180,067 research outputs found

    Soil and water bioengineering: practice and research needs for reconciling natural hazard control and ecological restoration

    Get PDF
    Soil and water bioengineering is a technology that encourages scientists and practitioners to combine their knowledge and skills in the management of ecosystems with a common goal to maximize benefits to both man and the natural environment. It involves techniques that use plants as living building materials, for: (i) natural hazard control (e.g., soil erosion, torrential floods and landslides) and (ii) ecological restoration or nature-based re-introduction of species on degraded lands, river embankments, and disturbed environments. For a bioengineering project to be successful, engineers are required to highlight all the potential benefits and ecosystem services by documenting the technical, ecological, economic and social values. The novel approaches used by bioengineers raise questions for researchers and necessitate innovation from practitioners to design bioengineering concepts and techniques. Our objective in this paper, therefore, is to highlight the practice and research needs in soil and water bioengineering for reconciling natural hazard control and ecological restoration. Firstly, we review the definition and development of bioengineering technology, while stressing issues concerning the design, implementation, and monitoring of bioengineering actions. Secondly, we highlight the need to reconcile natural hazard control and ecological restoration by posing novel practice and research questions

    'In the world, but not of it': Exploring the impacts of hearing loss stigma

    Get PDF
    This seminar was delivered on 21st September 2011 by Dr Kenneth Southall from the Institut de recherche Élisabeth-Bruyère, affiliated with University of Ottawa, Canada. The presentation was hosted at Brunel University as part of the Brunel Institute for Bioengineering Seminar Series. A video of the presentation can be viewed at the link below

    Bioengineering Lantibiotics for Therapeutic Success

    Get PDF
    peer-reviewedSeveral examples of highly modified antimicrobial peptides have been described. While many such peptides are non-ribosomally synthesized, ribosomally synthesized equivalents are being discovered with increased frequency. Of the latter group, the lantibiotics continue to attract most attention. In the present review, we discuss the implementation of in vivo and in vitro engineering systems to alter, and even enhance, the antimicrobial activity, antibacterial spectrum and physico-chemical properties, including heat stability, solubility, diffusion and protease resistance, of these compounds. Additionally, we discuss the potential applications of these lantibiotics for use as therapeutics.DF,CH,PC,RR are supported by the Irish Government under the National Development Plan, through a Science Foundation Ireland (SFI) Technology and Innovation Development Award (TIDA14/TIDA/2286) to DF, a SFI Investigator awards to CH and RR (10/IN.1/B3027),SFI-PIfunding(11/PI/1137) to PDC and the Alimentary Pharmabiotic Centre under Grant Number SFI/12/RC/2273

    Pupillometry, a bioengineering overview

    Get PDF
    The pupillary control system is examined using a microprocessor based integrative pupillometer. The real time software functions of the microprocessor include: data collection, stimulus generation and area to diameter conversion. Results of an analysis of linear and nonlinear phenomena are presented

    Proton Association Constants of His 37 in the Influenza-A M218–60 Dimer-of-Dimers

    Get PDF
    National Institute of Biomedical Imaging and Bioengineering (U.S.) (EB001960)National Institute of Biomedical Imaging and Bioengineering (U.S.) (EB002026)National Institute of Biomedical Imaging and Bioengineering (U.S.) (GM094648

    Crop Bioengineering: Enormous Potential for Catalyzing International Development

    Get PDF
    [Excerpt] Bioengineering provides unique and dramatic opportunities for crop improvement. It can be used to develop crop varieties that would otherwise be unavailable and can facilitate much faster and more precise ways of developing improved varieties. It can help to increase yields and reliability and thus reduce food costs for the consumer while helping to control input costs for farmers through reduced applications of herbicides, pesticides, and fertilizer. The extent to which this will be achieved depends on how effectively the global scientific community – including both the public and private sectors – can cooperate in harnessing the power of crop bioengineering and the allied scientific fields of genomics and bioinformatics for the poor and hungry of the world. This, in turn depends on the extent to which projects are demand-driven and holistic in approach, integrating all technical and non-technical factors relevant to the product development and commercialization/ delivery chain

    High Resolution Structural Characterization of Aβ₄₂ Amyloid Fibrils by Magic Angle Spinning NMR

    Get PDF
    National Institute of Biomedical Imaging and Bioengineering (U.S.) (EB-003151)National Institute of Biomedical Imaging and Bioengineering (U.S.) (EB-001960)National Institute of Biomedical Imaging and Bioengineering (U.S.) (EB-002026

    Biophotonics in Bioengineering

    No full text

    Some questions of space bioengineering

    Get PDF
    Zero-gravity offers selective effect on growth and metabolic activity unicellular organisms as well as unique opportunities in purification of organic compounds. These make it possible to consider the biosynthesis and recovery of certain metabolites economically feasible in space. Design, construction and operation of systems for the above mentioned purposes requires interdisciplinary actions within the scope of a new discipline: space bioengineering. The problems and perspectives of this discipline particularly in the application of bioreactor-recovery systems in space to manufacture metabolites of high economic and scientific value. Special attention is paid to pivotal factors such as various mass transport phenomena, contamination control, automatic control of optimum environment and synchronization of the operation of the biological (biosynthesis) and the physiochemical (recovery-purification) systems

    The Current Use of Stem Cells in Bladder Tissue Regeneration and Bioengineering.

    Get PDF
    Many pathological processes including neurogenic bladder and malignancy necessitate bladder reconstruction, which is currently performed using intestinal tissue. The use of intestinal tissue, however, subjects patients to metabolic abnormalities, bladder stones, and other long-term sequelae, raising the need for a source of safe and reliable bladder tissue. Advancements in stem cell biology have catapulted stem cells to the center of many current tissue regeneration and bioengineering strategies. This review presents the recent advancements in the use of stem cells in bladder tissue bioengineering
    corecore