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This dissertation investigates the fundamental limits of energy dissipation in establishing

a communication link with implantable medical devices using ultrasound imaging-based

biotelemetry.

Ultrasound imaging technology has undergone a revolution during the last decade due to

two primary innovations: advances in ultrasonic transducers that can operate over a broad

range of frequencies and progresses in high-speed, high-resolution analog-to-digital converters

and signal processors. Existing clinical and FDA approved bench-top ultrasound systems can

generate real-time high-resolution images at frame rates as high as 10000 frames per second.

On the other end of the spectrum, portable and hand-held ultrasound systems can generate

high-speed real-time scans, widely used for diagnostic imaging in non-clinical environments.

This dissertation’s fundamental hypothesis is to leverage the massive data acquisition and
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computational bandwidth afforded on these devices to establish energy-efficient bio-telemetry

links with multiple in-vivo implanted devices.

In the first part of the dissertation, I investigate using a commercial off-the-shelf (COTS)

diagnostic ultrasound reader to achieve reliable in-vivo wireless telemetry with millimeter-

sized piezoelectric crystal transducers. I propose multi-access biotelemetry methods in which

several of these crystals simultaneously transmit the data using conventional modulation and

coding schemes. I validated the feasibility of in-vivo operation using two piezoelectric crystals

tethered to the tricuspid valve and the skin’s surface in a live ovine model. I demonstrated

data rates close to 800 Kbps while consuming microwatts of power even in the presence of

respiratory and cardiac motion artifacts.

In the second part of the dissertation, I investigate the feasibility of energy harvesting from

cardiac valvular perturbations to self-power the wireless implantable device. In this study, I

explored using piezoelectric sutures implanted in proximity to the valvular regions compared

to the previous studies involving piezoelectric patches or encasings attached to the cardiac or

aortic surface to exploit nonlinearity in the valvular dynamics and self-power the implanted

device. My study shows that power harvested from different annular planes of the tricuspid

valve could range from nano-watts to milli-watts.

In the final part of this dissertation, I investigate beamforming in B-scan ultrasound imaging

to further reduce the biotelemetry energy-budget. In this context, I will study variance-based

informatics in which the signal representation takes a form of signal variance instead of the

signal mean for encoding and decoding. Using a modeling study, I show that compared

to the mean-based logic representation, the variance-based representation can theoretically

achieve a superior performance trade-off (in terms of energy dissipation) when operating at

xvi



fundamental limits imposed by thermal-noise. I will then discuss how to extend variance-

based representation to higher signal dimensions. I show that when applying variance-based

encoding/decoding to B-scan biotelemetry, the power-dissipation requirements can be reduced

to 100 pW even while interrogating from depths greater than 10 cm in a water medium.
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Chapter 1

Introduction

Ultrasound imaging technology has undergone a revolution during the last decade due to

the availability of transducers that can operate over a broad range of frequencies and the

availability of high-speed, high-resolution analog-to-digital converters and digital signal

processors. Existing clinical and FDA approved bench-top ultrasound systems can generate

real-time high-resolution images at a rate of more than 7000 frames per second [2]. In literature,

ultrasound imaging systems with frame rates as high as 10000 frames per second [3], and

with very high-resolution [4] [5] has also been reported. On the other end of the spectrum,

portable and hand-held ultrasound systems like GE VScan, Siemens P10, Phillips Lumify,

and SignosRT (shown in Fig. 1.1) can also generate high-speed real-time scans and has been

used for diagnostic imaging in non-clinical environments. The large data acquisition and

computational bandwidth on these portable and bench-top ultrasound imaging systems could

be leveraged to establish bio-telemetry links that can be used to communicate with multiple

in-vivo implanted devices. Examples of implantable devices that require high-bandwidth

telemetry links are shown in Fig. 1.1, and their applications range from swallowable imaging

systems [6], neural implants [7], cochlear [1], retinal prosthesis devices [8], etc. The typical
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Figure 1.1: Different types of in-vivo devices that require high-speed bio-telemetry links
and the proposed approach where commercial ultrasound readers can be used to establish
in-vivo communications. Image source for different implant types: Cochlear implants, Neural
implants, Retinal prosthesis, Swallow-able Imaging systems, Cardiac implants, Insulin pumps,
Footdrop implants and Bone Healing monitors.

data-rates for these implants and their respective implantation depths are summarized in

Table 1.1.

In literature, radio-frequency (RF) based systems have been proposed for high-speed teleme-

try [10]. However, traditional wireless technologies (e.g., Wi-Fi, Bluetooth) cannot be scaled

to in-vivo applications. The biological tissue is majorly composed of water, which provides

more significant attenuation to RF electromagnetic waves. As a consequence, RF waves need

to be transmitted at higher power, which constraints the energy budgets at the implanted de-

vice. Also, their implantation depths and form-factors are constrained by medical compliance
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Table 1.1: Approximate implantation depth and telemetry rates for different implants [1]

Implant Expected Datarate Approximate Depth
Retinal Prosthesis 60 fps (2 Mbps) 2-5 cm

Swallow-able
Imaging Systems [9] 18 fps (1.2 Mbps) 7-12 cm

Neural Implant 288 Kbps 5-10 cm
Cochlear Implant 100 Kbps 2-5 cm

Cardiac Pacemakers 20 Kbps 2-5 cm
Insulin Pumps 20 Kbps 2-5 cm

Footdrop Implants 10− 20 Kbps 2-5 cm
Bone Healing Monitors 0.1− 1 Kbps 2-5 cm

Kbps/Mbps stands for Kilo/Mega bits per second.
fps stands for frames per second.

limits (local Joule heating). For example, an RF telemetry system reported in [11]- [12] was

shown to achieve data-rates of 120-450 Kbps for implantation depths less than 2cm.

On the other hand, Ultrasound based telemetry systems can penetrate deeper into biological

tissue while operating within the limits of medical compliance and without any side-effects

due to long-term exposure [13]. In [14], an ultrasonic telemetry system (form factor of 10

mm) was reported to achieve data-rates of 70-700 Kbps, however, in an ex-vivo environment.

Recently, [15] have demonstrated ultrasonic communication data rates of more than 20 Mbps

using orthogonal frequency-division multiplexing (OFDM) technique. However, the size of the

5 MHz transducer used in [15] is relatively large for in-vivo implantation. In [16] an ultrasonic

backscattering was used to achieve data-rates up to 500Kbps; however, the implantation

depths that were reported were less than a cm.

In this research, I investigate the use of commercial off-the-shelf (COTS) diagnostic ultrasound

readers to perform wireless telemetry with a millimeter-sized piezoelectric crystal transducer

and demonstrate its feasibility as a unique platform technology. I will present my analysis
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through a series of experimental and analytical modeling studies that address several challenges

concerning telemetry, energy harvesting, and signal detection.

1.1 Aims

Aims are summarized as follows:

Ultrasound Imaging-based Telemetry: I investigate the use of ultrasound imaging

systems to build and realize an efficient bio-telemetry system that can enable multi-access

with implanted devices located at depths ranging in centimeters. I also investigate its viability

using in-vivo studies and estimate the energetics required to power the telemetry front end in

the presence of motion artifacts.

Energy Harvesting Cardiac Valvular Perturbations: I investigate the feasibility of

harvesting energy from cardiac valvular perturbations for self-powering with a grand vision

of demonstrating tether free sonomicrometry sensors.

Variance based Logic: To bridge the gap between the available harvestable power and the

telemetry needs, I propose investigating variance-based logic (VBL) that can revisit funda-

mental limits and provide new insights for designing highly energy-efficient communication

and computing systems. In this context, I also explore its extensions to higher dimensions

and investigate how some of these results generalize for high dimensional VBL applicable to

several other applications.
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1.2 Structure

Primarily this dissertation investigates two paradigms of biotelemetry design: chapters 2-4

demonstrate the design and feasibility study on low-power implantable devices and ultrasound

imaging-based telemetry platform, while chapters 5-7 detail the study on using variance-based

representation schemes for realizing energy-efficient telemetry systems.

Chapter 2 presents a brief overview of ultrasound imaging and the principle of an imaging-

based telemetry system. I discuss the limits on the data-rates and communication strategies

for both single link and multi-access telemetry. Experimental results are presented for both

in-vitro and in-vivo characterization of ultrasound imaging based telemetry using chicken

tissue and a live ovine model as a target transmission medium.

Chapter 3 presents the piezoelectric suture model for harvesting energy from cardiac valvular

perturbations to self-power the wireless sensors. I describe experimental methods used in

gathering data on cardiac valve biomechanics from an ovine model. I provide analysis on

estimating harvestable power levels on different annular planes of the tricuspid valve and

present insights into sensors’ optimal surgical placement.

Chapter 4 presents the B-scan telemetry system’s design and implementation and provides

experimental results for characterizing the communication link with particular attention to

demonstrating sub-nanowatt ultrasonic biotelemetry. I present a case study on using an

unregulated power source for modulating the amplitude of the transmission pulse and provide

the robustness analysis in the methods used for B-scan telemetry.

Chapter 5 introduces the concept of variance-based logic (VBL) and describes the primary

CMOS-based VBL circuit’s topology. Using the essential VBL cells, I synthesize a digital
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state-machine and demonstrate the benefits of the proposed approach in system latency. I

summarize the chapter by providing details about designing a ring oscillator operating with

an unregulated power source.

Chapter 6 compares the traditional bi-stable logic representation with variance-based rep-

resentation and shows that the former can achieve an excellent trade-off when operating

at fundamental limits imposed by the thermal noise. Performance metrics in terms of bit-

error-rate (BER) and energy per bit (EbN0) are analyzed for both cases, and the results

were presented using monte-carlo simulations. I summarize the chapter by highlighting the

advantages of variance-based representation.

Chapter 7 presents the system model and geometrical realization of the high dimensional

variance-based (HDVBL) system and validates its performance using monte-carlo simulations.

The summary of this research work is presented in chapter 8. Key contributions of this

dissertation are highlighted, and suggestions for future work are also presented.
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Chapter 2

Ultrasound Imaging based Telemetry

This chapter investigates the use of commercially off the shelf ultrasound imagers for high-

speed bio-telemetry with millimeter-sized piezoelectric crystals. These crystals are used

to generate echoes that are larger in magnitude than the acoustic reflections generated at

the tissue-tissue interfaces. These echoes are captured using a standard ultrasound imager,

and the data is extracted using image deconvolution and deblurring algorithms. We also

demonstrate the use of this method for multi-access telemetry, where several piezoelectric

crystals simultaneously transmit the data using different modulation techniques. Using a

live ovine model, we demonstrate that an under-the-skin piezoelectric crystal can maintain

a high-speed telemetry link with another crystal implanted in the tricuspid valve in the

presence of respiratory and cardiac motion artifacts. The technology could therefore enable

real-time transmission of information from different monitoring devices implanted in-vivo.
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Figure 2.1: (a) Conventional M-scan imaging using a reader that generates interrogation
pings and then listens for the reflected echoes to construct a 2-D image. (b) A-scan plot
reconstructed at the reader where each of the received pulses indicates the nature and the
location of the tissue interface. (c) M-scan reconstructed image, generated by continuous
stitching of A-scans.

2.1 Ultrasound Imaging

The principle of M-scan ultrasound imaging is based on the phenomenon of pulse-echo, which

is illustrated in Fig. 2.1. In a conventional imaging mode, the interrogation pulse is reflected

from the tissue boundaries (labeled as ’1’, ’2’, and ’3’) due to a mismatch in their respective

acoustic impedance. After generating an interrogation pulses (labeled as ’a’ and ’b’), the

ultrasound reader listens for reflected pulses (labeled as ’1a-3a’ and ’1b-3b’). The time-of-

arrival of the pulse indicates the depth of the interface. The magnitude of received pulses

indicates the tissue boundary’s nature (for example, muscle-blood or fat-muscle interface). A

sample waveform of the received signal is shown in Fig. 2.1 (b) where the information has

been mapped onto a grey-scale pixel value resulting in a single frame of an M-scan image.

Information corresponding to multiple interrogation pulses are fused over time to generate a

composite M-scan, as shown in Fig. 2.1(c).
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Figure 2.2: (a) Example setting where an ultrasound reader Rx receives pulses generated
by an implanted crystal Tx to generate an M-scan image shown in (b). The contrast in
the image signifies the difference in the received signal levels corresponding to ’1’ and ’0’
transmissions. (c) Example settings where multiple crystals Tx1 and Tx2 are simultaneously
transmitting and decoded by the reader Rx to produce an M-scan image (d). The M-scan
image is post-processed to recover the transmitted data.

2.2 Ultrasound Imaging-based Telemetry

2.2.1 Operation Principle

In this chapter, we exploit the process of M-scan imaging to perform telemetry with implanted

ultrasonic transmitters. The principle relies on mimicking the reflected echoes using implanted

piezoelectric crystals (Tx, Tx1, or Tx2), as shown in Fig. 2.2 (a),(c). As long as the magnitude

of the pulses from the transmitter crystal is larger than the echoes generated in response to

the ultrasonic interrogation pulses, the M-scan reader should detect and decode the data

encoded in the transmitted pulses. Note that the emitted pulses’ frequency falls within

the bandwidth of the interrogator. A synthetic M-scan image generated using the received

pulses is illustrated in Fig. 2.2 (b). Similarly, when multiple crystals are emitting pulses

based on their respective data streams (as shown in Fig. 2.2 (c)), the reader generates a

composite M-scan image as shown in Fig. 2.2(d). The proposed M-scan imaging framework
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also supports telemetry with multiple crystals using multi-access techniques reported in

standard communication literature [17] like frequency division multi-access (FDMA) or code

division multi-access (CDMA). In this chapter, we have used on-off-keying (OOK) for data

modulation and Walsh-Hadamard codes for demonstrating multi-access communication. An

example of multi-access communication protocol is illustrated in Fig. 2.2 (d) for two crystals,

where each of the crystals uses its respective FDMA based orthogonal code (’00001111’

for crystal 1, ’00110011’ for crystal 2 ) to encode bit ’1’. When transmitting bit ’0’, both

the crystals do not emit any echoes. Note that the code’s size determines the number of

simultaneous telemetry links established with the M-scan reader and determines each crystal’s

maximum data-rate. Also, for the proposed telemetry method, the ultrasound reader’s

interrogation pulses do not play a significant role. However, in our previous work [18], we

demonstrated that the interrogation pulses could be used to power the telemetry interface

remotely. While this attribute is essential in realizing a fully integrated, remotely powered

wireless device, our research focuses only on investigating M-scan-based ultrasound telemetry

limits.

2.2.2 Limits of UIbT

From a theoretical point-of-view, there exist fundamental limits on the data-rates that can

be achieved using M-scan-based telemetry. One factor that will determine the theoretical

upper limit on data-rate is the maximum allowable heat dissipation in biological tissues.

In literature, this limit is reported to be 7.2 mW/mm2 [19] and any telemetry interface

has to ensure that its overall power-dissipation is below this limit. Another factor that will

determine the upper-limit is the channel point spread function’s nature, which will allow the

reader to differentiate between two independent echoes. Note that prior knowledge of the
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Table 2.1: Definition of parameters and approximate values for a chicken tissue

Parameter Definition Example
(Chicken Tissue)

f Frequency 1.3MHz
d Propagation Distance 3cm
Po Initial Pressure 1 (N/m2)
α Attenuation Parameter 0.086× 102

neper/(mMHz−β)
β Attenuation Coefficient 1.5

Table 2.2: Reflection coefficient at different tissue interfaces and estimated minimum power
that needs to be transmitted by the piezoelectric crystal

Tissue Interface η Pmin(dB)
Muscle-Blood 0.023 −7.485
Bone-Muscle 0.637 −0.903
Fat-Muscle 0.109 −4.433
Bone-Fat 0.697 −0.721

Skin-Blood 0.015 −8.347
Skin-Muscle 0.039 −6.489

channel response could apply channel equalization techniques and recover overlapping echoes.

While this will not be the main focus of this research, we will illustrate channel equalization

potential in section 2.5.

The minimum transmit power determines the lower-limit on the data-rate, which in turn

is determined by the following two factors: (a) ultrasonic attenuation characteristics of the

in-vivo medium; and by (b) the noise in the medium. The attenuation characteristics of

ultrasound in-vivo has been extensively studied [20,21] and is typically modeled in terms of
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pressure level (Pr) as a function of depth d and frequency f according to

Pr(f, d) = P0e
−αfβd (2.1)

where P0 is pressure level generated at the surface of the ultrasonic transmitter and α and β

are constants which are determined by transmission media. Thus, based on the equation 2.1,

the transmitter has to generate sufficient pressure to overcome channel attenuation such that

a minimum detectable pressure level is received at the receiver. Table 2.1 shows typical values

of the attenuation parameters obtained using a chicken tissue phantom which are consistent

earlier works [22]. A first-order calculation using these parameters illustrates that at 1.3 MHz

frequency, ultrasound attenuates only by 10.83 dB at a depth of 3cm. In comparison, a 1

MHz radio-frequency wave attenuates by more than 50 dB for the same depth [23].

The second factor which determines the minimum transmitted power is the level of channel

noise. For the proposed M-scan based telemetry, the primary source of noise is the echoes

(due to specular reflection and scattering of incident interrogation pulse) generated at the

tissue interface due to acoustic impedance discontinuities. Note that changes in pressure level

due to thermal vibrations will be negligible compared to the echoes’ magnitude and have not

been considered. Table 2.2 shows the reflection coefficient (η) corresponding to different

tissue interfaces and is determined by the ratio between the intensities of the reflected and

incident acoustic wave [20].

Combining equation 2.1 with the respective reflection coefficient of the tissue interface

located at depth d, the minimum transmitted power (Pmin) can be estimated (relative to the

interrogation power) as

Pmin(dB) = 2 log η − αfβd (2.2)
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Table 2.3: Specifications of the piezoelectric crystals.

Parameter Specification
Resonant Frequency 1.3MHz
Material PZT-5H Teflon coated
diameter 1.0mm
Crystal Capacitance 120− 250pF
Bandwidth ≈ 200KHz
Maximum Input Voltage around 1kV

Table 2.2 summarizes the minimum transmission power estimated using equation 2.2 for a

frequency of 1.3MHz and for a depth of 3cm. While these approximate values represent the

lower limit of power in dB, it only considers the specular reflections (not considering the

scattering and representing the lowest upper bound) for a single tissue interface. In reality, a

tissue can be more complex and may need much higher power to overcome echoes’ artifacts.

2.3 Results

2.3.1 Experimental Setup

Omnidirectional piezoelectric crystals were purchased from Sonomicrometrics Inc and used in

our experiments for implementing both the single element M-scan ultrasound reader (’Rx’)

and the implantable transmitters (’Tx 1-3’). The piezoelectric crystals shown in Fig. 2.3

(c) are made with PZT-5H ceramic material and are coated using Teflon to ensure that the

crystal is biocompatible and can be chronically implanted. The impedance characteristics

and the crystals’ frequency response were first measured using an Omics Bode 100 vector

network analyzer. Fig. 2.3 (d) shows the measured frequency response when the crystal is
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Figure 2.3: (a) Experimental setup used for verifying and characterizing the M-scan telemetry
link. (b) Setup showing the piezoelectric crystals implanted inside chicken tissue. (c)
Millimeter-scale piezoelectric crystal used for transmission and reception. (d) Measured
transmission response with respect to frequency for a piezoelectric crystal immersed in water.

inserted in a water medium and Table 2.3 summarizes the specifications of the piezoelectric

crystal. The ultrasound reader was implemented using a programmable GS200 echoscope

(from gaMPT, Germany), and the ultrasonic transmitter was implemented using function

generators (Tektronix DG4102, 100 MHz Arbitrary Waveform Generator), as shown in Fig. 2.3.

M-scans from the echoscope were acquired using a personal computer using GS-Echoview

software, an application provided by gaMPT mbH. Table 2.4 summarizes different measured

parameters like transmitted power, peak to peak voltage applied to the piezo crystals, and

settings of the echoscope used for the experiments reported in this chapter. In particular,

’depth’ in Table 2.4 refers to the distance of implanted crystals from the surface of the skin.

Product of ’Frame size’ (acquisition length) and ’sampling frequency’ determines the number

of rows in the scan reconstructed as illustrated in Fig. 2.1 (c). ’Frame rate’ refers to pulse

repetition frequency, which determines the number of columns generated per second in the

reconstructed image.
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Table 2.4: Experimental conditions used in measurements.

Parameter Definition
Transmitted Power 0− 18µW

Pulse amplitude (VPP ) 1-20 V
Pulse frequency 800 KHz

Shape Square Pulse
depth 3cm - 12cm
Rx Gain 15 dB

Frame size 10- 100 µsec
Speed of sound 1460m/sec

sampling frequency 10MHz − 100MHz
Frame rate 2.5 KHz

2.3.2 Methods

This chapter has verified the proposed M-scan based telemetry using chicken tissue and live

ovine model as two mediums for ultrasound propagation. The transmitted and received power

at each of the crystals implanted in-vivo were measured using a source and a load resistor,

respectively, as shown in Fig. 2.4 (a)-(b). PT and PR show the equations for the time average

measure of transmitted and received power at the crystal.

The acquisition of the M-scan data was performed using an echoscope, connected to the

ultrasound reader ’Rx,’ preset to low transmission gain and high receive gain, which ensures

the reduction of interference due to echoes generated during M-scan acquisition. Demodulating

and decoding the received data from the acquired ultrasound image (M-scan) were performed

using MATLAB. The post-processing involved rasterizing the 2D intensity matrix into a 1D

array, which is inverse of the 2D image formation process described in Fig. 2.1. A rectangular

window is then applied to the rasterized 1D array, and the windowed value is compared against

a threshold to determine reconstructed bit ’1’ or ’0’. For the results presented in this chapter,
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the maximum received power PR where the crystal is modeled as a combination of voltage
source driving an impedance ZT in series with a load resistor RL.
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each M-scan comprises a million pixels, and the window size varied from 10-20 pixels based

on the transmitter’s pulse-frequency. The reconstructed bit sequence was then compared

with the transmitted bit sequence to estimate the bit-error-rate (BER). In multi-access

communication, the reconstructed bits are compared with each of the encoded bit sequences,

and the information from each transmitter is recovered independently.

2.3.3 Link Characterization

The first set of experiments uses a phantom constructed using chicken breast tissue, as shown

in Fig. 2.3, where the transmitter crystals are labeled as ’Tx1-3,’ and the reader crystal

is labeled as ’Rx.’ While the transmitter crystal was implanted/sutured inside the tissue

at different depths, the reader crystal was mechanically stabilized by suturing the probe

underneath the top tissue layer. In this manner, any acoustic impedance artifacts due to

the crystal’s attachment to the tissue surface were alleviated. The configuration of the

function generators driving each of the transmission crystals is summarized in Table 2.4,
17
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Figure 2.7: Comparison of the M-scan’s, section of A-scan’s reconstructed in case of M-scan
telemetry considering (a) Water and (b) Chicken as the medium for ultrasound propagation.
(c) Sample waveform showing the encoded message in M-scans.

where the maximum transmission power has been measured using the sensing circuit shown

in Fig. 2.4(a). In the first experiment, the distance between the transmitter crystal and the

reader was varied. The attenuation in the tissue was measured (using the sensing circuit

shown in Fig. 2.4(b)) and is shown in Fig. 2.5 and confirms to the log-linear attenuation

model given by equation 2.1. Fig 2.6 shows the measured results where the received power

(to a 50 KΩ resistive load) is plotted against different levels of transmitted power for two

implantation depths (3 cm and 10 cm). The measured results show that for an upper-limit

(7.2 mW/mm2) on the power dissipation on the transmitter, the receiver can receive power

levels of 500 nW/mm2 and 1 µW/mm2 for respective implantation depths of 10 cm and 3 cm.

These results are aligned with the experiments that were previously reported in [18] where

we demonstrated that useful power could be harvested from interrogation pulses generated

from an ultrasound reader.
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Figure 2.8: M-scan image reconstructed by the reader, when multiple transmitters are trying
to communicate independent data stream which were encoded using Walsh-Hadamard codes,
when transmitted power is varied from 3µW to 30µW.
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Figure 2.9: Example of multi-access waveforms based on Walsh-Hadamard coding, where
Rx shows the received waveform as a result of simultaneous transmission from different
transmitters.
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The next set of experiments were designed to show the feasibility of ON-OFF keying using

standard M-scan based telemetry. Fig. 2.7(a) and (b) show the M-scan images and the

corresponding section of their A-scans for water and chicken tissue as the transmission

medium, respectively. The encoded data-stream shown in Fig. 2.7(c) where ’1’ and ’0’ are

encoded using ON-OFF keying. Each of the M-scan images clearly shows the modulation

effect due to ON-OFF keying. However, the A-scans show that the spread around the peak

is narrower in water medium as compared to the spreads when the medium is chicken tissue.

The overlap between the consecutive ’1’s arise due to channel effects inside the tissue and

also due to the pre-processing used for M-scan image generation by the echoscope. Note that

for post-processing, each of the A-scan frames in the M-scan image needs to be arranged

in a form of 1D array and any error in aligning these frames by the echoscope would lead

to an increase in bit error-rates. Also, the limited buffer size on the echoscope will affect

the quality of the M-scan which in-turn will affect the quality of the communication link.

Higher sampling rate at the reader leads to better quality of the M-scan and longer frame-size

leads to accommodating more number of receiver packets which improves the quality of

communication link. Hence the choice of frame-size and the sampling frequency, considering

a constant buffer size at the reader, becomes crucial in M-scan based telemetry. For all the

results presented in this chapter, the frame-size has been chosen to be 100 µsec and the

sampling frequency has been set to 10 MHz.

2.3.4 Multi-access

Multi-access telemetry is demonstrated using three transmitters communicating with the

ultrasound reader at the surface of the tissue. In the first set of multi-access experiments,

a 16-bit Walsh-Hadamard orthogonal code is used to encode the transmitted data, similar
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case of transmitting data (a) independently and (b) pairwise. (c),(d) Shows the spectrograms
retrieved by the reader for the two FDMA transmissions shown in (a), (b) respectively.

to that of a spread-spectrum based communication system. This approach is similar to the

previously reported methods [14, 24], where a combination of pulse position modulation and

pseudo-random codes of variable length are used to provide multi-access using ultrasound.

We used a fixed length for this work, unique 16 bit codes to represent ’0’ and ’1’ at each of the

transmitters. As shown in Fig. 2.9, the received data can be demodulated by correlating the

received signal with the known set of code bits. This method not only gives us information

about the transmitted data but can also be used to synchronize the start of a data frame. A

sample M-scan image is shown in Fig. 2.8 for the condition when all the transmitters are

simultaneously transmitting and their respective transmission power is reduced from 30µW to

3µW. The M-scan image is then post-processed and demodulated using the orthogonal codes

to recover the bitstreams corresponding to each transmitter. The cumulative system BER for

a crystal implantation depth of 3 cm is shown in Fig. 2.10. Like any multi-access approach,
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the system BER decreases with the increase in the transmitted power. The lower-limit of

detection is determined by the quantization noise (finite resolution) of the M-scan reader.

In the next set of experiments, the transmitters are programmed to implement a multi-access

scheme similar to frequency division multiple access (FDMA). The equivalent carrier frequency

in FDMA was implemented using a periodic train of ultrasonic pulses at a frequency of

800 kHz. Each of the transmitters then used a periodic signal (at frequencies 20 kHz, 30

kHz, and 50 kHz) to modulate the carrier frequency. For this experiment, the Fig. 2.11

shows the spectrum obtained after post-processing the M-scan images for conditions where

only one of the crystals was transmitting. The measured results clearly show spectral peaks

at frequencies at 800±20 kHz, 800±30 kHz, and 800±50 kHz, each corresponding to the

transmission frequencies for the different crystals. Fig. 2.11(c)-(d) show the spectrogram

plots for an FDMA based transmission corresponding to two cases: (a) when only one of the

crystals is transmitting in sequence (Tx1, Tx2, and Tx3); and (b) when all the crystals are

simultaneously transmitting. In both Figures 2.11(c)-(d), the presence of the carrier signal

can be discerned by the dark line at the center of the spectrogram. For each transmitter,

the bit ’1’ is encoded by an increase in energy in the frequency band allocated to the

transmitter, as shown in Fig. 2.11(c)-(d). For the multi-access transmission, where two of the

crystals are simultaneously transmitting, the respective bits can be decoded by independently

measuring the energy present in the frequency band allocated to the crystal. This experiment

demonstrates the use of FDMA based multi-access communications using M-scan telemetry.

Even though all the experiments presented here are based on a data-rate of 800 Kbps, we

have verified communication rates up to 1.3 Mbps. In the case of multi-access communication,

we have verified combined data-rates up to 2.4 Mbps. Note that FDMA encoding constitutes

a particular case of spread-spectrum communication, and hence its BER performance will be

similar to that of the results shown in Fig. 2.12.
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Figure 2.13: Experimental biotelemetry setup using an adult sheep model: (a) illustration
showing piezoelectric crystals implanted in the tricuspid valve and sutured underneath the
skin; (b) pictures taken during the surgery and crystal implantation (i)-(ii) and after surgery
when the chest cavity has been closed (iii).

2.4 In-vivo Studies

In the final set of experiments, the proposed M-scan telemetry was verified in a live ovine

model. The objective was to verify that a reliable communication link can be established

when the piezoelectric crystal is implanted in the tricuspid valve, as illustrated in Fig. 2.13(a),

and is continuously subjected to motion artifacts (movement of the valve in this specific case).

The surgical procedure for implanting the crystal was performed on an adult male sheep in a

fully equipped and accredited animal facility at West Michigan Regional Laboratory, which

is a part of the Spectrum Health Delivery System.

2.4.1 Ovine Model Preparation

The animal was studied in an acute, open-chest fashion to facilitate validation of the proposed

telemetry technique. Briefly, the animal was sedated, intubated, and put under general
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Figure 2.14: M-scan image corresponding to the ovine experiment where the crystal com-
municates (using a frequency modulation scheme) with the crystal located under-the-skin
crystal and when the transmitted power is varied from 2 µW to 12 µW.

anesthesia; a right thoracotomy was performed as surgical access to the heart. After full

heparinization, cardiopulmonary bypass was established via the right carotid artery and the

right internal jugular vein. While on cardiopulmonary bypass and with the heart beating,

both cava was snared, and the right atrium was opened to expose the tricuspid valve. A

piezoelectric crystal used for telemetry was sewn on the tricuspid annulus, and another

reader crystal was sutured underneath the skin as illustrated in Fig. 2.13 (a). Subsequently,

the right atrium was closed, and the animal was weaned from cardiopulmonary bypass and

stable hemodynamics achieved. Fig. 2.13 (b) (i) shows the opened chest cavity with the

exposed heart and the cables associated with the piezoelectric crystal sewn on the tricuspid

annulus. Fig. 2.13 (b) (iii) shows the closed chest cavity post-surgery with crystal connectors

(data acquisition ports) located on the surface of the skin. The reader crystal was sutured

underneath the skin’s surface and the approximate distance to the implanted crystal is about

10 cm.
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Figure 2.15: Measured bit error rate, for the data shown in Fig. 2.14, as the transmitted
power is varied form 2 to 12 µ W.

2.4.2 Experimental Results

Fig. 2.14 shows the M-scan retrieved by the reader when transmit power is varied from 0 to

12 µW for data rates of 1 Mbps and for a data sequence shown in Fig. 2.7 (c). The recorded

M-scan images were used to reconstruct the data-stream and generate BER plots as shown

in Fig. 2.15. As expected, the measured results show a monotonic decrease in the error rates

with the increase in the transmission power. More importantly, BER rates of 10−2 can be

achieved at power dissipation levels of only 11µW which is well within the compliance limits.

2.5 Discussion

Given that the maximum energy dissipated at data-rates of more than 1 Mbps was demon-

strated to be well below the compliance limits, there is still room to push telemetry limits

using M-scan imaging. The high-frequency piezoelectric crystal could support higher data-

rates; however, the attenuation in the tissue will also increase. In this regard, an ultrasound
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Figure 2.16: (a) An A-scan measured by the reader illustrating the possible improvements
that can be achieved using channel equalization as highlighted by the transition region shown
in (b) where consecutive transmissions alias with each other.

reader with a sufficient receive gain and low noise-factor could alleviate the effects due to

attenuation. Another direction to increase the telemetry rate is by using channel equalization

techniques [25] to compensate for overlap between neighboring transmission bits and also to

compensate for effects due to multipath. The effect due to attenuation channel can be seen in

Fig. 2.16, where the bits ’1’ are aliased when transmitted in sequence as compared to the case

when a sequence of ’0’s are interspersed in between. Like conventional channel equalization

methods, a known preamble sequence would estimate the instantaneous channel impulse re-

sponse. This would then be used to demodulate the data bits. Note that in M-scan telemetry,

the data (multi-access or single) is received as frames of images which can be post-processed

using image equalization techniques (similar to channel equalization). Another possible

solution to improve the data-rates is to reduce the echoes generated due to interrogation

pulses which can be achieved by lowering the transmit power at the Ultrasound reader and

increasing the receiver gain to capture a higher resolution ultrasound image of the transmit

signal. In terms of BER performance, like any multi-access communication technique, the
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error-rates will increase compared to a point-to-point communication link [26]. However, as

long as the modulation and coding basis functions are chosen to be orthogonal, the error-rates

for different multi-access schemes are approximately the same. The high-channel capacity of

the M-scan or B-scan telemetry link could be exploited in alternate ways. For instance, using

forward error-correcting (FEC) techniques [27] one can establish reliable telemetry links with

implants that are either located further away from the ultrasound imager or with devices

implanted inside material with low ultrasonic penetration - for example, implants in tissue

surrounded by bone [28]. In such cases, the coding-gain is used to compensate for the signal

attenuation, and the entire M-scan image could be treated as a single block-code.

2.6 Summary

This chapter demonstrates that a standard ultrasound reader can perform multi-access

telemetry with devices implanted inside the body. Compared to an RF-based telemetry

system, ultrasound-based telemetry can penetrate deeper into biological tissue. A millimeter-

scale piezoelectric crystal was shown to be capable of high-speed ultrasonic communication

links. Even at data rates close to 1 Mbps and implantation depths greater than 10 cm, the

BER is estimated to be 10−2 which makes this method suitable for most in-vivo sensing

applications [29]. Measured power dissipation on sonomicrometry devices was shown to

be well below the tissue heating limits, which implies that they could be powered using

implanted energy sources or could be powered remotely. In [30] we showed that up to a

few microwatts of energy can be harvested from the interrogation pulses generated by a

standard ultrasonic reader. In the future, our goal will be to use the piezoelectric crystal to

harvest energy from the interrogation pulses to energize the sensing and telemetry functions.
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To summarize, this telemetry technique generates an M-scan containing the transmitted

information and saves it as a bitmap image, and later can be demodulated using appropriate

image processing algorithms. The use of COTS and medically compliant ultrasound readers

for in-vivo telemetry will obviate the need to design dedicated ultrasound decoders. They

would simplify the adoption of technology by practicing clinicians. Examples of such low-data-

rate devices where the FEC technique could be applied include health-monitoring sensors for

hip or knee-implants [28].
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Chapter 3

Energy Harvesting Cardiac Valvular

Perturbations

This chapter investigates the feasibility of harvesting energy from cardiac valvular pertur-

bations to self-power a wireless sonomicrometry sensor. Compared to the previous studies

involving piezoelectric patches or encasings attached to the cardiac or aortic surface, the

proposed study explores the use of piezoelectric sutures implanted in proximity to the valvu-

lar regions, where non-linear valvular perturbations could be exploited for self-powering.

Using in-vivo studies on ovine animal model, the magnitude of valvular perturbations are

first measured using an array of piezoelectric crystals implanted around the tricuspid valve.

These measurements were then used to estimate the levels of electrical energy that could be

harvested using a simplified piezoelectric suture model. These results were re-validated across

seven different animals, before and after valvular regurgitation was induced. In this chapter

we show that power harvested from different annular planes of the tricuspid valve (before and

after regurgitation) could range from nano-watts to milli-watts, with the maximum power

harvested from the leaflet plane. We believe that these results could be useful for determining
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optimal surgical placement of wireless and self-powered sonomicrometry sensor, which in turn

could be used for investigating the pathophysiology of ischemic regurgitation (IR).

3.1 Introduction

A cardiac (tricuspid or mitral) valve is a complex structure with a dynamic physiology

that relies on an intricate inter-play between its individual components, which include the

ventricles, papillary muscles, the annulus and the atrium. Failure in any one or all of these

components, regardless of cause, can lead to significant mitral regurgitation (MR) and an

inability to sustain normal cardiac performance. Specifically, ischemic mitral regurgitation

(IMR) presents a vexing clinical problem where even modest geometric perturbations of the

valvular and sub-valvular apparatus could result in significant insufficiency [31]. Unfortunately,

the pathophysiology of IMR is not well understood, and studies have suggested that the

underlying cause lies in the annulus and the sub-valvular apparatus, which need to be precisely

tracked. However, tracking these 3D geometric perturbations presents a challenge for existing

clinical imaging modalities like echocardiography or magnetic resonance imaging [32], hence

requiring sensors (for example, piezoelectric crystals) to be implanted in proximity to the

valvular apparatus, as shown in Fig. 3.1 (a). Current state-of-the-art sonomicrometry

techniques [33] requires hard-wiring sensors to an external data acquisition and a power

source which requires the animal to be intubated under general anesthesia. This prevents

monitoring of the precise three-dimensional changes in the mitral valvular complex during

the evolution of IMR. For chronic and long-term monitoring, these sensors are desired to be

wireless (untethered) and preferably self-powered by the cardiac activity, as shown in Fig. 3.1

(b).
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Figure 3.1: Vision of the proposed research for chronic monitoring of valvular dynamics and
(a) overcoming the limitations of existing hard-wired sensing technology. (b) An array of
wireless millimeter-scale self-powered implants sutured on the valve can be interrogated using
a commercial diagnostic ultrasound scanner. (c) Anatomy of Heart and existing techniques
for harvesting heart dynamics, (d) PVDF tube wraps for extracting energy from the outer
annulus of the aorta, (e) PZT ribbons for harvesting from the surface of the heart which can
power pacemakers (f) Proposed harvesting method to extract energy directly on the valve.
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Previous approaches of self-powering using cardiac activity have resulted in flexible piezoelec-

tric transducers for harvesting energy from the cardiac surfaces [34–37], two special cases

were shown in Fig. 3.1(d)-(e). In particular, [34, 35] proposed a flexible PZT transducer

placed on the surface of the swine heart and was shown to harvest enough energy to power

implantable devices like pacemakers. In [36], a cylindrical PVDF transducer is placed around

the ascending aorta as was demonstrated for biomechanical energy harvesting. Unfortunately,

these centimeter-scale surface transducers would require explicit wiring to the sensors im-

planted in proximity to the cardiac valve, which could lead to surgical complications and

mechanically impede the valve’s dynamics. In this chapter, we investigate the feasibility of

using piezoelectric sutures, which are used in tethering piezoelectric crystals to the valve’s

surface for harvesting energy. The key concept here is to exploit strong valvular perturbations

to excite non-linear modes in the piezoelectric suture. These non-linear or broadband modes

could then be used to boost a piezoelectric transducer’s energy harvesting capability, as have

been previously reported in literature [38–40].

Our main objective is to estimate the amount of electrical power that can be locally harvested

(using a model of piezoelectric suture) from non-linear geometric perturbations of different

annular regions of a cardiac valve. The study is based on the following three results that

have been reported in our previous works: (a) Using implanted piezoelectric crystals (as

shown in Fig. 3.1(a)) it is possible to reliably measure subtle geometric perturbations of

the mitral-valve in real-time [33,41]; (b) The implantation of the crystals in the proximity

of the valve does not affect the valvular dynamics [42–44]; and (c) An FDA compliant

ultrasound scanner can be used to image the ultrasonic pings simultaneously generated by

the implanted piezoelectric crystals and electrical power consumed by the crystals is less than

a few microwatts [45]. The results of the feasibility study reported in this chapter would

therefore facilitate the development, optimization, and surgical placement of an array of
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Figure 3.2: Geometric placement of sonomicrometry crystals and anatomy of tricuspid valve
where crystals labeled (1-5), (6-11), (12-14), (15-17) were located around the epicardium,
tricuspid annulus, tricuspid leaflet edges and papilliary muscle tips of the right ventricle
respectively.

self-powered sonomicrometry sensors that can be used for real-time, wireless, and long-term

tracking of valvular structures.

3.2 Experimental Methods

Sonomicrometry based measurement involves tracking the distances between the different

spatial locations marked using ultrasound crystals, which are millimeter-scale implants and

weigh less than 20 milligrams. For instance, Fig. 3.1 (a) shows a typical placement of the

crystals around the tricuspid valve region [46]. Each of these crystals sequentially transmits

an ultrasonic pulse, which is then received by the other crystals. The time-of-delay between

the transmitted and received pulses is then used to estimate the respective distances between

the crystals and the perturbation, and the valve dynamics. In this chapter, we have used the
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Figure 3.3: (a) 3D reconstruction of the valve using the raw data acquired using the
sonomicrometry equipment at different instances showing the crystals’ relative movement.
(b)- (e) shows the variations of the area enclosed by the polygon formed by the crystals in
each plane, respectively. (f) - (h) shows the pressure values LVP RVP and CVP, respectively,
and (i) shows the processed ECG data, all collected simultaneously. The peaks are marked
manually, indicating the duration of the cardiac cycle.
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sonomicrometry preparation in live ovine models to estimate the magnitude of mechanical

power that can be harvested using local valvular perturbations.

3.2.1 Ovine model preparation

The annular planes around the tricuspid valve are shown in Fig. 3.3, which also shows the

placement of the sonomicrometry crystals (marked 1-17) [46]. The time-of-delay between the

transmitted and received sonomicrometry pulses are then used to estimate the respective

distances between the crystals and the relative mechanical strain at the marked locations.

In-vivo experiments were performed on seven adult male sheep in a fully equipped and

accredited animal facility at West Michigan Regional Laboratory, a part of the Spectrum

Health Delivery System. The clinically pertinent surgical procedures followed the protocols

described in the published literature supports the ovine model as the preferred animal model

of human mitral valve pathophysiology.

Once the animals were sedated, intubated, and under general anesthesia, a left thoracotomy

was carried out in a sterile fashion to expose the heart. After full heparinization, cardiopul-

monary bypass was established, and the heart was subsequently arrested with standard

crystalloid cardioplegic solution. Under cardiac standstill, the tricuspid valve was exposed

through the right atrial appendage. Two sonomicrometry crystals were placed on the more

dynamic posterior mitral annulus approximately 2 cm apart. Wire connections of the so-

nomicrometry crystals are connected to an outside data acquisition source(from SonoMetrics)

through the open thoracotomy. The animals are subsequently weaned from cardiopulmonary

bypass and stable hemodynamics achieved. Various physiologic conditions are introduced:

1) increased heart rate (30% above baseline) and contractility with epinephrine infusion 2)
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blood pressure increase (50% above baseline) with norepinephrine infusion 3) bradycardia

(heart rate below 60) with esmolol infusion. Simultaneous data acquisition from crystals was

performed before and during each intervention with at least a 5 minute stabilization period

between interventions.

3.2.2 Experimental Setup

3.2.3 Data Analysis

The sutured crystals on the tricuspid valve were clustered into four groups based on their

location. As shown in Fig. 3.3, the crystals 6-11 were placed on the tricuspid annulus, 12-14

were placed on the edges of the leaflets, 15-17 were placed on the tips of the papillary muscles,

while crystals 1-5 were sutured on the epicardium of the right ventricle. The raw data from

the SonoMetrics equipment gave us the recorded traces for every single crystal working both

as a receiver and a transmitter. The data was recorded using 17 crystals, which corresponds

to 289 raw traces for every run (around 130 Hz). The data were initially processed using

the software Sonosoft, provided by the manufacturer. The 3D coordinates of the crystals

at each time instant were computed, assuming the location of crystal 5 as the origin. Post

simulations were carried in MATLAB using a custom data analysis software.

Fig. 3.4(a) shows an experimentally determined three-dimensional map of the annular regions

of an ovine tricuspid valve. X, Y, and Z refer to the three coordinates of the crystals measured

in millimeters (mm). Each of the crystals labeled 12-14 in Fig.3.4(a) track the relative

size of the leaflet plane during each opening and the closing of the valve. Other crystals

in Fig. 3.4(a) are used for tracking auxiliary regions (annular edges and papillary muscle
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Figure 3.4: (a) Sonomicrometry crystal and (b) mechanism for harvesting energy either by
replacing the suture loops or by using a piezoelectric suture to attach the crystal to the valve.
(c) Suture model and parameters used in the analysis. (d) Cross-section of a valve assuming
circular contour and sutured crystals tied to the boundary. At the bottom shows the model
a multi-loop piezoelectric suture which reduces the effective local strain level dδ by a loop
factor N .

tips) in the proximity of the valve. In our previous studies [46] we have shown that the

sonomicrometry data could also be used for estimating changes in clinically relevant valvular

parameters, for example, the changes in subvalvular distances and the annular area, which

could be useful for clinical diagnostic purposes. To validate the data obtained using our

experimental setup, we first compute a simple geometric area to verify the data with the

well-accepted ECG and pressure recordings, which were also collected simultaneously. Fig. 3.4

(b)-(e) show the estimated change in the planar area corresponding to different tricuspid

valvular regions based on the raw data collected from an ovine model (LA, AA, and PA refers

to the area computed in leaflet plane, annular plane and papillary muscle plane respectively).

Fig. 3.4 (f)-(h) show the plots for left-ventricular pressure (LVP), right-atrial pressure (RVP)

and central venous pressure (CVP) for the same duration. Also Fig. 3.4 (i) shows the filtered

ECG data. The raw data of ECG collected using an ADC is processed by a Savitzky-Golay

least-square polynomial filter [47] to extract the epochs which indicate the cardiac cycle. The
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Figure 3.5: (a) Average velocity profile at each cross section which is obtained by analyzing the
data recordings from seven ovine models (black indicating the maximum and red corresponding
to zero velocity). (b)-(i) Estimated change in radius, velocity, current and power on the
leaflet edges based on the data collected before and after inducing tricuspid-regurgitation
(TR).

results validate the accuracy and the potential of SM measurements in studying the valve

dynamics.

The measured geometric data was consistent with published reports from other groups, [48,

49] solidifying the reliability and validity of wired sonomicrometry technology. Another

observation that can be inferred from the wired sonomicrometry experiments is that the rate

of change in mechanical strain (change in dimension normalized by the original dimension)

due to valvular dynamics is in the order of 0.5 ε/s. This is also consistent with strain

and strain-rate measurements obtained using cardiac ultrasound [50]. This magnitude of

strain-variations could potentially be exploited to harvest microwatts of energy using a

millimeter-scale piezoelectric transducer.
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3.2.4 Energy Harvesting Model

Our modeling study is based on two techniques for integrating piezoelectric transducers into

the sonomicrometry crystal, as shown in Fig. 3.5(a). Either the crystals could be tethered

directly to the valve annulus through a piezoelectric suture, or the crystal could be first

integrated by a piezoelectric suture loop, which could then be tethered to the valve using

a standard surgical suture, as shown in Fig. 3.5 (b). Connecting piezoelectric loops to the

crystal could be the easiest way for designing an integrated implant, but it might be less

efficient in energy harvesting because of its low mechanical coupling (contact) to the tissue.

Whereas using a piezoelectric suture could provide good mechanical coupling with the tissue,

however, fabricating a flexible suture might present a challenge. In our estimation study, we

abstract these two possible configurations while noting that future research would be needed

to choose between the two options.

For our energy estimation model, we approximated the shape of the valve to be circular, with

each crystal located along the perimeter of the circle, as illustrated in Fig. 3.5(d). Ideally,

suture can be assumed as a helical loop with a limited number of turns N . However, in our

analysis, we approximated the shape to a rectangular strip with a thickness t and cross-section

area A. Note that the use of a helical loop with N turns (as shown in Fig. 3.5(d), effectively

reduces the local strain level by N and ensures that the piezoelectric suture can operate

within the material fracture compliance limits. We model the radius of the circular contour as

a function of time and thus, it can be considered r = r0 + ∆r(t) where r0 is the mean radius

during a cardiac cycle. First, a normal vector to the plane passing through the clustered set

is estimated based on the minimum mean squared error (MMSE). These coordinates were

then rotated and translated so that the crystals were located on the XY plane with the center

at the origin. The radius r of the circle passing through the points is then estimated based
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on the MMSE. The rate of change in radius v(t) at time instant t at each cross-sectional

plane is estimated using a first order approximation as

v(t) = d

dt
(r(t))

v(n) = r(n)− r(n− 1)
∆t (3.1)

where the radius r(n) is estimated for every cycle and the sampling time-interval ∆t is chosen

to be around 75 ms. The velocity profile for each cross-sectional plane is shown in Fig. 3.6

(a), which is the average value across the data recorded from seven ovine models. Although

the direction of the strain in the suture would be along φ, as shown in Fig. 3.5 (d), in our

current analysis, we consider v(t) to be the estimate of the strain-rate of the suture since our

objective is to estimate the maximum power levels.

Assuming the two electrodes of the piezo are electrically neutral, the total charge (Qtot)

generated on each side of the electrode due to deformation is given by,

Qtot =
∫
D3dA (3.2)

where, D3 is the electrical displacement along the polarization direction.

D3 is determined by the amount of stress (T1) and the electric field generated across the

electrodes and is given by,

D3 = −d31T1 + ε33E3

= −d31Y11η1 + ε33
V3

t3
(3.3)
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Table 3.1: Piezoelectric properties and parameters used in the suture model.

Parameter Symbol Value (PVDF) Value (PZT)

Strain coefficient d31 (m/V) 23× 10−12 110× 10−12

Dielectric constant ε33 (F/m) 11 ×10−11 198 ×10−11

Young’s modulus Y11 (N/m2 ) 3 ×109 6 ×1010

Transducer thickness t3 10 µm 10 µm

Electrodes area A 10 mm2 10 mm2

Load resistance RL 60 MΩ 60 MΩ

Equation. 3.3 is the general constitutive equation for the piezoelectric materials, where the

parameters of the material are summarized in Table 3.1.

Defining the strain to be the ratio between relative change in radius(∆r = r − r0) and initial

radius (r0), the rate of change in charge is given by,

Qtot = −d31Y11A

r
∆r + ε33

A

t3
V3

dQtot

dt
= −d31Y11A

r

dr

dt
+ ε33

A

t3

dV3

dt
= Itot. (3.4)

and A is the area of suture strip. Based on the equivalent circuit model of the piezoelectric

transducer as shown in Fig. 3.4 (c) the voltage (V3) and current Itot flowing through the load

resistor is given by,

dV3

dt
+ V3

RCp
− d31Y11A

Cpr

dr

dt
= 0

dV3(t)
dt

+ V3(t)
RCp

− d31Y11A

Cp

v(t)
r(t) = 0 (3.5)
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power, with respect to time. The power levels change rapidly with crystals located at different
locations harvesting maximum power at different time-instants.

where Cp = ε33A
t3

is the intrinsic capacitance as shown in Fig. 3.4 (c). Note that this equation

is consistent with the earlier reported works [34]. The differential equation can be discretized

for simulation as

V3(n+ 1) = V3(n)−∆t× (V3(n)
RCp

− d31Y11A

Cp

v(n)
r(n) ) (3.6)

and the instantaneous power (P) across a resistor load of R can be estimated as

P (n) = V3(n)2

R
(3.7)

It can be seen that the voltage generated across the transducer is a function of the history

of the rate of change in strain, as shown in equation. 3.6, which is directly proportional

to instantaneous rate (v(t)) and inversely proportional to radius (r(t)). Table. 3.1 shows
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Table 3.2: Maximum and average estimated power that can be harvested at different annular
planes, under different conditions using PZT

Condition; piezo material
pre-TR; PZT post-TR; PZT

Max. Power Avg. Power Max. Power Avg. Power

Annular plane
46 µ W 6.5 µW 30.3 µW 3.8 µW

(6-11)

Leaflet plane
21 mW 2 mW 5 mW 0.6 mW

(12-14)

Papillary Muscle

plane 0.14 mW 22.1 µW 0.1 mW 15.4 µW

(15-17)

Reference plane
0.23 mW 27.8 µW 0.1 mW 17.2 µW

(1-4)

typical values of a piezo material which were reported in literature [51] and used here in our

simulations and analysis.

3.3 Results

Based on the radius estimation procedure, different approximations of the cross-sectional

area were made, and the rate of change in the radius was estimated using the equation 3.1.

Fig. 3.6 (b),(c) shows the variations in the change in radius at the leaflet plane with respect to

time for a particular experiment case before and after inducing tricuspid-regurgitation (TR),

respectively. Fig. 3.6 (d),(e) shows the instantaneous velocity values for either cases based on

the method mentioned in section 3.2.4. The power that can be harvested from the suture is
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Table 3.3: Maximum and average estimated power that can be harvested at different annular
planes, under different conditions using PVDF

Condition; piezo material
pre-TR; PVDF post-TR; PVDF

Max. Power Avg. Power Max. Power Avg. Power

Annular plane
0.21 µ W 39.3 nW 0.1 µW 17.8 nW

(6-11)

Leaflet plane
0.24 mW 11 µW 0.19 mW 8.9 µW

(12-14)

Papillary Muscle

plane 0.84 µ W 0.17 µW 0.6 µW 0.1 µW

(15-17)

Reference plane
0.78 µW 0.13 µW 0.38 µW 61.5 nW

(1-4)

estimated using the equation 3.7, for two specific cases: (a) before TR is induced (labeled as

pre-TR), and (b) after TR is induced (labeled as post-TR). The results for both these cases

are shown in Fig. 3.6(f)-(g). The results show that even though the radii change is periodic;

there is a massive difference in power estimated at each cycle, as shown in Fig. 3.6(f). This can

be attributed to the natural deviations in the ovine cardiac function and intrinsic non-linear

dynamics of valvular perturbations. These non-linear effects result in energy bursts that can

be readily harvested for self-powering. Note that for surface piezoelectric transducers, like

the ones reported in [34], the non-linear dynamics (like buckling) gets filtered out, resulting

in smooth and periodic strain-variations. Therefore, transducers with a large surface area

have to be used to harvest sufficient energy.
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Fig. 3.7 shows the bar plots corresponding to the estimated power that can be harvested

from each annular plane for different animals and for pre and post TR conditions. We

estimated the power levels assuming two types of suture models incorporating two different

piezoelectric materials. The material properties and parameters used in our simulations were

summarized in Table. 3.1. Note that while PZT sutures could provide more power, they need

to be adequately encapsulated to ensure biocompatibility. Fig. 3.7 shows that the estimated

power values are consistent across different animals showing the scalability of the proposed

approach. The instantaneous voltage and current values range between 0-20 V and 0-1 µA

respectively. In all cases, the maximum amount of power can be harvested from the leaflet

plane. Although there is a slight decrease in power for the case of pre-TR and post-TR, as

shown in Fig. 3.7(a)-(d), it can be seen that the power levels across different cross-sections in

all the cases are almost similar which implies that self-powering is still feasible even after

TR is induced. Fig. 3.8 shows the power profile for a particular case of an ovine model

(pre-TR, using PVDF suture model) where the variations of the normalized estimated power

at different instances in time. It can be seen that variations of power level are rapid (the

time-scale of the change is in order of 60 msec) compared to that of the change in radius

or velocity. Also, the distribution of power level shows bursts where different sections of

the valvular planes deliver maximum power at different time instances. Thus, placement of

the sutures and the sonomicrometry sensors is essential to ensure efficient and consistent

harvested power levels.

Although the analysis presented in this chapter are based on the simulations of the suture

models, earlier studies have shown a good match between the simulation studies and ex-

perimental results [34]. Thus, the average power that can be harvested, as summarized in

Table. 3.2-3.3 should scale. Also, note that the model assumed the piezoelectric suture to be

operating in the transverse mode; however, we need to consider the longitudinal and shear
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Figure 3.8: Flexible silver-coated PVDF sheet as a potential candidate for constructing
piezoelectric sutures.

effects in practical implementation. Therefore, the numbers summarized in Table. 3.2-3.3

represent the upper limit and needs to be moderated based on practical suturing conditions.

Also the power density is around 10mW/cm2 in the case of PZT and 100µW/cm2 in the case

of PVDF for a piezoelectric suture.

3.4 Discussion

The feasibility analysis presented in this chapter is based on ideal assumptions on the suture

orientation and its material properties, and therefore should be considered the upper limit.

While the results presented in this chapter have been estimated using suture parameters

summarized in Table 3.1, the results should scale with any variations in these parameters. It

can be seen from equation. 3.6 that the voltage scale linearly with the change in the area

where the power levels vary quadratically; however, corner effects need to be considered when
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translating these results. Also, a suture with dimensions 0.5 mm x 2 cm might be reasonable

for simulations, but such a configuration’s practical feasibility needs to be further explored.

In practice, however, the results may differ, and the non-linear valvular dynamics might boost

or damp the level of harvested energy. In particular, mechanical properties like buckling and

torsional strain in the case of helical suture, which is not captured by the linear model given

in equation. 3.5, could enhance the results. In contrast, the properties like damping and

mechanical coupling can deteriorate the transducer’s performance needs to be validated with

experimental results. Future work will also include verifying an integrated sonomicrometry

suture in-vivo. Fig. 3.8 shows one possible configuration to construct the suture cut out

of a PVDF sheet. The mechanical stability, bio-compatibility, and packaging of the suture

is a topic of future research. Also, future work will involve integrating piezoelectric energy

harvesting circuits [4] and sonomicrometry telemetry circuits [18] with the piezoelectric

suture.

3.5 Summary

This chapter summarizes the estimated power levels that can be harvested from non-linear

mechanical perturbations of a cardiac valvular apparatus. Our analysis demonstrates the

feasibility of harvesting 0.1-10mW/cm2, which is orders of magnitude higher than the previous

configurations that harvested energy from the surface of the heart or the aorta. For instance,

the time-average power density was reported to be 1.2µW/cm2 when harvesting energy from

the surface of the heart [34]. In contrast, the power density was 170nW/cm3 when the energy

was harvested from the aorta [36]. Experimental verification of this improvement would be

the subject of future work. However, higher harvested power levels open the possibility of
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designing self-powered sonomicrometry based sensors that can be used for chronic monitoring

of mitral-valve dynamics and post-surgical IMR.
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Chapter 4

B-scan Imaging based Telemetry

In chapter 2 we demonstrated that a commercial-of-the-shelf (COTS) M-scan ultrasound

imaging system could be used for designing multi-access in-vivo ultrasound communications

links. We demonstrated the feasibility of data rates up to 800 Kbps for implantation depths

greater than 12 cm while dissipating only microwatts during transmission. However, if the

transmission energy-budget could be reduced down to nano-watts, not only the battery form

factor at the implant could be reduced but the telemetry could be potentially be self-powered

using energy harvested in-vivo [52]. Reducing the transmission power will also reduce imaging

artifacts when the ultrasound system is used simultaneously for imaging other physiological

processes like blood flow or tissue palpitations [53]. In this chapter, we investigate if the

transmission energy requirements can be reduced by exploiting the beam-forming feature

available on most commercial ultrasound imaging systems.
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Figure 4.1: (a) Principle of M-scan telemetry as reported in 2; (b) Illustration of a typical
M-scan image when the data is being transmitted using ON-OFF signaling. (c) BER
corresponding to the M-scan telemetry link as reported in 2 when the transmit power is
varied from 1µW to 12µW. (d) Principle of the proposed B-scan telemetry. (e) Illustration
of a typical B-scan image showing the presence of transmitted data in a 2D cross-section
as well as across several B-scan frames. (f) Anticipated improvement in SNR (highlighted
by star) for B-scan telemetry compared to M-scan telemetry scheme when operated around
beam-angle of 0.1 radians (≈ 5o) .

4.1 Operation Principle

Fig. 4.1 shows the principle underlying the proposed approach and compares it against

our previously reported M-scan based ultrasound telemetry. In M-scan telemetry shown

in Fig. 4.1(a), a communication link is established between two single-element ultrasound

crystals. One of the elements acts as a transmitter and is implanted inside the tissue. The

other element, acting as an interrogator is located on the surface of the skin and is driven by

an M-scan ultrasound imaging system, as shown in Fig.4.1(a). Fig.4.1(b) shows a sample
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M-scan image data when the transmitter crystal is driven by a periodic ON-OFF signal. The

transmitted pulses create an imprint on the M-scan image, which upon further processing

reveals the transmitted data. In [45], we have characterized the M-scan telemetry link in

terms of its BER and the transmission power. Fig. 4.1(c) shows a sample result which shows

that only microwatts of transmission power are required to achieve reasonable BER. However

due to lack of directionality, the received noise power (N) is isotropic as shown in Fig. 4.1(a).

In practice, the information about the location of the implant is known apriori and hence,

could be leveraged to boost the received signal to noise power ratio (SNR) using beam-forming.

In the proposed B-scan telemetry, a linear array imaging probe (interrogator) is used for

beam-forming and for capturing the transmitted data from the directions of interest and a

specific depth, as shown in Fig.4.1(d). Sample B-scan data is shown in Fig. 4.1(e) where

the effective SNR (SNRB) is determined by the ratio of received signal power and the noise

incident from a specific beam-angle (θ). Similar to SNR calculations used in radio-frequency

MIMO systems [54], it is anticipated that the effective SNR (SNRB) for B-scan telemetry

should be inversely proportional to the interrogation beam angle. Thus, the B-scan based

telemetry should provide higher SNR compared to the M-scan telemetry.

4.2 Experimental Setup

Fig. 4.2 shows the experimental setup that has been designed to verify and characterize

the proposed B-scan telemetry. An ultrasound transmitter was prototyped using a Texas

Instruments microcontroller board (TI CC1310) and the system was packaged in a water-proof

container and then suspended in a water bath as shown in Fig. 4.2(a). A millimeter-sized

piezoelectric crystal was used as an ultrasound transducer(Sonometrics Corp.) and was
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Figure 4.2: (a) Illustration of the experimental setup used to verify and quantify the
performance of B-scan telemetry in a water transmission medium. A linear transducer
array is driven by (b) an echoscope which is used to acquire B-scan images which are then
post-processed on a (c) computer; (d) Picture of the water-bath highlighting the interrogation
depth and the relative orientation of the imager and the implant; (e) The prototype of the
ultrasound transmitter implemented using a TI CC1310 board and enclosed in a sealed
waterproof container. (f) RF module is used for remote programming of the submerged
ultrasound.

fixated outside the container such that it was aligned with the ultrasound imaging probe, as

shown in Fig. 4.2(a). The B-scan data acquired by a commercial echoscope was stored on a

computer (Fig. 4.2(c)) and the data is post-processed using methods described in section 4.2.5.

An external RF micro-controller platform (TI CC1310) was used to wirelessly control the

power and transmission rate of the ultrasound transmitter submerged in the water-bath,

as shown in Fig. 4.2(f). Note that the RF link was only turned on for reprogramming the

ultrasound transmitter to transmit at different power levels or for adjusting the transmission

rate. At all other times, the RF link was disabled to minimize electromagnetic coupling.
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Figure 4.3: Measured S11 characteristics of the ultrasound transmitter crystal shown in the
inset.

4.2.1 Characterization of the Ultrasound Transmitter Crystal

Fig. 4.3 shows the measured S11 characteristic of the piezoelectric crystal used as an ultrasound

transmitter. The result shows that the crystal can be driven at different resonances but at

the operating frequency of 2MHz, the crystal impedance was measured to be 133− j330 Ω.

The estimated impedance has been used in the later sections to calculate the transmitted

power using an approach similar to the method described in [45]. The crystal is driven

by an oscillator module integrated on the microcontroller board and the amplitude of the

driving signal can be adjusted from VT = 0− 5 V , in steps of 1.2 mV . The voltage sweep

translates to sweeping the transmit power from 0− 0.7µW at sub-nW resolution. Note that

the attenuation coefficient of ultrasound in water is given by 0.0022 dB/MHz/cm which

leads to a 90− 97% efficiency in receiving the signal-power at the imager/receiver when the

distance to the transmitter is varied from 10 cm to 2 cm.
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4.2.2 Echoscope and Linear Transducer Array

The B-scan ultrasound imaging system was implemented by interfacing a convex array

ultrasound probe (C5-2R60S-3) to a commercial echoscope (gaMPT GS200i with an inte-

grated Telemed MicrUs ultrasound system). The 256-element ultrasound probe used in

our experiments has a field view of 60 degrees with a 65 mm radius of curvature and its

operating frequency can be adjusted from 2 MHz to 5 MHz. This focus of the system is

customizable with a variable frame-rate of 13-24 fps while being able to image at depths

of 90-230 mm respectively. Data from the echoscope was acquired via a USB 2.0 interface

and the post-processing of the data was performed in MATLAB©. For the experiments, the

echoscope was set to a low-transmit power setting and high-receive gain setting to reduce

diagnostic imaging artifacts.

4.2.3 RF triggering, Control and Programming

The submerged ultrasound transmitter uses an integrated 915 MHz RF module to communi-

cate with another RF transmitter located outside the water-bath. The RF link was used to

wirelessly adjust different transmit parameters (transmission rate and transmission power)

without physically disturbing the submerged transmitter. To overcome RF attenuation

losses in the water-medium, we set the RF to transmit power to the maximum allowed level

while operating within the 915 MHz ISM frequency band. Both the RF transmitter and the

submerged RF receiver were designed using the TI CC1310 wireless microcontroller platform.

In addition to the TI radio-module, the submerged RF receiver also had a pulse width

modulator (PWM) that was used for driving the ultrasound transmitter crystal. The RF

transmitter located outside the water-bath was controlled using a serial link to a computer
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Figure 4.4: Illustration of the B-scan image transformation steps using a (a) template
imaging stub where the original B-scan image (b) is transformed pixel-wise into Cartesian
coordinates (c); (d) Difference image recovered by high-pass filtering the B-scan image frames;
(e) Pixel intensity distributions estimated for a given frame at different instances of time. (f)
Anticipated change in pixel intensity distributions in the presence and absence of transmission
signal.

which was also used to send information about the pulse width, pulse rate, and transmit

power. A transmitter was packaged inside a sealed container which was also used to stabilize

the piezoelectric crystal at the bottom of the water tank, as shown in Fig. 4.2(d).

4.2.4 Data Collection and Processing

In this sub-section, we illustrate the data collection and processing steps using B-scan images

of a stub comprising of engravings of different geometric shapes, as shown in Fig. 4.4(a). As

shown in Fig. 4.4(b), the axial direction to the ultrasound imager provides information about

the variations in acoustic impedance along with the depth and the lateral direction shows

57



(a) (b)

(c)

(e)
(d)

(f)

R1

R2
R3

R1
’

R2
’

R3
’

R1

R2

R3

R1
’

R2
’

R3
’

Figure 4.5: (a) Sample B-scan image frame when the transmitter is OFF and the corresponding
transformed image (b) after filtering and the (c) column-wise mean intensity vector Ī; (d)
Sample B-scan image frame when the transmitter is ON and the corresponding transformed
image (e) after filtering and the (f) column-wise mean intensity vector Ī.

the variations in the acoustic impedance of the medium parallel to the imaging plane. Every

frame consists of multiple vertical lines which correspond to a pulse-echo interrogation cycle

acquired by the linear array transducer. Echowave II software and user interface provided

with the echoscope were used to adjust the transmit and the receive gain of the echoscope and

the acquired B-scan images were saved in a PNG format. Note that the acquired images are

represented in polar coordinates and the area under interrogation is highlighted using white

borders in Fig. 4.4(b). To translate the image pixels into a Cartesian coordinate system, each

PNG image was converted to grayscale after which a linear mapping is applied, as illustrated

in Fig. 4.4(b)-(c). If a pixel location in the polar coordinates is represented by (r, θ), then its
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(a)
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Figure 4.6: (a)-(c) Pixel intensity distributions corresponding to different image patches (R1,
R2, R3) when the transmitter is OFF and (R′1, R′2, R′3) when the transmitter is ON.

corresponding location in the Cartesian coordinate is given by the mapping

x = br sin θ + αxc (4.1)

y = br cos θ + αyc. (4.2)

Note that b.c are floor operators, and (αx, αy) is an offset as shown in Fig. 4.4 (b). This

transformation also reduces the image size to (xmax, ymax) = 530x600 pixels as shown in

Fig. 4.4(c). In the transformed image, if U i
(x,y) denotes the pixel intensity at location x, y on

the ith frame, a difference operation is applied according to

W i
(x,y) = U i

(x,y) − U i−1
(x,y). (4.3)
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Figure 4.7: High-pass filtered B-scan image frames measured at different magnitudes of
transmitted power.

This operation eliminates the static background and retains only information that fluctuates

at frequencies greater the frame-rate. Fig. 4.4(d) shows the filtered data W which has been

appropriately scaled to improve visualization. Distribution of pixel intensities within an

image patch is then estimated across different frames, as shown in Fig. 4.4(e). The result for

each frame follows an approximate bell-shaped curve, as shown in Fig. 4.4(f), indicating the

distribution can be assumed to be quasi-stationary to the image frames. When the transmitter

is ON, we expect the distribution of W to change such that the statistical variance of W

should increase, as shown in Fig. 4.4(f). The challenge in this case would be to design a

simple and yet robust decoding algorithm that can detect this change or increase in variance.
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Figure 4.8: Estimated mean and std. deviation for an image patch for different levels of
transmitted power.

4.2.5 Telemetry Decoding Algorithm

When the ultrasound transmitter is ON, the imager captures the changes in the received

signal power as changes in the pixel intensities on the B-scan images. This is illustrated for

high transmit power levels by measuring the column-wise pixel intensities according to

I iy = 1
xmax

∑
x

|W i
(x,y)| (4.4)

where ~I is a vector containing the mean intensity value estimated along the column in the ith

frame.
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Low Probability

Figure 4.9: Estimated BER when the transmitted power is varied from 10 - 700 nW. Inset
highlights two operating regions (1-20 nW and 100nW) where sensitivity analysis has been
performed.

The statistical properties of |W i
(x,y)| constrained to pixels defined by the patch (x, y) ∈ (P,Q)

can be quantified by its mean and standard deviation measures which are given by

µi(P,Q) = 1
pq

∑
x∈P

∑
y∈Q
|W i

(x,y)| (4.5)

σi(P,Q) =

√√√√√
 1
pq

∑
x∈P

∑
y∈Q

(|W i
(x,y)| − µi(P,Q))2

 (4.6)
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Figure 4.10: Sensitivity analysis in the low BER region where the transmitted power PT =
101.5 nW : (a) Mean and std. deviation values of the image patches; (b) the estimated BER
when the magnitude of the transmitted pulsed is varied in increments of 1.2 mV-12 mV.

In this work, the algorithm used for decoding the ON (logic level 1) and OFF (logic level 0)

states Di of the transmitter in the ith frame is given by

Di =


1 when, max

[
W i

(x,y)ON

]
> max

[
W i

(x,y)OFF

]
0 when, max

[
W i

(x,y)ON

]
≤ max

[
W i

(x,y)OFF

] (4.7)

Based on the decoded bits, the BER corresponding to the B-scan telemetry can be estimated

by taking the ratio between the total number of errors and the total number of frames.

4.3 Results

The experimental setup shown in Fig. 4.2 was used to collect B-scan data for two specific

cases: (a) when the submerged ultrasound transmitter is OFF (sample scan shown in

Fig. 4.5(a)); and (b) when the transmitter is OFF (sample scan shown in Fig. 4.5(d)).

The respective post-processed scans are mapped into Cartesian coordinates as shown in
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Figure 4.11: Sensitivity analysis in the low BER region where the transmitted power PT =
0 nW : (a) Mean and std. deviation values of the image patches; (b) the estimated BER
when the magnitude of the transmitted pulsed is varied in increments of 1.2 mV-120 mV.

Fig. 4.5(b)-(e). Fig. 4.5(c),(f) shows the corresponding column-wise average intensity (~I -

defined in equation 4.4), for each of the scans. Fig. 4.6(a)-(c) compares the distribution of

the pixel intensities measured in different patches of the scan (R1,R2 and R3 highlighted in

Fig. 4.5(a) and R′1,R′2 and R′3 in Fig. 4.5(e)) for the ON and OFF cases respectively. Note

that the distributions for the ON and OFF states measured for the patch R2 are sufficiently

different from each other compared to distributions estimated using the other patches.

4.3.1 Quality Metrics

Several experiments were conducted for different levels of transmit power. Some examples of

filtered B-scan data are shown in Fig. 4.5(a). Once we identified a target patch in the scan

we can quantify the quality of the telemetry signal within the patch using the mean absolute

intensity and the standard deviation metrics estimated across the pixel intensities. The BER

corresponding to the telemetry signal is estimated according to the decoding algorithm in

equation 4.7. The BER metric was then measured for different values of Vmax which is the
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maximum amplitude of the voltage pulse (VT ) used to drive the ultrasound crystal at the

transmitter. Using the crystal equivalent circuit shown in Fig. 4.3, the transmitted power

can be estimated from Vmax as the power dissipated at the equivalent resistor RT . Fig. 4.8

shows the mean and the standard deviation measured estimated for the image patch for

different levels of transmitter power PT . The results show that both the mean and standard

deviation of |W | increases with the increase in transmitted power. However, note that both

the measures saturate at higher transmit power levels which could be due to the saturation

of the B-scan amplifier or due to the limited driving capability of the ultrasound crystal.

4.3.2 BER Analysis

Using the decoder defined in equation 4.7, the transmitted state was estimated which was then

used to estimate the BER corresponding to different transmit power levels. The corresponding

results are shown in Fig. 4.9. Note that even though the size and the shape of the patch

could be varied, we chose a rectangular patch of a specific size that gives the best BER. The

BER results in Fig. 4.9 shows that the system performance is optimal when the transmit

power level is more than 100 nW and at transmitting power level of 1nW the measured BER

was as high as 0.25.

4.3.3 Sensitivity Analysis

In the next set experiment, we quantified the robustness of the B-scan telemetry system using

sensitivity analysis. We characterized the sensitivity for two different regions: (a) when the

transmit power PT was low; and (b) when the system metrics start saturating, as highlighted

by the Low Probability region in Fig. 4.9. The measured mean and std. deviation are shown
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in Fig. 4.10(a) for the case where the magnitude of the driving pulse changed in increments

of ∆V = [1.2 mV, 6 mV, 12 mV ] according to Vmax = 1.83 + η∆V . The corresponding

transmit power variations for the voltage increments of 1.2 mV , 6 mV and 12 mV are

∆PT = 133 pW ∆PT = 666 pW and ∆PT = 1.33 nW respectively. The results show no

significant improvement in signal quality measure with increments ranging in ∆PT = 133 pW

but the performance deviation is evident when the transmit power is varied in steps of

∆PT = 1.4 nW . This effect can also be seen in the BER plot in Fig. 4.10(b), where the

BER change for the case of ∆V = 1.2 V is not significant compared to the case ∆V = 6 mV

and ∆V = 12 mV respectively. Similar results corresponding to Vmax = 0 are shown in

Fig. 4.11(a). Here the increments in transmitted power ∆PT = [43 fW, 4.36 pW, 436 pW ]

correspond to the voltage increments ∆V = [1.2 mV, 12 mV, 120 mV ]. In this case as well,

the mean and std. deviation for this data show no significant improvement in signal quality

when the transmit power is increased in steps of ∆PT = [43 fW, 4.36 pW ] but for the later

case of ∆PT = 436 pW significant improvement in signal quality is observed. This effect can

also be seen in the corresponding BER plots shown in Fig. 4.11(b).

4.3.4 Telemetry driven by Unregulated Power Source

The next set of experiments were designed to verify that B-scan telemetry and the decoding

algorithm is useful for applications where an unregulated power source drives the ultrasound

transmitter. This scenario arises in self-powered systems [55] where the energy harvested from

a transducer is used directly to power the telemetry functions without any voltage regulation.

For example in our previous work [52] we showed that cardiac valvular perturbations could be

exploited to harvest nano-watts to micro-watts of power using a piezoelectric suture. When
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Figure 4.12: Emulation of the ultrasound transmitter driven by an unregulated power source
using (a) programmable DAC and a PWM module; (b) Comparison of estimated transmit
power levels for the regulated and the unregulated case; (c) Mean, standard deviation and
BER measured for levels of transmit power for the unregulated case; (d) Comparison of the
BER for the regulated and the unregulated case for different values of Vmax.

an unregulated power source is used, the echoes generated by the ultrasound transmitter are

non-harmonic in nature and could be considered as noise.

For this experiment we emulate an unregulated power source using a programmable 12-bit

digital-to-analog converter (DAC) that was used to drive the supply of the pulse-width

modulator, as shown in Fig. 4.12(a). Note that the amplitude of the transmitted ultrasound

pulses is modulated using a pseudo-random generator that is sampling voltages from the

DAC 4.2.3. Also, note that the transmit power for the modulated voltage source needs to be

reduced by a factor of 12 (variance of a uniformly distributed noise), when comparing to the

case of having a stable voltage source, as shown in Fig. 4.12 (b). Fig. 4.12(c) shows the mean
67



and the standard deviation metrics for the noise-modulated ultrasound transmission along

with the BER of the decoder estimated at each transmit power level. Note that the decoder

BER for this case is similar to the case reported in Fig. 4.12(c) but at much lower levels of

transmit power.

4.4 Discussion

Table 4.1 compares this work with the prior work in the area of in-vivo ultrasonic telemetry

[45], [56]- [57]. Note that the previous works were geared towards improving the data rates

and quality of communication link by exploring different modulation schemes. Our reported

data rates are limited by the frame rate of the echoscope which is approximately 27 fps.

However, these values should scale if a more advanced ultrasound imaging system with higher

frame rates is used. Also, note that the field of view and the number of piezoelectric elements

available at the linear transducer array will affect the receive beam-angle which in turn will

determine the BER of the proposed B-scan telemetry.

4.4.1 Comparison

In this work, we explored the case where lowering the transmit power is more important than

the data rates. This is the case for applications with fixed data-rates or when the implant is

located at large depths such as in bone healing applications [63] or spinal-fusion monitoring

applications [64]. In these applications, the implant needs to operate at limited energy

budgets but the latency in interrogation is not very critical. Also, the use of FDA approved
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Table 4.1: Comparison of this work with previous related approaches in terms of transmit
power and BER.

Reference Transducer Size Pulse Rate Transmit Power / Voltage BER

[45] 2 mm 800 Kbps 18 µW 10−2

[56] 2 mm 200 Kbps 4 V 10−4

[58] 1.67 mm3 125 KHz 600 µW 10−4

[59] 0.045 mm3 100 Kbps 177 µW 10−4

[60] 9.5 mm 28.12 Mbps 25 V 0.13

[61] 19 mm 70-700 Kbps 8-40 µW 10−4

[62] 741 mm2 20 Mbps - 10−4

[57] 3.5 mm 0.6 Kbps 0.38 mW 10−5

This Work 1 mm 27bps 0.83 nW/0.166 V 0.22

This Work 1 mm 27bps 4.1 nW/1.3 V 10−2

ultrasound imaging systems for telemetry would make the translation of this approach more

clinically acceptable.

4.4.2 Performance Gain

Comparing the M-scan and B-scan telemetry systems we observed two orders of improvement

in signal transmit power when results corresponding to low BER (Fig. 4.1(c) and Fig. 4.9) is

achieved at 12 µW and 100 nW receptively. These results correspond to a 21 dB improvement

in the SNR value as predicted in section. 4.1.
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4.4.3 Unregulated Voltage Source

The results for the case of unregulated voltage source can be considered as an emulation of a

telemetry system that is powered by an in-vivo energy harvester. As the energy available

at the implant varies the output waveform can be modeled as an amplitude varying voltage

source with a set frequency. Note that for the case of higher transmit powers the BER tends

to 0 which is very similar to the case of results shown in 4.9. At a particular power level

(PT = 4.1 nW ) the performance is almost comparable to that of PT = 50.1 nW using the

stable voltage source and the performance gets worse as PT is reduced to 1 nW .

4.5 Summary

In this chapter, we showed the feasibility of sub-nano-watt in-vivo telemetry links in a water-

medium for implantation depths greater than 10cm. The experimental system comprised of a

millimeter-scale piezoelectric crystal, a standard digital pulse-width-modulator, a commercially

available echoscope, and a linear array ultrasound transducer. We also presented a simple and

yet robust decoding algorithm and we characterized the B-scan telemetry performance using

reader sensitivity and bit-error rates. Although the data rates achieved using the proposed

scheme are limited by the frame rate of the imager, given modern ultrasound systems [65] that

enable imaging at 10000 fps the data rates using B-scan telemetry scale accordingly without

affecting the quality (BER) of the communication link. Future work includes validating the

B-scan telemetry in-vivo and for different biomedical applications.
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Chapter 5

Variance-based Computing

In this chapter, I will investigate an alternate signal representation called variance-based logic

(VBL) that can revisit this fundamental limit and provide new insights for designing highly

energy-efficient communication and computing schemes. Also, VBL representation enables

embedding of rectification and multiplication modules within the primary logic cells, and

unlike other energy-recovery logic circuits, the proposed approach obviates the need for any

phase synchronization. As a result, VBL representation can be used for designing low-latency

digital circuits that are directly powered by the unregulated power source that is energy

incident from a remote reader. From an energy point of view logic ‘LOW’ would correspond

to an energy sink like a ground plane, which is readily available in most systems whereas

logic ‘HIGH’ would represent a random signal with a finite energy fluctuation (or statistical

variance) which also readily available for an energy harvesting system. This architecture

will eliminate the need for power harvesting and power regulation modules in a conventional

energy harvesting or self-powered sensing system which is applicable beyond biomedical

implants.
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Figure 5.1: (a) Conventional approach where energy is accumulated before the processor and
communication modules are activated;(b) AC/RF based logic where the processor is directly
driven by the transducer’s AC signal.

5.1 Energy Harvesting Sensors

Current energy harvesting systems use a charge multiplying approach to accumulate and

store energy on a battery or super-capacitor. This is illustrated in Fig. 5.1(a) where the

accumulated energy is used to power the computation and communication module. However,

this approach incurs significant latency (or start-up time) [66] as sufficient energy needs to be

accumulated to meet the needs of different modules. One of ways to overcome this latency is

to eliminate the need for AC-DC conversion, similar to the techniques proposed in [67]- [68].

This approach is illustrated in Fig. 5.1(b) where the logic gates and communication modules

are directly powered by the incoming interrogation signal. The principle is very similar to the

well known charge recovery logic [69] and adiabatic dynamic logic [70] where complementary

logic computation is performed in each of the respective phases of the AC signal. However,

this requires some form of phase and frequency synchronization which is difficult to achieve
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(a) (b)

(c)

Figure 5.2: (a) Logic representation for both conventional and AC coupled logic; (b) proposed
variance based logic representation; (c) Waveforms of the signal observed at the input and
output of an VBL based NOT gate.

in practical conditions. Also, this approach does not scale when multiple sources of energy

(with different frequency and impedance characteristics) are available.

5.1.1 Variance-based Processors

To overcome the limitations of the conventional and the AC coupled approaches, we present an

alternative approach to digital logic design that is more amenable to energy harvesting systems.

The approach uses the statistical variance of the signal instead of the signal’s statistical mean

to represent different logic levels. The variance-based logic (VBL) representation enables

embedding of rectification and multiplication modules within basic digital logic units and

unlike AC-coupled or energy-recovery logic circuits the proposed approach obviates the need

for any phase synchronization.
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5.2 VBL based Digital Circuits

Conventional energy-harvesting devices use power harvesting circuits to rectify and regulate

the available ambient energy in a manner that results in two binary signal levels (Vhigh and

Vlow). These signal levels typically represent the Boolean logic states (denoted by 0 and 1) and

is used in the evaluation and representation of different types of digital functions. Because

real-world signals are noisy these binary levels are statistically represented by their probability

distributions that are centered about their respective means Vlow and Vhigh, as shown in

Fig 5.2 (a). The variance of each of the distribution captures the effect of noise and signal

fluctuations which is a function of the operating environment and applications respectively.

In the proposed VBL, as illustrated in Fig 5.2 (b), logic 0 is represented by a probability

density function (PDF) with a small variance (σlow) whereas logic 1 is represented by a PDF

with a large variance (σhigh). Note that the respective means for both the distributions

are the same ( shown as 0 in Fig. 5.2(b)), unlike the conventional representation which is

shown in Fig 5.2 (a). From an energy harvesting point of view, logic 0 (signal with low

variance) could correspond to an energy-sink like a ground plane (or a large capacitor), that

is readily available in most systems. Whereas, logic 1 (signal with high variance) could be

represented by a random signal with a finite energy, which could be the ambient energy

source. Fig 5.2 (c) shows an example signal representation for a VBL based NOT gate

where a bit sequence 1,0,1,0,1 applied to the input. Note that the signal variance (within

a finite measurement window) switches according to the bit-sequence, whereas the signal

mean (which is unimportant in the proposed representation) could potentially drift. The

output of the VBL based NOT gate produces a complementary sequence as represented by

the switching of the variance of the signal.
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5.2.1 Variance-based Logic Gates

To understand how a variance-based logic can be implemented at a circuit level, consider

a generic architecture of any combination logic, as shown in Fig. 5.3(a). This architecture

can be viewed to comprise of a measurement module and a transformation module. The

measurement module determines the state of the input signal, which for a conventional

logic, would be by measuring the signal mean. For instance, a CMOS implementation of a

conventional logic achieves this by averaging the input signal on a capacitor (typically the

gate-capacitance of a MOSFET transistor), as shown in Fig. 5.3(c) for the case of an inverter

(Fig. 5.3 (b)). The transformation module (Fig. 5.3 (d)) then generates the output signal

state by selectively switching the load CLoad, to gnd or to V dd through ZL depending on

the measured input state. This is illustrated for a conventional NOT gate, where the switch

can be implemented using an NMOS transistor and the load ZL can be a PMOS transistor.

Similarly, for a variance-based logic the measurement module would need to determine the

state of the input variance (high or low) using one of several approaches: (a) measure the

energy of the input signal; or (b) use a peak detector to track the maximum deviation of

the input signal. Fig. 5.3 (f) shows a simple peak detector stage (formed by the diode D,

an NMOS N and a capacitor Cm) that could be used for measuring the variance of the

input signal. Once the state of input signal variance has been determined, similar to the

conventional logic, the transformation module for a variance-based logic can simply couple

or decouple the ambient energy source ( labeled as Pwr+ in Fig. 5.3 (g)) to the output

through a coupling capacitance CL. A gate controlled NMOS transistor (=Vcontrol), as shown

in Fig. 5.3 (f), implements a leakage resistance which ensures that the variance measured

during the previous cycle is erased before the measurement is repeated. Note that there can

be several ways to implement the erase functionality that could yield better performance in
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terms of speed and energy-efficiency. Fig. 5.3 (e) shows a general implementation of NOT

gate using Variance based logic where the source of power could be any combination of

Pwr1, Pwr2 or Pwr3 indicating the operation of gate using multiple coupled sources. In

particular, Pwr2 could be a primary power source (for e.g. vibration), Pwr1 could correspond

to a supplementary AC source (strain variations) and Pwr3 could be a DC coupled source

(for e.g. a solar-cell). Using the basic measurement and transformation circuits shown in

Fig. 5.3 (f)-(g), the proposed variance-based logic could be extended to implement other logic

functions like a NOR gate or a D-FlipFlop. Note that the example circuit shown in Fig. 5.3

(d) implements only a single-ended variant of the variance-based logic where only one of the

outputs from an energy transducer is used. Most energy transducers (piezoelectric transducer

or an RF antenna) are fully-differential in nature, so a fully-differential implementation would

be required to exploit the entire range of signal variance.

5.3 Measurement Results

We have implemented basic VBL based circuits like inverters, ring-oscillators, and NOR

logic gates in a 0.5 µm CMOS process and Fig. 5.4 shows the micrograph of the fabricated

prototype. For the measurement results presented in this section, the value of the leakage

resistance (determined by Vcontrol) and the coupling capacitance CL were chosen such that

the logic circuits could be driven at a desired frequency. The energy source (high-variance

source) in all these experiments were emulated using a 100KHz 2V (=Vpp) source and the

logic transitions were generated using square-wave modulation with a frequency of 500 Hz.

The measured result corresponding to a NOT gate is shown in Fig. 5.5 for different values of

the leakage resistance (or control-gate voltage Vcontrol). The results confirm the functionality
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transformation modules. (b)Schematic of a NOT logic gate using a conventional approach –
formed using circuit for (c) measuring the signal mean and (d) transforming the output signal
based on the mean. (e) Equivalent implementation of a variance-based NOT gate where (f)
and (g) show the corresponding variance measurement and transformation modules.
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Figure 5.4: Micrograph of the fabricated chip in a 0.5 µm CMOS process.
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of VBL based NOT gate where the output variance switches from low to high when the

input variance switches from high to low. Also, as shown in Fig. 5.5, smaller values of the

leakage resistance (larger value of Vcontrol) produces different rise-times (delays). The next

set of measurements verified the functionality of a 3-stage ring-oscillator (R0) and Fig. 5.6

shows the measured oscillation frequency when both Vcontrol and the magnitude of the input

signal frequency (or input energy) is varied. The measured results show that the output

frequency of the VBL based RO is strong function of the input energy (which is expected)

and a function of the leakage resistance. Therefore, the RO frequency seams to adjust itself

to the available input energy which is really important in energy harvesting systems.

The measured responses from the VBL based logic cells could be used to generate a behavioral

model and to synthesize more complex processing units, similar to the conventional logic

synthesis approach. In the next set of experiments we used the VBL logic cells to implement

a 4-bit Johnson counter that is directly driven by a random energy source. For comparison

we implemented an equivalent counter using conventional logic cells and is driven by a power

conditioning unit formed by a rectifier and a multiplier. Fig. 5.7 (a) shows the output

waveform (Q0-Q4) of a conventional 4 bit ring counter that is clocked at a frequency of

10KHz and powered by a regulated 3-stage voltage multiplier. The shaded region in the plot

of around 2.8 ms duration illustrates the startup latency of the rectifier/multiplier, which

is the time taken to reach the steady-state voltage of 3V. For the VBL-based counter, a

Gaussian noise-source is used as an input. The corresponding waveforms for each stage of the

counter (Q0-Q4) are shown in Fig. 5.7 (b). The waveforms indicate that VBL based counter

demonstrates a latency of 50 µs and completes two cycles of operation by the end of 0.8

ms. This result clearly shows the advantage of the proposed VBL-based digital circuits to

design low-latency digital circuits. This attribute would be important for designing real-time

wireless interrogation circuits for IoTs.
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5.4 Summary

Analysis presented in this chapter provides an alternate and novel approach for building logic

gates that operate on the statistical variance of the input signal, which we call variance-based

logic. The approach could potentially combine the functionalities of energy harvesting and

digital computation and the approach could be applied to a wide variety of energy transducers.

With help of prototype, we have demonstrated the performance of basic digital cells and

proposed the feasibility of a simple state machine. The advantage of this new logic design in

terms of power and delay, when compared to the conventional logic gates, is unknown and

is the subject of future research in this area. Another benefit of using variance-based logic

is that the reciprocity of the energy transducer (like an RF antenna) which can be used to

wirelessly transmit logic-state information. In fact, variance-based logic shares similarity with

load-modulation techniques that are commonly used in back-telemetry for passive RFIDs.
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Chapter 6

Variance based Logic

Variance-based logic (VBL) uses the fluctuations or the variance in the state of a particle or a

physical quantity to represent different logic levels. In this chapter I show that compared to the

traditional bi-stable logic representation the variance-based representation can theoretically

achieve a superior performance trade-off (in terms of energy dissipation and information

capacity) when operating at fundamental limits imposed by thermal-noise. In addition to the

universal KT ln(1/ε) energy dissipation required for a single bit flip, a bi-stable logic device

needs to dissipate at least 4.35KT/bit of energy, whereas under similar operating conditions,

a VBL device reduces the additional energy dissipation requirements down to sub-KT/bit.

These theoretical results are general enough to be applicable to different instantiations and

variants of VBL ranging from digital processors based on energy-scavenging or to processors

based on the emerging valleytronic devices.
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Figure 6.1: Statistical representation of binary logic states ’0’ and ’1’ using (a) Mean-based
Logic (MBL) and (b) Varianc-based Logic (VBL).

6.1 Digital Systems

At a fundamental level any form of digital operation involves repeated and controlled

transition between the two logic states. Traditionally a digital system can be represented

using a potential well diagram where the two states (0 and 1) are separated from each other

by an energy barrier. The potential wells are assumed to be stable configurations and any

fluctuation or variance in these configurations is treated as noise. For example, in a standard

CMOS logic the states are represented by the signal mean (average voltage or current) and

the signal variance captures the effect of thermal fluctuations or environmental interference.

For a spintronic device [71] the logic states are represented by the state of magnetic spin of

the electrons; in a phase-change device like memristor [72] or FeRAM [73] the logic states

are represented by the static alignment of domains or individual molecules in the dielectric

material.
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6.1.1 Mean-based Logic

From a statistical point of view, the two logic states (denoted by ’1’ and ’0’) are represented

by the means (0 and µ) of the two probability distributions that are separated from each

other by an energy-barrier, as shown in Figure 6.1(a). Note that since the physics of the two

configurations are assumed to be similar, the variances of the distributions can be assumed

to be equal and the probability of error can be estimated by the overlap of the distributions

(shown in Fig. 6.1(a)). We refer this mode of representation as Mean-based Logic(MBL).

6.1.2 Variance-based Logic

Alternatively, we investigate a new logic representation where instead of the mean, the

variance in the state configurations are used for representing logic levels 0 and 1. The

statistical representation of the variance-based logic (VBL) [55] is shown in Fig. 6.1(b) where

logic ’0’ is represented by a configuration with small fluctuations (or variance), and logic

’1’ is represented by a configuration with large fluctuations (or variance). Note that in

Fig. 6.1(b), the two distributions have the same mean value which therefore does not carry

any logic information. Also note that VBL representation is different from a noise based logic

(NBL) [74] where the orthogonal patterns of noise carried the digital information, unlike the

change in signal variance in the case of VBL.

VBL is applicable to devices and systems where the shape of the energy levels (or equivalently

the momentum of the particles) can be changed. One such example is a system that is

powered by scavenging energy from ambient sources. In this case, the asymmetry in the

electrical impedance seen by the system ground and as seen by the energy transducer leads

to different variances in voltage levels at the supply and at the ground potential. In [55] we
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(a) (b)

Figure 6.2: The process of logic transition corresponding to (a) MBL and (b) VBL.

have exploited the voltage variances to implement different forms of VBL logic gates and

circuits. Another example where VBL could be applicable are processors based on valleytronic

devices [75] where the curvature of the energy-levels (or equivalently the momentum of the

particle trapped in the energy-level) could be changed to represent different logic levels.

Our goal is to abstract out the physical level implementation of VBL and investigate the

energy-efficiency limits of VBL as determined by thermal-noise.

6.1.3 Mean vs Variance

Based on the potential well model, the energy-efficiency of VBL can be compared to the

traditional mean-based logic (MBL) by visualizing the process of logic transition, as shown in

Fig. 6.2(a) and (b). For a specific implementation of MBL the logic transition can be realized

by transferring electrons from one potential well to another [76], [77], as shown in fig. 6.1(a).

During the logic transition (0 to 1 for example), the energy barrier is lowered and the potential

wells are reshaped in a way that the electrons move to the potential well corresponding to
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logic 1. The energy barrier E1 is then restored and held until the next transition. Assuming

irreversible computation and adiabatic transport of the electrons between the potential wells,

the energy dissipated per logic transition or a bit for MBL, can be estimated to be twice the

height of energy barrier (EMBL ≈ 2× E1). The thermodynamic limits on E1 is determined

by the minimum energy required to enforce logic state transition and is atleast KT ln(2)

Joules when the information content carried is close to zero. [78]. Note that this energy

limit is independent of logic implementation or realization of the logic circuit. However,

when the energy dissipated due the process of measurement is taken into account, a different

lower-bound on the energy-dissipation per bit is obtained [79]. On the other hand, in a VBL

device (as depicted in Fig. 6.2(b)) the electrons are either constrained in a narrow potential

well (a low variance state ’0’) or the electrons are relatively free to move around in a broader

potential well (a high variance state ’1’). Transition between the logic states in VBL involves

changing the shape of the potential well and hence involves adding or subtracting a fixed

amount of energy E2 (= EV BL) from the system, as shown in Fig. 6.2(b). In our analysis, we

derive the lower bounds on energy dissipation (EV BL) for VBL and compare it with EMBL.

6.2 Energy-per-bit for MBL and VBL

6.2.1 Estimation of Probability of Bit Error

Following an approach that was presented in ref. [79], we first calculate the information

capacity for MBL and VBL by estimating the average probability of error pavg that is incurred
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in measuring the two logic levels. This is given by,

pavg = p0p1|0 + p1p0|1 (6.1)

where p0, p1 are prior probabilities for logic state to be ’0’ or ’1’, and p1|0, p0|1 are conditional

probabilities that captures incorrect measurement in the logic state. In an MBL representation

as shown in Fig. 6.1(a), a threshold Vth could be used to distinguish between the logic levels in

which case p1|0, p0|1 is given by the overlap between the distributions. Assuming equal apriori

probability p0, p1 = 0.5 and the conditional distributions to be Gaussian with respective

means 0 and µ and variances σ2
0 and σ2

1, the average probability of error [80] can be estimated

as

pavg,MBL = 1
4[erfc(µ− Vth√

2σ1
) + erfc( Vth√

2σ0
)] (6.2)

where,

erfc(x) = 2√
π

∫ ∞
x

e−t
2
dt. (6.3)

In case of VBL, the variances σ2
0 and σ2

1 corresponding to the two logic states could be

measured by comparing the magnitude of the signal with respect to a threshold ±Vth. The

probability of error (pavg,V BL) is determined by the shaded region as shown in Fig. 6.1 (b).

Following equation 6.1 and assuming equal apriori probabilities, the average probability of

error pavg,V BL can be estimated as

pavg,V BL = 1
2[1− erfc( Vth√

2σ1
) + erfc( Vth√

2σ0
)]. (6.4)
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6.2.2 Estimation of Channel Capacity

Maximum information rate can be estimated by applying Shannon’s capacity equation to an

binary asymmetric channel with error probabilities p0|1 and p1|0 and is given by

C(p0|1, p1|0) = fc[1 + p1{p0|1 ln(p0|1) + p1|1 ln(p1|1)}+

p0{p1|0 ln(p1|0) + p0|0 ln(p0|0)}] (6.5)

where fc is the rate (or equivalently the speed) at which the logic state is measured.

6.2.3 Estimation of Power Dissipation

The next step towards determining the energy efficiency of MBL and VBL is to estimate the

energy dissipated during the process of logic transition. Similar to the approach presented

in [79] we realize both the logic by measuring an equivalent signal (mean or the variance) on

an equivalent capacitance Cmeas. For an MBL, the energy is dissipated during charging and

discharging the sampling capacitor ‘Cmeas’ to voltage µ at a rate of fc and the average power

dissipation is given by

PMBL = fc ×
1
2Cmeasµ

2. (6.6)

For a VBL, the energy dissipation would be given by the difference in the signal variance

corresponding to the two logic states and the average power dissipation is given by

PV BL = fc × Cmeas(σ2
1 − σ2

0) (6.7)
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6.2.4 Figure-of-Merit

The Energy dissipated per bit (or the figure-or-merit for comparison) is then given by

FOMMBL,V BL = PMBL,V BL

C(p0|1, p1|0) . (6.8)

Note that the FOM is a function of probabilities p1|0 and p0|1 which in turn depend on the

variances σ2
0, σ2

1 corresponding to the logic states 0 and 1 respectively. Since our objective is

to determine the fundamental limits for MBL and VBL as constrained by thermal noise, we

will assume σ2
0 = KT/Cmeas. Figure 6.3 (a) compares the FOM numerically estimated for

MBL and VBL using equations 6.2- 6.8 and for different values of Vth, σ2
1. The figure shows

that for the FOM for MBL is bounded from below and approaches a fundamental limit of

4.35 KT/bit. This limit is different from what was previously reported in [79] and therefore

in this section we provide a brief derivation of this limit.

6.3 Comparison Analysis

Revisiting the approximation provided in ref. [79] it can be seen that the capacity of MBL

(CMBL), when operating near the average probability of error pavg = p ≈ 0.5. Assuming a

binary symmetric channel with σ1 = σ0, the Shannon capacity equation given by equation 6.5

can be rewritten as

CMBL(p) = fc[1 + p log2 p+ (1− p) log2(1− p)]. (6.9)
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Figure 6.3: Numerical estimated FOM (energy dissipated per bit) corresponding to MBL
and VBL for different values of Vth and σ1.

(b)(a)

Figure 6.4: (a) Statistical distributions and thresholds corresponding to the MBL operating at
the 4.35KT per bit fundamental limit; and (b) VBL operating at sub-KT per bit fundamental
limit.
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Defining ∆p as ∆p = pavg − 0.5 and using a Taylor series expansion of CMBL around

pavg = p = 0.5, equation 6.9 leads to,

CMBL(∆p)|p≈0.5 = C(p) + C ′(p)
1! ∆p+ C ′′(p)

2! ∆p2 + ...

= 2
ln 2fc(∆p)

2
(6.10)

Assuming that the variance of measurement σ2
0 = σ2

1 = KT
Cmeas

as determined by thermal-noise

and Vth = µ
2 , ∆p is given by

∆p ≈ g(0)µ
2 = µ

2
√

2πσ
= µ

2
√

2πKT/Cmeas
(6.11)

where g(.) is the Gaussian distribution function. Using Eq. (6.10), the capacity is given by

CMBL|p≈0.5 = µ2

(4π ln 2) KT
Cmeas

fc (6.12)

which leads to the fundamental FOM limit as

FOMMBL|min = PMBL

CMBL|p≈0.5
≈ 4.35KT/bit. (6.13)

This limit has been verified using numerical simulation and the results are summarized in

Fig. 6.3. It can be also seen in Fig. 6.4(a) that the FOM limit for VBL could be lower than

the MBL limit and in some cases the FOM approaches sub-KT per bit. For VBL sub-KT

per bit limit is achieved when the respective variances σ0 and σ1 are approximately equal

(implying pavg ≈ 0.5) and the threshold Vth samples only the tails of the distribution, as

shown in Fig. 6.4(b). To understand why VBL can achieve sub-KT per bit limit, in Fig. 6.5

we compare the channel capacity C(p0|1, p1|0) for MBL and VBL, numerically estimated for
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Figure 6.5: Comparison of numerically estimated information capacity C as a function of the
average probability of error pavg, corresponding to MBL and VBL and for different values of
Vth and σ1.

different values of Vth and σ1. Fig. 6.5 shows that while for MBL the information capacity

approaches zero when the pavg ≈ 0.5, this is not the case for some instances of VBL when

Vth is located around the tails of the distribution. In the above derivation, we have ignored

the energy incurred by the switching circuit to convey the VBL levels, albeit the logic ‘0’

and ‘1’. For VBL, the switch will effectively control the width of the potential well, shown in

Fig. 6.2 (b), which in turn will change the noise-variance. Therefore, the energy dissipation

to convey one bit of information is also determined by the minimum energy dissipated to

trigger a switch, which is KT ln(1/ε), ε being the probability of error in case of VBL. [78,81].

In the limit of ε = 0.5, this will result in the Brillouin limit of KT ln(2) which needs to be

added to the lower bound of VBL.
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6.4 Discussion and Summary

In [82] it was proposed that one of methods to approach the fundamental limit of energy-

dissipation for MBL was to use error-correcting codes to compensate for high pavg. A more

practical approach would be to first boost the signal-to-noise ratio (SNR) of the measurement

through repeated sampling and statistical averaging. Given N independent and identically

distributed (iid) random samples x1, x2, ... xN from a distribution with mean µ and variance

σ2, the sample mean (x̂) is defined as x̂ = ΣNi=1xi
N

and sample variance is given by σ̂2 =
ΣNi=1(xi−x̂)2

N−1 . The signal-to-noise ratio (SNR) for the measurement is given by

SNR = E[x̂]2
E[σ̂2] (6.14)

In case of MBL, it is given by

SNRMBL = Nµ2

σ2 (6.15)

Even if the samples are drawn from any given probability distribution the definition of

SNRmean holds. Where as the variance of the sample variance becomes a function of fourth

order moment and is estimated to be [83]

E[(σ̂2 − σ2)2] = σ4[ 2
(N − 1) + κ

N
] (6.16)

were κ is the kurtosis of the probability distribution. A generalized expression for SNRvar is

given as

SNRV BL = 1
2

(N−1) + κ
N

(6.17)
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Figure 6.7: Transition between VBL to MBL in an energy-scavenging system.
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It can be seen that SNRMBL, shown in equation. 6.15, increases with increase in µ and N

and with the decrease in variance (σ2). On the other hand SNRV BL, shown in equation. 6.17,

is independent of parameter σ and only increases with N . In Fig. 6.6(a) we show the regions

where SNRV BL ≥ SNRMBL and SNRV BL ≤ SNRMBL.

6.4.1 Hybrid Logic

The result shown in Fig. 6.6(a) indicates that VBL and MBL techniques could be combined

to form a hybrid logic topology where VBL is used when µ ≤
√

2σ, and MBL is used when

µ ≥
√

2σ. The scenario occurs in energy scavenging processors [84] where the ambient energy

(for example radio-frequency signals or vibrations) could serve as source of high-variance.

In a traditional approach, the source of energy is harvested and rectified to create a stable

voltage level µ which could then be used to implement MBL based processing. This process

is illustrated in Fig. 6.7 where during the startup phase µ ≤
√

2σ is satisfied and therefore

VBL would be more attractive. As more energy is harvested and rectified, µ ≥
√

2σ it is

more attractive to use MBL for computing. The proposed hybrid logic should also provide

improvements in reliability as the variance of the logic level σ1 reduces in addition to the

increase in µ. Fig. 6.6(b) shows the estimated pavg corresponding to MBL and VBL when σ1

is varied. The comparison shows an optimal transition point labeled as ’A’ where switching

the logic style from VBL to MBL yields a better reliability in terms of pavg. Future work

would entail practical implementation of the hybrid logic using topologies similar to that

of [55] and comparing its performance with other energy harvesting logic topologies [84,85].
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Chapter 7

High Dimensional VBL

Is there a fundamental advantage in encoding information by modulating the variance of a

signal rather than modulating its mean? This chapter, provides mathematical and geometric

insights into this question by comparing the fundamental limits on the minimum energy-per-

bit that can be achieved by a variance-based logic (VBL) and a mean-based logic (MBL)

representation. We argue that while for MBL, the trade-off between the energy-per-bit

and the bit-error-rate is fundamentally constrained, using VBL it is possible to achieve

a better trade-off compared to MBL. This result has been experimentally verified for an

Additive-white-Gaussian-Noise (AWGN) channel using numerical and monte carlo simulations.

7.1 Limits of VBL

There exists a trade-off between the energy required for transmitting information across

a noisy communication channel and the reliability of correctly decoding the transmitted

information. This trade-off manifests itself as the celebrated Shannon-limit [86], which

determines the minimum energy-per-bit (Eb/N0) that is required to achieve arbitrary small
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bit-error-rate (BER) for a given communication channel. We argue that the Shannon-limit for

an alternate signal representation can provide a better trade-off such that a communication

system can potentially achieve arbitrarily small BER while dissipating near-zero energy-

per-bit. The proposed representation is based on previously reported variance-based logic

(VBL), where the information bits are encoded as changes in signal variance [55]. This logic

representation is contrary to the conventional mean-based logic (MBL) where the information

is encoded as the change in the mean of a signal property, for instance, the signal amplitude

or its phase or its frequency [87, 88]. Both MBL and VBL representations are illustrated

using a standard communication model in Fig. 7.1(a). For a one-dimensional (1D) MBL, the

probability density function (PDF) of the channel input (X) is modeled using two Dirac-delta

functions located at logic levels ’0’ and ’1’, as shown in Fig. 7.1(b). Note that this abstraction

is independent of the physical implementation of MBL using amplitude-shift keying (ASK),

frequency-shift keying (FSK) or phase-shift keying (PSK). If the noise in the communication

channel (W) is assumed to be additive, as illustrated in Fig. 7.1(a), then the output of the

channel is Y = X + W, and its corresponding PDF is given by two overlapping probability

distributions, as shown in Fig. 7.1(b). For 1D VBL (shown in Fig. 7.1(c)), the input logic

levels are encoded by PDFs with a low and high variance which translates to an output PDF

with low and high variances. The key difference between the MBL and VBL representations

is the decoder used to differentiate between the logic levels at the receiver. The optimal

decoding boundary for 1D MBL is shown in Fig. 7.1(b) and lies at the intersection of the two

distributions, whereas for 1D VBL, the optimal decoding boundary lies at the tails of the

distributions.

In this chapter, we investigate the lower-bounds on energy-per-bit when using high-dimensional

VBL (HD-VBL) representations. Examples of 2D and 3D MBL and VBL representations

are shown in Fig. 7.2. In the case of high-dimensional MBL (HD-MBL), the lower bound on
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Eb/N0 can be derived using a channel coding theorem. For instance, for an additive white

gaussian noise (AWGN) channel, the lower-bound on Eb/N0 is −1.59dB [89]. Thus, all existing

communication schemes that employ MBL representations are limited by this bound even

when the signal-dimensions used for encoding approaches infinity. In the case of HD-VBL,

the fundamental limit on Eb/N0 is determined by the overlapping volume of multivariate

probability distributions, as illustrated in Fig. 7.2 for 2D, 3D representations, which determines

the trade-off between the information capacity and the BER. Using geometric arguments,

we show that for HD-VBL, the information capacity and BER become uncorrelated with

respect to each other. Hence, both BER and Eb/N0 could concurrently be pushed towards

zero. Note that zero Eb/N0 communication schemes have been previously proposed in the

literature in the context of thermodynamic computing [90] and adiabatic computing [91];

however, the limit is achievable only for asymptotically zero information (data) rates.

7.2 Geometric Interpretation of HD-VBL

For our analysis, we will use the standard communication model, as shown in Fig. 7.1(a)

and follow the arguments on high-dimensional geometry as depicted in [92]. In the case

of HD-VBL, each codeword is encoded by modulating the variance of a zero-mean high-

dimensional signal along the direction X ∈ RD in a D-dimensional space as indicated in

Fig. 7.3. For an additive-white-Gaussian-noise (AWGN) channel, the received codeword (Y )

takes a shape of multi-dimensional Gaussian PDF and its contour is geometrically represented

using a D-dimensional hyper-ellipsoid as shown in Fig. 7.3. When the channel is not being

used, the PDF of Y at the receiver is symmetrical around the origin and can be illustrated

using a D-dimensional hyper-sphere S0 and is determined by the noise spectral density (N0).
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Figure 7.1: Comparison of mean-based logic (MBL) and variance-based logic (VBL) represen-
tations using (a) a standard communication system model and an AWGN channel. (b) For
one-dimensional MBL, the source PDF is encoded using two Dirac-delta functions located at
two logic states (X) 0 and 1. The receiver differentiates the two MBL levels using a decoding
boundary θ that separates the PDF corresponding to the output of the AWGN channel (Y).
(c) For one-dimensional VBL the input logic levels are mapped into PDFs with low(0) and
high(1) variances. The receiver then differentiates between the VBL levels using a decoding
boundary (±θ) that are located at the tails of the output PDFs.
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Figure 7.2: (a) Generalization of MBL and VBL to two and three dimensions. For high-
dimensional MBL (HD-MBL) the decoding hyperplane cuts through the volume of the
overlapping probability density functions (PDFs), whereas for HD-VBL, the decoding bound-
aries lie on the surface of the overlapping high-dimensional PDFs. Note that the overlap
between the PDFs determines the bit-error-rate (BER) for each representation.
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When the target D-tuple VBL codeword is transmitted, the received PDF at the receiver is a

hyper-ellipsoid S1 (as illustrated in Fig. 7.3), whose major axis is oriented along the vector X.

To detect whether the target code-word was transmitted, the receiver uses a decoder with

decision boundaries that coincide with two hyper-cylinders T1 and T2, as illustrated in Fig. 7.3.

Both T1 and T2 are aligned along the direction of X (known a-priori) and terminated by

spherical caps C1 and C2, formed by the overlap between hyper-ellipsoid S1 and the hyper-

sphere S0. The received codedword is decoded correctly only if the received signal vector

lies within the boundary of the hyper-cylinders, shown in Fig. 7.3. Based on this decoder we

can analytically estimate the probability-of-detection pd for each of transmitted codewords.

Mathematically, we show in section 7.3, estimating pd reduces to solving a two-fold hypothesis

testing formulation involving χ2 distributions. Then, for a given probability-of-detection pd,

we estimate the number of non-overlapping spherical caps C1 and C2 that could be packed

on the surface of the hyper-sphere S0, which gives us an estimate on the capacity of this

specific HD-VBL representation.

7.3 Numerical Results

7.3.1 HD-VBL with one degree-of-freedom

For an HD-VBL with one degree-of-freedom the signal power is added to any one of the

available D-dimensions, so that the direction vector X falls along one of the axes as illustrated

in Fig. 7.3. Without loss of generality, multi-dimensional variance of the received vector Y
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Figure 7.3: Estimation of capacity and BER for VBL representation with a threshold-based
decoder. Decision rule for estimating the probability of correct detection (pd) is provided by
the bounding cylinders (T1, T2).

could be represented using a diagonal co-variance matrix (ΣD) given by,

ΣD = diag [P +N0, N0, N0, ..., N0] (7.1)

where P is the total signal power and N0 is the channel noise power per dimension. Thus,

PDF for the received vector Y = [y1, y2, ..., yD] is given by a multi-variate zero-mean normal

distribution which is,

fY (y1, y2, ...yD) = A exp
(
−1

2

[
y2

1
P +N0

+
D∑
i=2

y2
i

N0

])
, (7.2)

where A is the normalization factor [93]. Note that this distribution can be parameterized

using [a, b] =
[
y1,

√(∑D
i=2

y2
i

D−1

) ]
, where each of the parameters a2 and b2 assumes a χ2

distribution with degrees-of-freedom 1 and D − 1 respectively and PDFs are illustrated in

Fig. 7.4(a). The decision rule (or decoder) is then determined by the solid angle ΩD and
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Figure 7.4: (a) BER estimation in terms of a two-fold hypothesis testing based on a Chi-square
distribution with degree of freedom 1. (b) Verification of analytical expression derived in
equation. 7.3 for BER1 (= 1− pd) with Monte-Carlo simulations for a different number of
dimensions (D) and parameters (SNR, θ). (c) Estimated channel capacity as a function of D
in log scale. (d) Classic BER1-Eb/N0 plot for the case of VBL with one degree-of-freedom,
and comparison is made with respect to MBLLB.
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projected angle φ shown in the a− b Cartesian plane contained by the thresholds α and θ,

as shown in Fig. 7.3. The probability of detecting the correct codeword (pd) is given by the

total probability mass concentrated between the two thresholds, also highlighted in Fig. 7.3

and is given by

pd = 1−BER1 = P(Y ∈ (T1 ∪T2))

= P
[
(a2 ≥ θ) ∧ (b2 ≤ α)

]
=

γ(D−1
2 , (D−1)ηθ′

2 )
Γ(D−1

2 )

1−
γ(1

2 ,
θ′

2(D SNR+1))
Γ(1

2)

 (7.3)

Here, θ′ = θ
N0

is the normalized threshold, η = α
θ

= (tan φ)2 and SNR = P
DN0

is the signal to

noise power ratio. Also, γ(., .) is the lower incomplete gamma function and Γ(.) is the ordinary

gamma function [94]. Fig. 7.4(b) shows the corresponding bit-error-rate BER1, where the

subscript 1 indicates the number of degrees-of-freedom. BER1 asymptotically decreases

with the increase in the number of dimensions D, for different levels of signal-to-noise ratio

(SNR) and decoder parameters. Also, the analytical model for pd has been validated using

Monte-Carlo simulations for multiple parameter realizations and is shown in Fig. 7.4(b).

To calculate the capacity of HD-VBL, we estimate the number of non-overlapping spherical

caps that can be packed on the surface of a D-dimensional hyper-sphere determined by the

thresholds, as illustrated in Fig. 7.3. Estimation of optimal packing density for spherical-

caps has been well studied in literature wrapped spherical codes and laminated spherical

codes [95,96]. The number of code words (M1) that can be accommodated in the space is

given by the ratio between the total surface area (AD), and the area spanned by one single

104



a

𝐷

𝐵
𝐸
𝑅
3

Analytical

Monte-Carlo

𝛼𝜃

𝑝
𝜒
2
3

𝑝
𝜒
2
D
−
3

𝜒2

b
𝑝𝑑
3 = ℙ(𝑇1 ∪ 𝑇2)

Figure 7.5: Extension to the case of general HD-VBL with variable degrees-of-freedom (a)
Estimation of the pkd using two-fold hypothesis testing for a 100-dimensional VBL representa-
tion with degrees-of-freedom k=3. (b) Verification of analytical BER expressions derived in
equation. 7.3,7.9 with Monte-Carlo simulations for different parameter values (SNR, θ).
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Figure 7.6: Extension to the case of general HD-VBL with variable degrees-of-freedom (a)
Estimation of the pkd using two-fold hypothesis testing for a 100-dimensional VBL representa-
tion with degrees-of-freedom k=10. (b)Verification of analytical BER expressions derived in
equation. 7.3,7.9 with Monte-Carlo simulations for different parameter values (SNR, θ).
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Bound).
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codeword (ACapD ) which are given by,

ACapD = 1
2ADIsin2 φ

(
D − 1

2 ,
1
2

)
(7.4)

where φ is the angle intended by the thresholds (θ,α) and I∗(., .) is the regularized incomplete

beta function. Also, sin2φ could be expressed as sin2(tan−1√η) where η = α
θ

and thus,

ACapD = 1
2ADIsin2(tan−1√η)

(
D − 1

2 ,
1
2

)
(7.5)

So the number of code words is given by,

M1 = AD

ACapD

= 1
Isin2(tan−1√η)

(
D−1

2 , 1
2

) (7.6)

Using the expression in equation 7.6, the capacity for this specific representation is given by,

C = log2M1 = log2

 1
Isin2(tan−1√η)

(
D−1

2 , 1
2

)
 . (7.7)

estimated using logarithmic measure [92]. Fig. 7.4(c) plots the capacity C with respect to

the signal dimensions D, for different choices of the decoder hyper-parameters (θ, α, η). The

estimated capacity in equation 7.7 can be used to obtain the energy-per-bit (Eb
N0

) for different

values of signal power P that is,

Eb
N0

= SNR

C
= P

DN0C
(7.8)

107



The results in Fig. 7.4(b)-(c) were used to obtain the BER1-Eb/N0 plot as shown in Fig 7.4(d).

Note that every marker in the HD-VBL simulation in Fig 7.4(d) corresponds to a specific choice

of a decoder parameter set (θ, α). The result shows that for this HD-VBL representation, the

BER can be reduced, but at levels of energy-per-bit (Eb/N0) that are significantly higher

than the MBLLB.

7.3.2 HD-VBL with k degrees-of-freedom

We generalize the VBL representation to a topology where the variance is now encoded

along a specific sub-manifold of dimension k(< D), instead of a one axis as discussed in

the section above. The code-words are now represented by sub-manifolds that are spanned

by a vectors X = [x1, x2, ...xD], such that ∑D
i=1 xi = k with vi ∈ {0, 1} ∀ i = [1, D].

Similar to the analysis presented in section 7.3.1, the estimation of the modified parameters

[ak, bk] =
[√(∑k

i=1
y2
i

k

)
,

√(∑D
i=k+1

y2
i

D−k

) ]
, which admits the PDFs a2

k ∼ χ2
k and b2

k ∼ χ2
D−k.

The respective distributions corresponding to D = 100 with degrees-of-freedom k = 3 and

k = 10 are shown in Fig. 7.5-7.6, where the respective probability-of-detection p3
d and p10

d

are given by the total probability mass within the two thresholds θ and α with signal power

spread equally (SNR/k) across only k axes in the direction of X.

Following similar arguments as in section 7.3.1, the probability of correctly decoding pkd can

be estimated as,

pkd = 1−BERk = P(Y ∈ (T′1 ∪T′2))

=
γ(D−k2 , (D−k)ηθ′

2 )
Γ(D−k2 )

1−
γ(k2 ,

kθ′

2(D SNR
k

+1))

Γ(k2 )

 (7.9)
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It can be seen in Fig. 7.5(b), as k increases the region signifying pkd spans a large proportion

of the probability mass as depicted in the BERk plots shown in Fig. 7.5-7.6. Note that

sub-script k denotes the number of degrees-of-freedom considered in the definition of HD-VBL

representation. The analytical results are given by equation. 7.9 have also been verified using

Monte-Carlo simulations, as shown in Fig. 7.5-7.6. Capacity of a HD-VBL representation

with k-degrees of freedom is estimated using spherical-cap packing argument for a (D − k)-

dimensional sphere and the number of code words are estimated using similar arguments as

in equation. 7.6,

Mk = 1
Isin2 φ

(
D−k

2 , k2

) (7.10)

and hence the capacity is given by,

C = log2Mk = log2

 1
Isin2(tan−1√η)

(
D−k

2 , k2

)
 (7.11)

The average bit-error rate (BERk) and capacity (C) were computed for different thresholds

(θ, α) and the energy-per-bit (Eb/N0) was estimated using equation. 7.8. Fig. 7.7-7.8. show the

BERk−Eb/N0 plots corresponding to the case k = 3 and k = 10. Also, each point in the BER

simulation corresponds to the results obtained for a specific choice of the decoder parameter

θ, α. The results clearly show that there exist HD-VBL representations for dimensions no

more significant than 100 that achieves near-zero BER with Eb/N0 close to zero values.

However, whether there exist VBL representations that can asymptotically achieve arbitrarily

small BER at arbitrarily small Eb/N0 still needs to be verified through Monte-Carlo studies.

This would require an exhaustive search over different decoding parameters and decoder

topologies which in turn requires significant computational resources.
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7.4 Summary

The analysis and results presented in this chapter seem to indicate that by encoding infor-

mation in the variance of the signal, we can significantly improve upon the BER− Eb/N0

MBL limit. The intuitive understanding of this effect is that VBL encodes information on

the surface of a hyper-sphere whose volume asymptotically goes to zeros as the number of

dimensions approaches infinity. As a result, for VBL the tails of the distributions project

orthogonally to the hyper-spherical surface whereas the packing of the centroids is achieved

on the surface of the hypersphere. In a high-dimensional space and for low SNR, these

two effects (packing and error rates) are not perfectly correlated and hence once could be

reduced without reducing the other. This implies that the VBL limit could potentially

achieve arbitrary small BER at near-zero Eb/N0. However, this conjecture needs to be

mathematically proven and will be the topic of future publications. For a conventional MBL

representation, the lower-limit arises because the overlap between the PDFs of the adjacent

codewords (centroids) lies within the volume spanned by their PDFs. In higher dimensions

and for a given signal-to-noise ratio, the packing density (or equivalently the channel capacity)

scale linearly with the number of dimensions. As a result, the energy-per-bit Eb/N0, cannot

be further reduced while achieving near-zero BER, thus leading to the MBL-limit [92].

One of the challenges in implementing a practical communication system is the complexity of

implementing the decoder at the receiver. For an optimal decoder, the correct set of hyper-

parameters needs to be chosen. However, for higher-dimensional VBL and when multiple

directions are chosen for encoding, one has to resort to an exhaustive search over the decoder

parameter space to achieve the optimal decoding performance. Practical consideration and

the complexity of the optimization procedure would impose limits on the correct choice of

these parameters; however, note that for stationary channels, the parameters need to be
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estimated only once. Adaptive determination of the decoding hyper-parameters will be a

topic of future research. Also, note that even though we have shown the asymptotic property

of near-zero BER at near-zero Eb/N0 for a specific type of VBL representation, there might

exist other VBL representations that might demonstrate superior convergence. In this spirit,

there might exist some connection between VBL representations and stochastic resonance

based decoding, where “noise” or variance is introduced into the system to improve the

detection of a buried but harmonic signal [97]. Additionally, the practical realization of the

VBL based communication system would be a topic for future research. In VBL [98], it was

shown that the energy-harvesting systems [55] and emerging valleytronic devices [75] could

form a natural platform to implement some of the proposed communication techniques.
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Chapter 8

Conclusion

This dissertation demonstrates that a commercial off the shelf (COTS) ultrasound reader

can perform multi-access telemetry with devices implanted inside the body. Compared to an

RF-based telemetry system, ultrasound-based telemetry can penetrate deeper into biological

tissue. A millimeter-scale piezoelectric crystal can establish a high-speed data communication

link. Specifically, this telemetry technique generates M-scan/B-scan images containing the

transmitted information, and it is stored as a bit-map image and later can be demodulated

using appropriate image processing algorithms. Experimental results demonstrate data rates

close to 1 Mbps at implantation depths greater than 10 cm with reasonable BER, which

suits most in-vivo sensing applications. The measured power dissipation on sonomicrometry

devices was shown to be well below the tissue heating limits. This proposed technique’s

main advantage is that COTS and medically compliant ultrasound readers for performing

in-vivo telemetry will obviate the need to design dedicated ultrasound decoders and help

translate the technology into clinical practice without additional regulations. Flexibility

in providing variable data rates makes this technique accessible for immediate adoption in

several applications ranging from neural implants, cardiac implants, and health monitoring

sensors for hip or knee-implants. Using a B-scan imaging probe, I also showed the feasibility of
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sub-nano-watt in-vivo telemetry links in a water-medium for implantation depths greater than

10cm. We also presented a simple and yet robust decoding algorithm, and we characterized

the B-scan telemetry performance using reader sensitivity and bit-error rates. Although the

data rates achieved using the proposed scheme are limited by the frame rate of the imager,

given modern ultrasound systems that enable imaging at 10000 fps the data rates using

B-scan telemetry scale accordingly without affecting the quality (BER) of the communication

link.

Models for estimating energy levels harvested from non-linear biomechanical perturbations

of a cardiac valvular apparatus are presented in chapter. 3. My analysis demonstrates the

feasibility of harvesting 0.1-10 mW/cm2, which is orders of magnitude higher than the

previous configurations that harvested energy from the surface of the heart or the aorta. For

instance, the time-average power density was reported to be 1.2µW/cm2 when harvesting

energy from the surface of the heart. In contrast, the power density was 170nW/cm3 when

the energy was harvested from the aorta.

I also present an alternate and novel approach for building logic gates that operate on the

input signal’s statistical variance, which we call variance-based logic. The approach could

combine the functionalities of energy harvesting and digital computation, and the approach

could be applied to a wide variety of energy transducers. With the help of a prototype,

we have demonstrated fundamental digital cells’ performance and proposed a simple state

machine’s feasibility. Benefits of using variance-based logic include its reciprocity of the

energy transducer (like an RF antenna) which can be used to transmit logic-state information

wirelessly. Variance-based logic shares similarity with load-modulation techniques commonly

used in backscattering based communication systems.
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”Is there any advantage in encoding the information in signal mean rather than in signal

variance?”. This question has led my research to investigate variance-based informatics.

Although preliminary results demonstrate the benefits of variance-based representation and

threshold-based detection schemes, underlying theory, practical realization, and generalization

to high dimensional spaces are still part of future research.

8.1 Thesis Contributions

The main contributions of this thesis are as follows:

• Ultrasound Imaging-based Telemetry: First to investigate the use of commercial

off the shelf ultrasound readers for the performing multi-access and in-vivo biotelemetry.

• Piezoelectric Suture: First to investigate the concept of piezoelectric suture for

efficient energy harvesting from cardiac valve dynamics and its validation using in-vivo

sonomicrometry data.

• Variance driven Computing: First to investigate variance-based computing archi-

tecture to realize digital state machines that operate using multiple unregulated power

sources.

• Variance based Informatics: First to explore variance-based representation in the

context of energy-efficient physical system design.
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8.2 Future Directions

Although this dissertation contains a brief selection of topics under the title ”Theory, Design,

and Implementation of Energy Efficient Bio-telemetry using Ultrasound Imaging,” in this

section, I summarize the immediate next steps that follow the research and also implications

of discussed methods beyond biomedical applications.

• Self-powered in-vivo Sonomicrometry: One of the challenging application that

can be addressed using imaging based telemetry is to practically demonstrate a fully

self-powered in-vivo sonomicrometry platform. Future work in this direction includes

assembling a sub cm3 scale self-powered implantable device by integrating the sonomi-

crometry crystal (Chapter 2) along with the oscillator IC (Chapter 5) in bio-compatible

packaging with piezoelectric leads (chapter 4). Interrogation of these implantable

devices can be carried using a commercial off the shelf ultrasound imager (chapter 2).

This platform technology can enable a tether-free sonomicrometry platform that can

be used to monitor the cardiac valve monitoring in the ovine model and several other

deep tissue interrogation studies.

• Energy Harvesting Internet-of-Things: Traditionally, self-powered internet of

things are designed using modular approach and each module is designed and optimized

independently. The design techniques introduced in Chapter 5 provide architecture for

designing digital circuits that rely on signal variance and seamlessly integrates energy

harvesting circuits with digital logic. In this way, these devices can overcome temporal

latency in accumulating and trickle charging energy from energy sources. Although the

results presented in this work only serve as an introduction to this concept, the future

work will focus on improving circuit level implementation of the basic logic gates such

115



as latency and power dissipation. We envision that digital circuits designed using the

proposed approach could be applied in designing novel IoT sensors that can monitor

without any down-time, free-of-maintenance and can be interfaced with existing and

future IoT networks [99–103].

• Variance-based Informatics: The work on high dimensional variance-based logic

indicates that by encoding information in the variance of the signal, we can significantly

improve upon the BER-EbN0 MBL limit. The intuitive understanding of this effect

is that VBL encodes information on the surface of a hyper-sphere whose volume

asymptotically goes to zero as the number of dimensions approaches infinity. As a

result, for VBL, the tails of the distributions project orthogonal to the hyper-spherical

surface, whereas the centroids’ packing is achieved on the surface of the hypersphere.

In a high-dimensional space and low SNR, these two effects (packing and error rates)

are not perfectly correlated. Hence, once could be reduced without reducing the other,

which implies that the VBL limit could achieve arbitrary small BER at near-zero EbN0.

However, this conjecture needs to be mathematically proven and will be the topic of

future research.
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