248 research outputs found

    Quasi-Self-Powered Piezo-Floating-Gate Sensing Technology for Continuous Monitoring of Large-Scale Bridges

    Get PDF
    Developing a practical framework for long-term structural health monitoring (SHM) of large structures, such as a suspension bridge, poses several major challenges. The next generation of bridge SHM technology needs to continuously monitor conditions and issue early warnings prior to costly repair or catastrophic failures. Additionally, the technology has to interpret effects of rare, high-impact events like earthquakes or hurricanes. The development of this technology has become an even higher priority due to the fact that many of the world's bridges are reaching the end of their designed service lives. Current battery-powered wireless SHM methods use periodic sampling with relatively long sleep-cycles to increase a sensor's operational life. However, long sleep-cycles make the technology vulnerable to missing or misinterpreting the effect of a rare event. To address these practical issues, we present a novel quasi-self-powered sensing solution for long-term and cost-effective monitoring of large-scale bridges. The approach we propose combines our previously reported and validated self-powered Piezo-Floating-Gate (PFG) sensor in conjunction with an ultra-low-power, long-range wireless interface. The physics behind the PFG's operation enable it to continuously capture and store local, cumulative information regarding dynamic loading conditions of the bridge in non-volatile memory. Using extensive numerical and laboratory studies, we demonstrate the capabilities of the PFG sensor for predicting structural conditions. We then present a system level design that adapts PFG sensing for SHM in bridges. A challenging aspect of SHM in large-scale bridges is the need for long-range wireless interrogation, as many portions of the structure are not easily accessible for continual inspection and portions of the bridge cannot be frequently taken out-of-service. We show that by combining self-powered PFG sensors with a small battery and optimized long-range active wireless interface, we can realize a quasi-self-powered system that easily achieves a continuous operating lifespan in excess of 20 years. The efficiency and feasibility of the proposed method is verified in a case study of the Mackinac Bridge in Michigan, the longest suspension bridge across anchorages in the Western Hemisphere. Associated data from the deployment are discussed, in addition to limitations, challenges, and additional considerations for widespread field deployment of the proposed SHM framework

    Self-powered Time-Keeping and Time-of-Occurrence Sensing

    Get PDF
    Self-powered and passive Internet-of-Things (IoT) devices (e.g. RFID tags, financial assets, wireless sensors and surface-mount devices) have been widely deployed in our everyday and industrial applications. While diverse functionalities have been implemented in passive systems, the lack of a reference clock limits the design space of such devices used for applications such as time-stamping sensing, recording and dynamic authentication. Self-powered time-keeping in passive systems has been challenging because they do not have access to continuous power sources. While energy transducers can harvest power from ambient environment, the intermittent power cannot support continuous operation for reference clocks. The thesis of this dissertation is to implement self-powered time-keeping devices on standard CMOS processes. In this dissertation, a novel device that combines the physics of quantum tunneling and floating-gate (FG) structures is proposed for self-powered time-keeping in CMOS process. The proposed device is based on thermally assisted Fowler-Nordheim (FN) tunneling process across high-quality oxide layer to discharge the floating-gate node, therefore resulting in a time-dependent FG potential. The device was fully characterized in this dissertation, and it does not require external powering during runtime, making it feasible for passive devices and systems. Dynamic signature based on the synchronization and desynchronization behavior of the FN timer is proposed for authentication of IoT devices. The self-compensating physics ensure that when distributed timers are subjected to identical environment variances that are common-mode noise, they can maintain synchronization with respect to each other. On the contrary, different environment conditions will desynchronize the timers creating unique signatures. The signatures could be used to differentiate between products that belong to different supply-chains or products that were subjected to malicious tampering. SecureID type dynamic authentication protocols based on the signature generated by the FN timers are proposed and they are proven to be robust to most attacks. The protocols are further analyzed to be lightweight enough for passive devices whose computational sources are limited. The device could also be applied for self-powered sensing of time-of-occurrence. The prototype was verified by integrating the device with a self-powered mechanical sensor to sense and record time-of-occurrence of mechanical events. The system-on-chip design uses the timer output to modulate a linear injector to stamp the time information into the sensing results. Time-of-occurrence can be reconstructed by training the mathematical model and then applying that to the test data. The design was verified to have a high reconstruction accuracy

    Ultra conformable and multimodal tactile sensors based on organic field-effect transistors

    Get PDF
    Cognitive psychology is the branch of psychology related to all the processes by which sensory input is transformed, processed and used. Academic and industrial research has always invested time and resources to develop devices capable to simulate the behavior of the organs where the perceptions are located. In recent years, in fact, there have been numerous discoveries related to new materials, and new devices, capable of reproducing, in a reliable manner, the sensory behavior of humans. Particular interest in scientific research has been aimed at understanding and reproducing of man's tactile sensations. It is known that, through the receptors of the skin, it is possible to detect sensations such as pain, changes in pressure and/or temperature. The development of tactile sensor technology had a significant increase in the last years of 1970s, thanks to the important surveys of Stojiljkovic, Harmon and Lumelsky who presented the firsts prototype of sensors for artificial skin applications, and summarized the main characteristics and requirements of tactile sensors. Recently, organic electronics has been deeply investigated as technology for the fabrication of tactile sensors using biocompatible materials, which can be deposited and processed on ultra flexible and ultra conformable substrates. In general, the most attractive property of these materials is mainly related to their high mechanical flexibility, which is mandatory for artificial skin applications. The main object of this PhD research activity was the development and optimization of an innovative technology for the realization of physical sensors able to detect pressure and temperature variations, which can be applied in the field of biomedical engineering and biorobotics. By exploiting the particular characteristics of the employed materials, such as mechanical flexibility, the proposed sensors are very suitable to be integrated with flexible structures (for example plastics) as a pressure and temperature sensor, and therefore, ideal for the realization of an artificial skin like. In Chapter 1, the basics of humans somatosensory system will be introduced: after a brief description of tactile thermoreceptors, mechanoreceptors and nociceptors, a definition of electronic skin and its characteristics will be provided. In Chapter 2, a wide analysis of the state of the art will be reported. Several and different examples of tactile sensor (in inorganic and organic technology) will be presented, underlining advantages and disadvantages for each approach. In Chapter 3, the firsts experimental results, obtained in the first part of my PhD program, will be presented. All the steps of the fabrication process of the devices will be described, as well as the measurement setup used for the electrical characterization of the sensors. In Chapter 4, the sensor structure optimization will be presented. It will be demonstrated how the presented devices are able to sense simultaneously thermal and mechanical stimuli. Moreover, it will be demonstrated that, thanks to an alternative and innovative fabrication process, the sensors can be transferred directly on skin, thus proving the suitability of the proposed sensor architecture for tactile applications

    SMARTI - Sustainable Multi-functional Automated Resilient Transport Infrastructure

    Get PDF
    The world’s transport network has developed over thousands of years; emerging from the need of allowing more comfortable trips to roman soldiers to the modern smooth roads enabling modern vehicles to travel at high speed and to allow heavy airplanes to take off and land safely. However, in the last two decades the world is changing very fast in terms of population growth, mobility and business trades creating greater traffic volumes and demand for minimal disruption to users, but also challenges, such as climate change and more extreme weather events. At the same time, technology development to allow a more sustainable transport sector continue apace. It is within this environment and in close consultation with key stakeholders, that this consortium developed the vision to achieve the paradigm shift to Sustainable Multifunctional Automated and Resilient Transport Infrastructures. SMARTI ETN is a training-through-research programme that empowered Europe by forming a new generation of multi-disciplinary professionals able to conceive the future of transport infrastructures and this Special Issue is a collection of some of the scientific work carried out within this context. Enjoy the read

    Automatic splint to prevent self-harm in autistic and brain injured people

    Get PDF
    This dissertation is aimed at providing a less restrictive alternative to applying restrictive splints to people who display self-injurious behaviour often seen in people with severe autism or brain injuries. An electronic method of controlling an elbow jointed splint is explored, designed, built and tested. The final product, the Dynamic Splint Device (DSD) is a self-contained electronic joint that utilises an electromagnetic brake controlled by an Arduino microcontroller electronics board. Sensors measuring elbow joint rotational velocity, total fist acceleration and bending moments are used to predict potential impact forces. The device will reduce injury by applying a braking force to the joint when the predicted impact is greater than an adjustable set-point. The electronic ratchet developed as part of the braking system has allowed a sense of not being restrained, as the arm is not restricted from moving to a more open position. The ratchet has also increased the battery life of the DSD. Legally, restraints are required to be the least restrictive available. The DSD has the potential to revolutionise the care of people displaying Self Injurious Behaviour (SIB) by reducing the need for full restraint. It allows movement in a safe manner, restores civil liberties, and allows better therapy when compared to full restraint devices currently available on the market. Allowing health professionals and carers to build this device is integral to the design. Open source coding, 3D printable parts and off the shelf components allows anyone with a computer and a 3D printer to make the DSD, with the only limitation being that profit is not made

    Six Degree of Freedom Force/Torque Sensor

    Get PDF
    The use of robots and manipulators in many kind of applications, such as scientific, medical or industrial ones, requires efficient multi-component force sensing schemes to control the force exerted by the robot end-effector on a human or an object. A multiaxis force sensor can be used to measure the contact force as accurately as possible, and to feed it back to the command signal so that the robot can achieve the pre-specified contact force. As the commercial force sensors are complex and expensive, the goal of this work is to make a multiaxis force sensor that could rThis work describes the design, development and calibration of a complete six?degree-of-freedom force and torque sensor. Compared to commercial sensors, this design has the advantage of simplicity and low cost. The sensor was machined from aluminium, and sensed by an array of commercial low-cost strain gauges. As a sensor, it could be applied in multi-DOF industrial, scientific and medical robotic systems, for instance

    Theory, Design and Implementation of Energy-Efficient Biotelemetry using Ultrasound Imaging

    Get PDF
    This dissertation investigates the fundamental limits of energy dissipation in establishing a communication link with implantable medical devices using ultrasound imaging-based biotelemetry. Ultrasound imaging technology has undergone a revolution during the last decade due to two primary innovations: advances in ultrasonic transducers that can operate over a broad range of frequencies and progresses in high-speed, high-resolution analog-to-digital converters and signal processors. Existing clinical and FDA approved bench-top ultrasound systems cangenerate real-time high-resolution images at frame rates as high as 10000 frames per second. On the other end of the spectrum, portable and hand-held ultrasound systems can generate high-speed real-time scans, widely used for diagnostic imaging in non-clinical environments. This dissertation’s fundamental hypothesis is to leverage the massive data acquisition and computational bandwidth afforded on these devices to establish energy-efficient bio-telemetry links with multiple in-vivo implanted devices. In the first part of the dissertation, I investigate using a commercial off-the-shelf (COTS) diagnostic ultrasound reader to achieve reliable in-vivo wireless telemetry with millimeter-sized piezoelectric crystal transducers. I propose multi-access biotelemetry methods in which several of these crystals simultaneously transmit the data using conventional modulation and coding schemes. I validated the feasibility of in-vivo operation using two piezoelectric crystals tethered to the tricuspid valve and the skin’s surface in a live ovine model. I demonstrated data rates close to 800 Kbps while consuming microwatts of power even in the presence of respiratory and cardiac motion artifacts. In the second part of the dissertation, I investigate the feasibility of energy harvesting from cardiac valvular perturbations to self-power the wireless implantable device. In this study, I explored using piezoelectric sutures implanted in proximity to the valvular regions compared to the previous studies involving piezoelectric patches or encasings attached to the cardiac or aortic surface to exploit nonlinearity in the valvular dynamics and self-power the implanted device. My study shows that power harvested from different annular planes of the tricuspid valve could range from nano-watts to milli-watts. In the final part of this dissertation, I investigate beamforming in B-scan ultrasound imaging to further reduce the biotelemetry energy-budget. In this context, I will study variance-based informatics in which the signal representation takes a form of signal variance instead of the signal mean for encoding and decoding. Using a modeling study, I show that compared to the mean-based logic representation, the variance-based representation can theoretically achieve a superior performance trade-off (in terms of energy dissipation) when operating at fundamental limits imposed by thermal-noise. I will then discuss how to extend variance-based representation to higher signal dimensions. I show that when applying variance-based encoding/decoding to B-scan biotelemetry, the power-dissipation requirements can be reducedto 100 pW even while interrogating from depths greater than 10 cm in a water medium

    Piezotronic devices and integrated systems

    Get PDF
    Novel technology which can provide new solutions and enable augmented capabilities to CMOS based technology is highly desired. Piezotronic nanodevices and integrated systems exhibit potential in achieving these application goals. By combining laser interference lithography and low temperature hydrothermal method, an effective approach for ordered growth of vertically aligned ZnO NWs array with high-throughput and low-cost at wafer-scale has been developed, without using catalyst and with a superior control over orientation, location/density and morphology of as-synthesized ZnO NWs. Beyond the materials synthesis, by utilizing the gating effect produced by the piezopotential in a ZnO NW under externally applied deformation, strain-gated transistors (SGTs) and universal logic operations such as NAND, NOR, XOR gates have been demonstrated for performing piezotronic logic operations for the first time. In addition, the first piezoelectrically-modulated resistive switching device based on piezotronic ZnO NWs has also been presented, through which the write/read access of the memory cell is programmed via electromechanical modulation and the logic levels of the strain applied on the memory cell can be recorded and read out for the first time. Furthermore, the first and by far the largest 3D array integration of vertical NW piezotronic transistors circuitry as active pixel-addressable pressure-sensor matrix for tactile imaging has been demonstrated, paving innovative routes towards industrial-scale integration of NW piezotronic devices for sensing, micro/nano-systems and human-electronics interfacing. The presented concepts and results in this thesis exhibit the potential for implementing novel nanoelectromechanical devices and integrating with MEMS/NEMS technology to achieve augmented functionalities to state-of-the-art CMOS technology such as active interfacing between machines and human/ambient as well as micro/nano-systems capable of intelligent and self-sufficient multi-dimensional operations.Ph.D
    • …
    corecore