1,068 research outputs found

    Enhanced Ai-Based Machine Learning Model for an Accurate Segmentation and Classification Methods

    Get PDF
    Phone Laser Scanner becomes the versatile sensor module that is premised on Lamp Identification and Spanning methodology and is used in a spectrum of uses. There are several prior editorials in the literary works that concentrate on the implementations or attributes of these processes; even so, evaluations of all those inventive computational techniques reported in the literature have not even been performed in the required thickness. At ToAT that finish, we examine and summarize the latest advances in Artificial Intelligence based machine learning data processing approaches such as extracting features, fragmentation, machine vision, and categorization. In this survey, we have reviewed total 48 papers based on an enhanced AI based machine learning model for accurate classification and segmentation methods. Here, we have reviewed the sections on segmentation and classification of images based on machine learning models

    Raman spectroscopy: techniques and applications in the life sciences

    Get PDF
    Raman spectroscopy is an increasingly popular technique in many areas including biology and medicine. It is based on Raman scattering, a phenomenon in which incident photons lose or gain energy via interactions with vibrating molecules in a sample. These energy shifts can be used to obtain information regarding molecular composition of the sample with very high accuracy. Applications of Raman spectroscopy in the life sciences have included quantification of biomolecules, hyperspectral molecular imaging of cells and tissue, medical diagnosis, and others. This review briefly presents the physical origin of Raman scattering explaining the key classical and quantum mechanical concepts. Variations of the Raman effect will also be considered, including resonance, coherent, and enhanced Raman scattering. We discuss the molecular origins of prominent bands often found in the Raman spectra of biological samples. Finally, we examine several variations of Raman spectroscopy techniques in practice, looking at their applications, strengths, and challenges. This review is intended to be a starting resource for scientists new to Raman spectroscopy, providing theoretical background and practical examples as the foundation for further study and exploration

    An Optimized Deep Learning Based Optimization Algorithm for the Detection of Colon Cancer Using Deep Recurrent Neural Networks

    Get PDF
    Colon cancer is the second leading dreadful disease-causing death. The challenge in the colon cancer detection is the accurate identification of the lesion at the early stage such that mortality and morbidity can be reduced. In this work, a colon cancer classification method is identified out using Dragonfly-based water wave optimization (DWWO) based deep recurrent neural network. Initially, the input cancer images subjected to carry a pre-processing, in which outer artifacts are removed. The pre-processed image is forwarded for segmentation then the images are converted into segments using Generative adversarial networks (GAN). The obtained segments are forwarded for attribute selection module, where the statistical features like mean, variance, kurtosis, entropy, and textual features, like LOOP features are effectively extracted. Finally, the colon cancer classification is solved by using the deep RNN, which is trained by the proposed Dragonfly-based water wave optimization algorithm. The proposed DWWO algorithm is developed by integrating the Dragonfly algorithm and water wave optimization

    Drone-based spectral and 3D remote sensing applications for forestry and agriculture

    Get PDF
    Practising sustainable agriculture and forestry requires information on the state of forests and crops to support management. In precision agriculture, crops are observed in order to treat them precisely in the right place and at the right time, saving both production costs and the environment. Similarly, in forests, information on the composition and state of forest health are crucial to enable their sustainable management. In particular, climate-change-driven insect pests have increased, but economic and ecological losses can be reduced by the right actions if up-to-date and precise information on the health of forests is available. In recent years, drones with cameras have evolved into a flexible way to collect remote sensing data locally. Spectral cameras provide accurate information about the reflection properties of objects, and photogrammetric methods also provide a cost-effective way to collect three-dimensional (3D) data from an object. The objective of this work was to develop and assess drone-based 3D and spectral remote sensing techniques to classify the health status of individual trees and to estimate crop biomass, various biochemical parameters such as nitrogen content, and grass-feeding quality. The work developed a processing chain in which spectral and 3D features were extracted from remote sensing data. Then, combining the features with observations and reference measurements collected from plants, machine learning models were developed for tree health classification and estimation of crop-related parameters. The effects of different factors related to data collection and processing on classification and estimation accuracies were studied in order to generate knowledge on optimal sensors and methods. In general, radiometric corrections, spectral resolution, and the combined use of spectral and 3D features improved classification and estimation accuracies. However, the optimal sensors as well as the data collection and processing methods depend on the different applications and their accuracy requirements. This work was the first to demonstrate the ability of drone hyperspectral data to map the health status of a forest by classifying individual trees infested by bark beetles. The results of the work also showed that drone-based mapping offers a great tool to estimate agricultural crop parameters which can be applied to the optimization of various precision agriculture tasks.Kestävän maa- ja metsätalouden harjoittaminen vaatii tietoa metsien ja viljelykasvien tilasta päätöksenteon tueksi. Täsmämaataloudessa viljelykasveja havainnoidaan, jotta viljelytoimenpiteet voidaan kohdistaa oikeaan paikkaan ja oikea-aikaisesti säästäen sekä tuotantokustannuksia että ympäristöä. Metsissä tieto metsien terveydentilasta on tärkeää, jotta voidaan hillitä metsätuhojen leviämistä. Erityisesti hyönteistuhot ovat lisääntyneet voimakkaasti ilmastonmuutoksen vauhdittamana, mutta taloudellisia ja ekologisia tappiota voidaan vähentää oikeilla toimenpiteillä, jos on olemassa ajantasaisesta tietoa metsien terveydentilasta. Dronet ja niihin asennettavat kamerat ovat kehittyneet viime vuosina joustavaksi tavaksi kerätä kaukokartoitusaineistoa paikallisesti. Spektrikameroilla saadaan tarkkaa tietoa kohteen heijastusominaisuuksista, ja fotogrammetriset menetelmät mahdollistavat myös kustannustehokkaan tavan kerätä kohteesta kolmiulotteista (3D) tietoa. Tämän työn tavoitteena oli kehittää näihin aineistoihin nojautuen kaukokartoitusmenetelmiä yksittäisten puiden terveydentilan luokitteluun sekä viljelykasvien biomassan, erilaisten biokemiallisten parametrien, kuten typpipitoisuuden sekä nurmen ruokintalaadun, kuten D-arvon estimointiin. Työssä kehitettiin prosessointiketju, jossa kaukokartoitusaineistoista irrotettiin spektri- ja 3D-piirteitä, yhdistettiin ne kasveista kerättyihin havaintoihin ja mittauksiin sekä muodostettiin koneoppimismalleja puiden luokittelua ja viljelykasveihin liittyvien parametrien estimointia varten. Työssä verrattiin useiden aineistonkeräykseen ja -prosessointiin liittyvien tekijöiden vaikutuksia luokittelu- ja estimointitulosten tarkkuuteen optimaalisten menetelmien löytämiseksi. Esimerkiksi spektri- ja 3D-piirteiden hyödyntäminen yhdessä sekä radiometriset korjaukset paransivat yleisesti luokittelu- ja estimointitarkkuuksia. Optimaaliset sensorit sekä aineistonkeräys- ja käsittelytavat riippuvat kuitenkin eri sovelluksista ja niiden tarkkuusvaatimuksista. Työssä osoitettiin ensimmäistä kertaa dronesta kerätyn hyperspektrisen aineiston kyvykkyys metsän terveydentilan havainnoinnissa luokittelemalla kuuset kolmeen luokkaan kirjanpainajan aiheuttaman tuhon perusteella. Työn tulokset myös osoittivat drone-pohjaisen kartoituksen kyvyn estimoida erilaisia viljelykasvien parametreja, joita voidaan edelleen soveltaa suunniteltaessa esimerkiksi lisälannoitusta tai säilörehun optimaalista korjuuaikaa

    Automated Spore Analysis using Bright-Field Imaging and Raman Microscopy

    Get PDF
    After the discovery of inadvertent shipments of viable B. anthracis spores by the United States Department of Defense in 2015, alternative and orthogonal methods were investigated to analyze spores to determine their viability. In this thesis we demonstrate a novel analysis technique that combines bright-field microscopy imaging with Raman chemical microscopy. We first developed an image segmentation routine based on the watershed method to locate individual spores within bright-field images. This routine was able to effectively demarcate 97.4% of the Bacillus spores within the bright-field images with minimal over-segmentation. Size and shape measurements, to include major and minor axis and area, were then extracted for 4048 viable spores which showed very good agreement with previously published values. When similar measurements were taken on 3627 gamma-irradiated spores, a statistically significant difference was noted for the minor axis length, ratio of major to minor axis, and total area when compared to the non-irradiated spores. Classification results show the ability to correctly classify 67% of viable spores with an 18% misclassification rate using the bright-field image by thresholding the minimum classification length. Raman chemical imaging microscopy (RCIM) was then used to measure populations of viable, gamma irradiated, and autoclaved spores of B. anthracis Sterne, B. atrophaeus. B. megaterium, and B. thuringiensis kurstaki. Significant spectral differences were observed between viable and inactivated spores due to the disappearance of features associated with calcium dipicolinate after irradiation. Principal component analysis was used which showed the ability to distinguish viable spores of B. anthracis Sterne and B. atrophaeus from each other and the other two Bacillus species. Finally, Raman microscopy was used to classify mixtures of viable and gamma inactivated spores. A technique was developed that fuses the size and shape characteristics obtained from the bright-field image to preferentially target viable spores. Simulating a scenario of a A practical demonstration of the technique was performed on a field of view containing approximately 7,000 total spores of which are only 12 were viable to simulate a sample that was not fully irradiated. Ten of these spores are properly classified while interrogating just 25% of the total spores
    corecore