/s0003-2670(00)83928-8Vijayakumar, C., Tobin, G., Schmitt, W., Kim, M.-J., & Takeuchi, M. (2010). Detection of explosive vapors with a charge transfer molecule: self-assembly assisted morphology tuning and enhancement in sensing efficiency. Chemical Communications, 46(6), 874. doi:10.1039/b921520dZyryanov, G. V., Palacios, M. A., & Anzenbacher, P. (2008). Simple Molecule-Based Fluorescent Sensors for Vapor Detection of TNT. Organic Letters, 10(17), 3681-3684. doi:10.1021/ol801030uCavaye, H., Shaw, P. E., Wang, X., Burn, P. L., Lo, S.-C., & Meredith, P. (2010). Effect of Dimensionality in Dendrimeric and Polymeric Fluorescent Materials for Detecting Explosives. Macromolecules, 43(24), 10253-10261. doi:10.1021/ma102369qPonnu, A., & Anslyn, E. V. (2010). A fluorescence-based cyclodextrin sensor to detect nitroaromatic explosives. Supramolecular Chemistry, 22(1), 65-71. doi:10.1080/10610270903378032Zhang, C., Che, Y., Yang, X., Bunes, B. R., & Zang, L. (2010). Organic nanofibrils based on linear carbazole trimer for explosive sensing. Chemical Communications, 46(30), 5560. doi:10.1039/c0cc01258kLi, Z., Dong, Y. Q., Lam, J. W. Y., Sun, J., Qin, A., Häußler, M., … Tang, B. Z. (2009). Functionalized Siloles: Versatile Synthesis, Aggregation-Induced Emission, and Sensory and Device Applications. Advanced Functional Materials, 19(6), 905-917. doi:10.1002/adfm.20

    A single chemosensor for multiple analytes: fluorogenic and ratiometric absorbance detection of Zn²⁺, Mg²⁺ and F⁻, and its cell imaging

    Get PDF
    A simple coumarin based sensor 1 has been synthesized from the condensation reaction of 7-hydroxycoumarin and ethylenediamine via the intermediate 7-hydroxy-8-aldehyde-coumarin. As a multiple analysis sensor, 1 can monitor Zn²⁺ with the fluorescence enhanced at 457 nm, and ratiometric detection at 290 nm, 350 nm and 420 nm in DMF/H₂O (1/4, v/v) medium. Sensor 1 can also monitor Mg²⁺ with the fluorescence enhanced at 430 nm, and ratiometric detection at 290 nm, 370 nm and 430 nm in DMF medium through the interaction of chelation enhance fluorescence (CHEF) with metal ions. Furthermore, 1 also can monitor F⁻ with the fluorescence enhanced at 460 nm, and ratiometric detection at 290 nm and 390 nm in DMF medium simultaneously via hydrogen bonding and deprotonation with F− anion. Spectral titration, isothermal titration calorimetry and mass spectrometry revealed that the sensor formed a 1:1 complex with Mg²⁺, Zn²⁺ or F⁻, with stability constants of 4.5 × 10⁶, 3.4 × 10⁶, 8.0 × 10⁴ M⁻1 respectively. The complexation of the ions by 1 was an exothermic reaction driven by entropy processes. Furthermore, the sensor exhibits good membrane-permeability and was capable of monitoring at the intracellular Zn²⁺ level in living cells

    Supramolecular and heterosupramolecar chemistry in controlled release and molecular recognition processes

    Full text link
    La presente tesis doctoral titulada ¿Supramolecular and heterosupramolecular chemistry in controlled release and molecular recognition processes¿ está centrada en los dos aspectos principales de la química supramolecular que han experimentado un gran auge en los últimos años: el reconocimiento molecular y los procesos de liberación controlada. En particular la primera parte de la tesis se focaliza en el diseño y síntesis de moléculas orgánicas que pueden ser empleados cómo sensores para especies aniónicas y neutras. El paradigma seleccionado para los procesos de reconocimiento molecular fue la aproximación del dosimetro químico. Esta aproximación presenta ventajas con respecto a los otros dos métodos de determinación de aniones (desplazamiento y unidad coordinanteunidad indicadora), cómo, por ejemplo, la posibilidad de determinar los analitos en disolución acuosa. Así se sintetizaron dos sensores selectivos, uno para el anión fluoruro (F-) y el otro para glutatión (GSH). El sensor selectivo para la determinación de F- está basado en un colorante azoico funcionalizado, en su ¿OH fenólico, cómo silileter. Esta molécula presenta una banda de absroción muy intensa centrada a 350 nm que, después de la adición de F- , sufre un efecto hipocrómico significativo y un desplazamiento batocromico ligero (de ca. 10 nm), mientras aparece una nueva banda a 470 nm, determinando un cambio de incoloro a amarillorojo. Para obtener un sensor selectivo para GSH se sintetizó una sonda químico basado en una sal de 2,6-difenilpirilio. Sucesivamente se preparó una disolución de este compuesto en agua/CTAB, que se caracterizaba por un intenso color azul. En este caso, la adición de GSH produce una disminución significativa de la banda del visible, acompañada por la consecuente decoloración. Además la adicón de GSH induce la aparición de Resumen vi una intensa banda de emisión centrada a 485 nm (después de la irradiación a 350 nm). La segunda parte de esta tesis doctoral se basa en el diseño y síntesis de nuevos sistemas híbridos orgánicos-inorgánicos para procesos de liberación controlada en ambiente celular. Estos materiales híbridos se componen en general, de dos unidades: una matriz inorgánica mesoporosa de base silícea, capaz de almacenar moléculas orgánicas (colorantes, farmacos...) y un compuesto orgánico anclado covalentemente a la superficie externa del soporte inorgánico mesoporoso, que actúa cómo puerta molecular. La aplicación de un estímulo externo puede modificar la conformación de la puerta molecular permitiendo o bien impidiendo la difusión de la carga almacenada en los mesoporos hacía el exterior (disolución o citoplasma). El primer sistema sintetizado y estudiado se compone de una matriz inorgánica mesoporosa (MCM-41), cargada con el colorante Ru(bipy)3 2+ y funcionalizada en la superficie con un oligoetilen glicol mediante un grupo ester. La adición de la enzima esterasa determinaba la hidrólisis del grupo ester y la consecuente reducción del tamaño de la puerta molecular, acompañada por la liberación del colorante previamente cargado. Otro sistema de liberación preparado consiste en el uso de la misma matriz MCM-41 nanoscópica y el mismo colorante Ru(bipy)3 2+, pero se funcionalizó la superficie con una puerta molecular fotolabil. La irradiación en el maximo de absorción de la puerta molecular inducía la fotodegradación de la misma y la consecuente liberación del colorante. Un tercer ejemplo de sistema de liberación consiste en una puerta molecular caracterizada por la presencia de dos grupos funcionales hidrolizables con enzimas diferentes: grupos urea y amida. vii El material final, caracterizado por la presencia del mismo esqueleto inorgánico, y cargado con Ru(bipy)3 2+, era capaz de liberar selectivamente cantidades distintas de colorante, dependiendo del enzima empleado. Así se podían conseguir dos tipos de perfiles de liberación: uno muy rápido y poco intenso y otro más lento pero mucho mas intenso. Finalmente se sintetizó un material híbrido siempre basado en la misma matriz de MCM- 41, cargado con rodamina-B y funcionalizado en la superficie con galactooligosacáridos. Con este material se podía conseguir una liberación controlada del colorante selectivamente en células senescentes, debido a que estas sobreexpresan el enzima ß-galactosidasa que es capaz de hidrolizar los galactooligosacáridos.Agostini, A. (2013). Supramolecular and heterosupramolecar chemistry in controlled release and molecular recognition processes [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/29397TESI

    Design and synthesis of optical sensors for the detection of molecules with biological activity

    Get PDF
    A la present tesi doctoral, titulada “Disseny i síntesi de sensors òptics per a la detecció de molècules amb activitat biològica”, s’han utilitzat diferents conceptes de la química supramolecular per a preparar compostos capaços de senyalitzar macroscópicament la presència de molècules tòxiques o actives biològicament. Així, s’han preparat quimio-sensors i quimiodosímetres per a la detecció d’anions, sals, zwitterions i agents de guerra química tal i com agents nerviosos i agents sanguinis. Addicionalment, es descriu el disseny i la construcció d’un aparell electrònic per a la monitorització automàtica d’aquests compostos. La tesi té un capítol introductori on s'expliquen els conceptes bàsics de la química supramolecular i especialment, sensors moleculars i quimiodosímetres. El Capítol 2 descriu l’ús de derivats de calix[4]pirrol com a quimiosensors de tipus pinça per a la detecció de dianions de alfa,omega-dicarboxilats, i l’ús de calix[4]pirrols bloquetjats conformacionalment com a receptor per a anions sulfonat. El Capítol 3 descriu el disseny i síntesi d’ un quimio-sensor heteroditòpic per a la detecció i sensat de cations, anions, o parells iònics, així com espècies zwitteriòniques com aminoàcids. Aquest sensor heteroditòpic, que està basat a una estructura de BODIPY connectat a dos diferents receptors per cations i anions (una 18-azacorona-6 i un calix[4]pirrol respectivament) també és capaç de solubilitzar parells iònics i espècies zwitteriòniques en acetonitril. Addicionalment, aquest compost pot realitzar totes les operacions lògiques bàsiques quan s’utilitza K+ i F- com entrades, emetent fotons com a eixida. Al Capítol 4, es descriu una biblioteca de quimiodosímetres òptics per a la detecció selectiva d'agents nerviosos. La biblioteca té dos grups principals: indicadors cromogènics i indicadors fluorogènics. El primer grup està basat en derivats de triarilmetanol. L’ alcohol terciari d’ aquestos compostos reacciona amb els compostos organofosforats tòxics i després d’ una reacció de desfosforilació, l’ espècie catiònica resultant adquireix color mitjançant una deslocalització de la càrrega sobre els tres anells aromàtics. Per altra banda, elsindicadors fluoro-cromogènics estan basats en l'ús de fluoròfors de BODIPY o trans-estilbe com a unitats senyalitzadores i 2-(2-dimetilamino)feniletanol com a unitat sensora. Amb la presència d’agents nerviosos, aquests indicadors es fosforilen al residu d'etanol, que activa una ciclació intramolecular duta a terme pel grup dimetilamino. Aquesta ciclació canvia les propietats electròniques del sistema, canviant així el seu espectre d'absorció i emissió. Tots els indicadors d'aquesta biblioteca han demostrat la seua capacitat en la detecció de compostos organofosforats en dissolucions orgàniques, aquoses o a la fase gas. El Capítol 5 descriu la síntesi i avaluació de dos quimiodosímetres colorimètrics per a la detecció de l’agent sanguini HCN. Aquests indicadors estan basats en derivats altament colorejats de p-quinometà capaços de reaccionar amb l’anió CN- en una reacció d’ addició de Michael, produint un derivat de leucocianur no acolorit. Aquests quimiosensors operen en dissolució aquosa, amb límits de detecció entre 165 - 300 ppb. També s'han realitzat experiments de detecció a la fase gas mitjançant l'exposició dels indicadors a una atmosfera contaminada amb HCN (g), amb resultats positius. Amb aquest simple procediment s'han aconseguit límits de detecció de HCN (g) de 2 ppm. Finalment, al capítol 6 es descriu el disseny, construcció i avaluació d'un aparell electrònic per a la monitorització automàtica de l'estat òptic de quimio-sensors i quimiodosímetres. El dispositiu està pensat per a treballar com a sensor de gasos. L’aparell, basat en una placa d'Arduino, utilitza software i hardware de codi lliure. Un parell de sensors de color basats al xip TCS230 monitoritzen continuament el color (com a valors RGB) d’una referència i d’un indicador químic immobilitzat mentre que el gas passa sobre ell. La capacitat del prototip ha sigut demostrada a la detecció de HCN(g)
    corecore