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based radiometric datasets, developed estimation methods and analysed 
the results. Kaivosoja and Alhonoja provided the agricultural ground truth. 
Hakala built the drone system and contributed to drone data collection. 
Viljanen carried out all geometric processing steps and the analyses of 
them and contributed to drone data collection. Markelin processed 
radiometric datasets collected by aircraft. Näsi had a leading role in writing 
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the paper. Honkavaara and Viljanen participated in writing the paper with 
the assistance of all other authors. Honkavaara supervised the study and 
contributed to analysing the results. Honkavaara and Kaivosoja arranged 
all the required resources and designed the experiments. 

Publication IV: Machine learning estimators for the quantity and quality 
of grass swards used for silage production using drone-based imaging 
spectrometry and photogrammetry 
 
Näsi contributed to remote sensing data collection, developed estimation 
methods, and participated in data analysis and writing. Oliveira 
contributed to geometric and radiometric data processing, analysing the 
results and writing. Niemeläinen, Nyholm, Kaivosoja, Alhonoja and 
Jauhiainen provided the agricultural ground truth. Viljanen contributed to 
geometric processing and remote sensing data collection. Hakala built the 
drone system and contributed to remote sensing data collection. Nezami 
and Markelin contributed to radiometric processing. Oliveira, Näsi, 
Niemeläinen and Honkavaara wrote the manuscript with the assistance of 
all other authors. The experiments were planned by Honkavaara, 
Niemeläinen and Kaivosoja. Honkavaara and Kaivosoja acquired the 
funding. 

Publication V: Assessment of classifiers and remote sensing features of 
hyperspectral imagery and stereo-photogrammetric point clouds for 
recognition of tree species in a forest area of high species diversity  
 
Näsi contributed to remote sensing and ground truth data collection and 
geometric processing of spectral cameras, and performed radiometric 
processing and preliminary analysis of individual tree spectra. Tuominen 
provided the ground truth considering the tree species and genus. Saari 
and Ojanen corresponded about the sensor development and calibration. 
Hakala built the drone system and conducted the data capture. Viljanen 
contributed to remote sensing data collection and geometric processing. 
Balazs and Tuominen extracted the remote sensing features and performed 
the classification experiments. Tuominen, Näsi and Honkavaara wrote the 
manuscript with the assistance of other authors. The experimental layout 
was designed by Tuominen, Pölönen, Honkavaara and Saari. 

 





 

1. Introduction 

1.1 Motivation and background 

Human life, economy and well-being rely on nature. Biodiversity is the key 
factor in enabling nature to be productive (Dasgupta, 2021). In this context, the 
need to further develop sustainable agriculture and forestry has been widely ad-
dressed.  

Agriculture is the base for global food production, but it is also a significant 
driver of biodiversity loss. The urgent claim for achieving smart and innovative 
solutions for ensuring the sustainability of agriculture has been addressed in the 
Farm to Fork Strategy presented by the European Commission as part of the 
European Green Deal initiative, which aims at 'making the entire food chain 
from production to consumption more sustainable and neutral in its impact on 
the environment’ (EC, 2020). In the concept of precision agriculture or smart 
farming, the main aim is that plants get the precise treatment at the right time 
and the right place, based on their observed and measured requirements in or-
der to boost ecological and economically sustainable food production.  

Sustainable forestry relies on healthy forests. However, forest disturbances, 
particularly by insect pests, are increasing in frequency, intensity and spatial 
extent due to drivers related to climate change (Sommerfeld et al., 2018). In 
Europe, the European spruce bark beetle (Ips typographus) has become a force 
that is changing forest landscapes across Europe, causing significant ecological 
and economic losses (Hlasny et al., 2019). For example, the bark beetle situation 
in the Czech Republic is disastrous. Approximately 30 million cubic metres were 
affected by bark beetles in 2019, which is five times more than in 2017. The 
number of damaged trees is larger than what the logistics can handle, and the 
economic loss is estimated to be 1.12 billion € (Toth et al., 2020). Early detection 
of bark beetle outbreaks is needed to plan management action to prevent further 
expansion of the outbreaks.  

Drone technology has developed rapidly in the last decade, providing an alter-
native platform to traditional remote sensing platforms such as aircraft and sat-
ellites (Manfreda et al., 2018). Furthermore, multi- and hyperspectral cameras 
have been miniaturized, allowing them to be carried by even small drones 
(Aasen et al., 2018). Great developments in photogrammetric and computer-
vision algorithms have taken image-based dense 3D reconstruction to the next 
level (Wu et al., 2013). These developments have revolutionized spectral and 
structural measurements, making them flexible and low-cost, and they have 
opened new prospects to monitor agricultural crops and forest health. 
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1.2 Objectives and overview of the thesis 

The general objective of the thesis is to develop drone-based 3D and spectral 
remote sensing techniques for forestry and agriculture. In all of the publications 
in this thesis, drones were the main platform for remote sensing data acquisi-
tion, where different camera systems were mounted. The main sensor to collect 
spectral data was a frame-based hyperspectral camera, which also enables the 
use of photogrammetry and structure-from-motion techniques to solve georef-
erencing parameters and the generation of the 3D point cloud data. However, 
in order to achieve a higher level of spatial accuracy and density, the 3D data 
were also generated based on RGB cameras. Besides, in all publications, the po-
tential of drone-based remote sensing data was demonstrated in real forestry 
and agriculture-related applications. Mapping of forest damage caused by bark 
beetles has been investigated in publications I and II, whereas tree species and 
genus classification were addressed in Publication V. Regarding agricultural ap-
plications, estimation of various biophysical, biochemical and feeding quality 
crop parameters were investigated. Biomass and nitrogen content were esti-
mated in Publication III, targeting additional fertilization application. In Publi-
cation IV, biomass and various feeding quality parameters were estimated to 
optimize the harvesting time of silage grass, aiming to maximize the quantity 
and quality of the yield. 

The conceptual framework of the thesis, including its main contributions and 
objectives, are summarized in Figure 1. The specific objectives of the thesis are 
defined as follows: 

 
Objective 1: To develop drone-based 3D and spectral remote sensing tech-

niques for classifying the health status and species of an individual tree (Publi-
cations I, II, V) 

Objective 2: To develop drone-based 3D and spectral remote sensing and ma-
chine learning methods for agricultural crop parameter estimation (Publica-
tions III and IV) 

Objective 3: To assess the effects of different measurement parameters—such 
as radiometric processing levels, selection of spectral sensor, spatial resolution 
and integration of spectral and 3D data for classification and estimation accu-
racy (Publications II–V). 
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Figure 1. A conceptual framework, representing the components of the thesis, scientific objec-
tives and links among them and the publications. The green box represents the forestry and 
the yellow box represents agriculture-related publications, components and objectives. (Pic-
ture in the background has been modified from the picture, which National Land Survey of 
Finland has the copyright) 

All publications have a similar basic structure. Remote sensing workflows were 
implemented, based on spectral and 3D data collected by a drone. The main 
parts of the workflow include geometric and radiometric processing and feature 
extraction followed by estimation or classification of the interest variables using 
machine learning methods. Different settings during data collection and data 
processing affect the data to be used in the analysis phase. For example, the 
sensor itself affect the spectral response and—together with the flying height—
the spatial resolutions. Also, atmospheric effects and variable weather condi-
tions can influence the measured spectral values. Radiometric processing aims 
to reduce these effects, and it can be performed using various approaches. Fur-
thermore, several features can be calculated from spectral and 3D data, and they 
can be divided or integrated into various feature sets. All of the above-men-
tioned different settings (the ‘measurement parameters’) have affected the final 
estimation or classification accuracy. Consequently, comparing these parame-
ters is key to finding optimal sensors, data collection and processing methods 
for different applications. All publications include an assessment of these pa-
rameters, but publications II–V focus on more of them. Similarly, in all publi-
cations, remote sensing workflows were implemented, but their significance is 
highlighted in publications where they have been first implemented considering 
novel sensors in forestry (I, V) or agricultural applications (III). It is worth not-
ing that although in all publications an application has been demonstrated, the 
implications for bark beetle damage mapping (in Publication II) and grass qual-
ity and quantity parameters (in Publication IV) have been analysed more deeply 
than in other publications where the focus has been more technically oriented.  
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An overview of the publications in this thesis and the research links between 
the publications are given below: 

 
In Publication I, forest health was monitored for the first time using drone-

based hyperspectral imaging. An entire drone-based remote sensing workflow 
to detect and classify individual trees from the novel drone-based hyperspectral 
imaging system was implemented. Norway spruces (Picea abies) were classified 
successfully into 2 or 3 classes based on symptoms caused by a bark beetle at-
tack.  

 
In Publication II, bark beetle damage mapping based on airborne spectral in-

formation is further developed and extended to larger areas. The study assesses 
the effect of spatial resolution and training data size on the accuracy of the clas-
sification process. Additionally, the study demonstrated spruce health maps for 
forest management purposes. 

 
In Publication III, the workflow was developed for estimating agricultural 

crop parameters using machine learning and drone-based remote sensing. Both 
3D and spectral features were employed and their performance to estimation 
accuracy was compared. The study also assessed the effects of different spatial 
resolution and radiometric processing on the estimation accuracy.  

 
In Publication IV, the quantity and quality parameters of grass swards were 

estimated based on machine learning, drone-based spectral imaging and pho-
togrammetry. Both spectral and 3D features were employed, and the perfor-
mance of different sensors (RGB, multi- and hyperspectral) was compared. The 
workflow, developed in Publication III, was extended and assessed more com-
pletely. The assessment of developed estimators was also tested in independent 
test fields with suitable accuracy, verifying that the estimators were not only 
specific to training data.  

 
In Publication V, drone-based photogrammetric 3D and spectral data from 

two novel cameras in VNIR and SWIR spectral ranges were used for tree species 
recognition in an arboretum. Data from both sensors and 3D features were in-
tegrated, and their performance accuracy was compared. The study also evalu-
ated the level of radiometric processing for estimation accuracy.  

 
The development of the remote sensing workflow was a continuous process, 

which is visible in Publications I–V. In Publication I, only spectral features and 
a simple classifier were employed. The results were not assessed with independ-
ent test areas, and different measurement parameters were not optimized. In 
contrast, in Publication IV, 3D and spectral features and more developed ma-
chine learning algorithms were employed, various measurement parameters 
were optimized, and the results were assessed with independent test fields.   
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2. Literature review 

This chapter aims to provide background information about the concepts, 
terms and previous research related to the topic of the thesis in order to under-
stand the research work that was done. First, drones and sensors as tools for 
optical remote sensing are described. Secondly, forestry and agricultural appli-
cations related to the topic are briefly described with a review of how remote 
sensing had been applied previously. 
 

2.1 Drone-based remote sensing systems 

2.1.1 Platforms 

The history of drones dates back more than a hundred years, but their use for 
a long time was mostly limited to military applications (Colomina and Molina 
2014). Drones are referred to by many different names and abbreviations, such 
as UAV, UAS and RPAS. Unmanned aerial vehicle (UAV) refers specifically to 
the flying vehicle itself. In addition to the vehicle, the Remotely Piloted Aerial 
System (RPAS) and Unmanned Aerial System (UAS) emphasize the entire sys-
tem, including other components necessary for operation, such as the ground 
control station and the communication data link between the vehicle and the 
ground station. Being a simple term, ‘drone’ has become popular in public use, 
and it is used in this study, even though the aforementioned terms are techni-
cally more precise. 

Technological developments led to price reduction and miniaturization of 
components related to drones, such as batteries, in particular LiPo (Lithium 
Polymer), Global Navigation Satellite System (GNSS) receivers, inertial meas-
urement units (IMU) and electronic speed controls (ESC), which were driving 
the adoption of rotary and fixed-wing drones for civilian applications (Siebert 
and Teizer, 2014; González-Jorge et al., 2017). Lightweight components and 
higher-capacity batteries enabled longer flight times without additional fuel. 
Drones with two or more rotors (multicopters) especially benefitted from the 
development of ESCs for brushless motors, and these have replaced conven-
tional single- and double-rotor helicopters. Multicopters, such as quadcopters 
with four rotors and hexacopters with six rotors are controlled by changing the 
speed of the rotors via ESCs, which makes flight control simpler than with heli-
copters, which require controlling the blade rotations. Due to sophisticated au-
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topilot, i.e. the Flight Controller Unit (FCU), the control of multicopters is flex-
ible and user-friendly, which has increased their popularity (Siebert and Teizer, 
2014). 

Aerial imaging is one of the most famous civilian applications of modern 
drones (González-Jorge et al., 2017). The popularity of drones as a platform for 
the remote sensing sensors increased dramatically after 2010 (Nex and Remon-
dino, 2014; Pajares, 2015). In environmental monitoring, the popularity mainly 
relies on drones as having bridged the gap between space and other airborne 
and terrestrial platforms (Pajares, 2015; Toth and Jóźków, 2016; Manfreda et 
al., 2018). Compared to other airborne remote sensing platforms (such as 
manned aircraft and satellites), drones are low-cost and flexible to operate, but 
they are limited to smaller mapping coverage. Static or mobile platforms used 
at ground level (often referred to as proximal sensing or terrestrial approaches) 
are even more flexible, but the spatial coverage is more limited than with drones 
(Figure 2). The potential of different remote sensing platforms in their spatial 
coverage and flexibility for environmental mapping is illustrated in Figure 2. 
The term ‘flexibility’ in this context refers, firstly, to the amount of required ef-
fort to start the data collection, and secondly to the possibilities of influencing 
the data collection during its execution (e.g., changing the flight plan). High 
flexibility also means that data collection can be repeated often, i.e. the temporal 
resolution can be selected more freely. Besides, the drone types (such as fixed-
wing and multicopters) differ in their features as a remote sensing platform. 
Fixed-wing drones are faster than multicopters and benefit from their spatial 
coverage. On the other hand, the ability of multicopters to fly slowly or even stop 
in the air benefits flight operations for certain applications. Furthermore, mul-
ticopters are more flexible in mounting payloads. 
 

 

Figure 2. The potential spatial coverage and flexibility of different remote sensing platforms for 
environmental mapping. 

2.1.2 Sensors 

In the science of photogrammetry and remote sensing, modern drones were 
first applied in photogrammetry and after Eisenbeiss (2009) introduced the 
term ‘UAV Photogrammetry’, the 3D reconstruction based on drone imaging in-
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creased dramatically (Nex and Remondino, 2014). Small off-the-self RGB digi-
tal cameras were used for photogrammetric 3D reconstruction. In the early 
2000s, spectral remote sensing sensors were too heavy to be mounted on 
drones. However, since the importance of spectral areas outside the visible 
range is known (especially in vegetation remote sensing), the development of 
lightweight spectral cameras suitable for drones was started. According to 
Aasen et al. (2018), the first drone-based spectral sensor was an RGB camera 
modified by removing filters to collect near-infrared (NIR) information in addi-
tion to three bands in the visible range, as presented by Lelong et al. (2008). 
Afterwards, various miniaturized spectral sensors with multiple working prin-
ciples were presented. They can be divided into three main groups: point spec-
trometers (e.g. Burkart et al., 2013) that records the spectral signature in one 
point, pushbroom spectrometers (e.g. Zarco-Tejada et al., 2012) that record 
spectral information in one spatial dimension, and 2D imagers that record the 
spectral information in two spatial dimensions. Among the 2D imagers, there 
are still various sensor approaches. For instance, multiple cameras can be com-
bined (multi-camera 2D imagers) as the one presented in Berni et al. (2009) 
which was able to collect six bands. The first miniaturized 2D imager, which was 
described as a hyperspectral sensor with more than 30 spectral bands, was in-
troduced by Saari et al. (2011). This sensor records the spectral bands sequen-
tially in time (sequential 2D imager). Consequently, the spectral bands need to 
be aligned when captured from a mobile platform such as a drone. Several types 
of snapshot 2D imagers, which collect spectral and spatial information simulta-
neously, have also been introduced (Aasen et al., 2018).  

All of these sensors have advantages and disadvantages, considering their us-
ability as a remote sensing sensor, since the building of spectral sensors is al-
ways a tradeoff between spatial aspects (resolution and coverage), spectral as-
pects (spectral resolution and range) and radiometric resolution. Concerning 
the spectral aspects, the spectral range defines the possible range in the electro-
magnetic spectrum where the observations are made. Drone-based sensors 
mostly operate from visible to near-infrared (350-1000 nm, VNIR), but a few 
sensors operating in shortwave infrared (1000-1600 nm, SWIR) have been pre-
sented (Honkavaara et al., 2016; Jenal et al., 2019). Spectral resolution is pri-
marily referred to as a measure of the ability to separate different wavelengths 
in the electromagnetic spectrum. This is commonly measured as FWHM (Full 
Width at Half Maximum), which means the distance between points on opposite 
sides of the maximum value of a function where the function gets half of its 
maximum value (Figure 3). The spectral resolution is also closely related to the 
number of collected bands. Radiometric resolution describes how many levels 
the intensity of the received signal can be divided (bit depth), but it is also re-
lated to the signal-to-noise ratio. A comparison of different spectral sensors con-
cerning these aspects can be found in the review by Aasen et al. (2018). 
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Figure 3. Typical spectral response of vegetation measured by a hyperspectral (Rikola 
model 2018, manufactured by Senop) and a multispectral (RedEdge, manufactured by 
MicaSense) camera, operating in VNIR range for drone-based remote sensing. The lo-
cation of the bars marks the central wavelength of the spectral bands and width of the 
bars marks the FWHM at the top of the chart for multispectral and at the bottom of the 
chart for hyperspectral camera.  

2.2 Optical remote sensing of vegetation 

Optical remote sensing is based on measurements of the interaction between 
electromagnetic radiation and the vegetation. The incident electromagnetic ra-
diation can be absorbed, reflected or transmitted by the object. Different objects 
react to this radiation in different ways, forming the characteristic reflection 
spectrum of each object. Green plants absorb almost all visible light due to chlo-
rophylls but reflect much of the radiation when visible light changes to infrared 
radiation (Knipling, 1970). Various biophysical and biochemical properties of 
vegetation influence the reflectance spectrum (Curran, 1980). This has made 
optical remote sensing a tool for various vegetation-related applications. This 
section briefly describes applications and remote sensing methods related to 
this thesis.   

2.2.1  Forestry: tree health and tree species classification 

The composition and health of tree species is fundamental information when 
describing forest ecosystems. Information on tree species is considered an es-
sential biodiversity variable (EBV) in the context of worldwide biodiversity 
monitoring (Pereira et al. 2013; Vihervaara et al., 2017; Jetz et al., 2019). Also, 
information on tree species is crucial for forest inventories since it is used for 
species-specific yield and growth models (Laasasenaho, 1982; Korpela and 
Tokola, 2006). Information on tree species is also important in forest health 
mapping since many disturbances, particularly those caused by insect pests, are 
mostly tree-species-specific.  
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Forests can face both biotic stresses (such as insect pests and pathogens) and 
abiotic stresses (such as wind, storms, floods and fires) (Lindner et al., 2010; 
Seidl, 2017). Many of these stresses appear as discolouration and defoliation of 
canopy, which remote sensing technologies can detect. Remote sensing has 
been employed especially for insect pest damage mapping, and conifer bark bee-
tles have been one of the most-studied damage agents (Senf et al., 2017). In Eu-
rope, the European spruce bark beetle has been causing significant damage to 
Norway spruce forests. The infestation by bark beetle is typically divided into 
four phases: green, yellow, red and grey attacks (Wermelinger, 2004; Blomqvist 
et al., 2018; Abdullah et al., 2018a). In the green-attack phase, the canopy is still 
green, but visible symptoms are located only in tree trunks as entrance holes of 
beetles and as fresh resin flows. In the next phases, the canopy colour changes 
to yellow and red before needles fall off and the tree dies (grey attack) (Wulder 
et al., 2006). Detecting bark beetle damage as early as possible enables the plan-
ning of actions to prevent the spread of outbreaks.  

Forest health has been observed in the VNIR range since World War II and 
from a wider spectral range since the 1960s (Carneggie and Lauer, 1966; Ustin 
and Gamon, 2010). However, remote sensing technologies have developed 
enormously after these years, presenting new solutions for forest health moni-
toring (Torresan et al., 2017; White et al., 2016). Various remote sensing meth-
ods with different spatial, spectral and temporal resolutions exist (Fassnacht et 
al., 2016; Hall et al., 2016; Senf et al., 2017). For instance, satellites (such as the 
Landsat series) collect forest information on a global scale but are limited to low 
spatial resolution (Landsat-8 Ground Sample Distance (GSD) of 30 m). There-
fore, forest inventories using satellite data have typically been carried out at the 
forest-stand or sample-plot levels, not at the individual tree level. Landsat-8 has 
been applied especially in forest health monitoring studies (Rock, 1986; Foster 
et al., 2017) and for mapping the diversity of tree species (Walsh, 1980). After 
launching the Sentinel-2 satellites (GSD 10-60m), their MultiSpectral Imager 
(MSI) has been used in various studies in forest health monitoring (Zarco-
Tejada et al., 2018; Abdullah et al., 2018b; Huo et al., 2021; Fernandez-Carrillo 
et al., 2020) and tree species classification (Immitzer et al., 2016; Persson et al., 
2018). Abdullah et al. (2018b) were the first to show that the early phase of bark 
beetle outbreak, the green attack stage, could be detected from Sentinel-2 data.  

Aircraft enables high spatial and spectral resolution when applied as a plat-
form for spectral sensors. For example, Lausch et al. (2013) and Fassnacht et al. 
(2014) used aerial imagery with 4-7m of GSD, collected by a Hyperspectral Map-
per (HyMAP) instrument (125 bands; 450–2480nm), to detect a bark beetle in-
festation in Germany. They found that spectral bands in the VNIR range, and 
especially the red edge (690 nm), contributed to classification accuracies, but 
they stated that their pixel-based method led to misclassifications between tree 
health and soil classes. Recently, Potterf et al. (2019) stated that airborne col-
our-infrared images from 2007 to 2015 with GSD of 20-30 cm were accurate 
enough to manually digitize the spread of beetle infestations from windthrown, 
which allowed the modelling of the infestation gradient. Laser scanning from 
aircraft (ALS; airborne laser scanning) has also been widely and successfully 
used for tree species classification (Holmgren et al., 2004; Suratno et al., 2009; 
Korpela et al., 2010; Hovi et al., 2016). In forest health monitoring (e.g. Kantola 
et al., 2010), ALS (Airbrone Laser Scanning) point clouds have been employed 
less often than spectral images. 
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Since the developments in drone and lightweight sensor technologies, they 
have been employed in forest health monitoring and tree species classification, 
enabling mapping with very high spatial and temporal resolution. The first stud-
ies to classify tree species from drone-based VNIR range measurements were 
conducted with multispectral sensors, e.g. by Lisien et al. (2015) and Michez et 
al. (2016) in Belgium. They concluded that multitemporal and high spatial res-
olution are efficient ways to classify broadleaved tree species, and the combina-
tion of RGB and NIR features provide better classification accuracy than the use 
of only one of them. Nevalainen et al. (2017) showed for the first time that the 
combination of photogrammetric point clouds and hyperspectral data in the 
VNIR range is a sufficient tool to detect and classify tree species in boreal for-
ests. Prior to the Publication V, the drone-based spectral sensors operating in 
the SWIR range were not studied in a forest environment.  

In the study by Lehmann et al. (2015), the feasibility of drone-based imaging 
to monitor forest damage caused by insect pests were shown using multispectral 
data. Hyperspectral drone imaging in insect pest monitoring was studied for the 
first time in Publication I, where individual Norway spruces infested by the Eu-
ropean spruce bark beetle were classified into three classes. Recently, monitor-
ing damage by the same bark beetle, using multispectral imaging from drone, 
has been studied by Klouček et al. (2019) and Brovkina et al. (2018). Klouček et 
al. (2019) concluded that a low-cost multispectral sensor was also able to clas-
sify infested trees with promising accuracy. Brovkina et al. (2018) classified the 
first tree species and then stated that Normalized Difference Vegetation Index 
(NDVI; Rouse, 1974) values of spruces with fungal pathogens and bark beetles 
differed statistically from healthy spruces. Drone imaging has also been em-
ployed successfully to mapping insect damage in other tree species, such as Pi-
nus radiata (Dash et al. (2017), Abies sibirica (Safonova et al., 2019) and Pinus 
yunnanensis (Lin et al., 2019; Liu et al., 2020). 

The common approach to classifying spectral remote sensing data has been 
pixel-based, especially for satellite imaging. The high spatial resolution of 
drone-based imaging has enabled the move from pixel-based methods to object-
based methods, and particularly to the individual tree level. In the object-based 
method, pixels are first segmented into similar groups before classification 
(Blaschke, 2010). For instance, Lehman et al. (2015), Michez et al. (2016) and 
Franklin (2018) have applied this approach to drone-based data. Franklin 
(2018) concluded that object-based methods outperformed pixel-based meth-
ods in the tree species classification. Michez et al. (2016) concluded that their 
smallest scale in the object-based analysis (1m2) outperformed the analysis with 
a higher scale. In the forest, object-based approaches typically led to irrelevant 
classes, such as canopy gaps as in the study by Lehman et al. (2015). In individ-
ual tree approaches, the trees are first detected in order to target the analysis 
only to them. Photogrammetric point clouds have been widely employed and 
proved to be efficient in detecting individual trees from drone-based imaging 
data, especially in forests where the forest floor is visible (Puliti et al., 2015; Ne-
valainen et al., 2017; Minarik et al., 2020).  

Various machine learning algorithms—such as k-Nearest Neighbours (k-NN), 
Multilayer Perceptron, Support vector machines (SVM) and Random Forest 
(RF)—have been applied to classify tree species and health status. None of these 
classifiers have been found to be the best for all use cases (Maxwell et al., 2018). 
In addition to classification performance, the algorithms differ regarding the 
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requirements of training data and the number of parameters to be optimized 
(Kotsiantis et al., 2007). Recently, the popularity of deep learning methods, par-
ticularly convolutional neural networks (CNN), have gotten them more atten-
tion, and they have resulted in high classification accuracies when drone data 
has been employed to classify tree species (Sothe et al., 2020; Nezami et al., 
2020; Miyoshi et al., 2020b) and health status (Safonova et al., 2019). 

2.2.2  Agriculture: crop parameter estimation  

As defined by the International Society of Precision Agriculture, ‘Precision ag-
riculture is a management strategy that gathers, processes and analyses tem-
poral, spatial and individual data and combines it with other information to sup-
port management decisions according to estimated variability for improved re-
source use efficiency, productivity, quality, profitability and sustainability of ag-
ricultural production.’ (ISPA, 2019). In this context, timely information about 
the properties of agricultural crops, i.e. crop parameters, is highly relevant. De-
pending on the agricultural task, different kinds of crop parameters are of inter-
est, such as biophysical, biochemical and feeding-quality parameters. Biophys-
ical parameters such as biomass, Leaf area index (LAI) and plant height are re-
lated in the agricultural context to the quantity of the yield. Above-ground bio-
mass, often referred to as biomass, is the fundamental parameter to be esti-
mated in precision agriculture and, in the case of grass crops, it directly defines 
the quantity of grass, i.e., the yield of grass. Beyond the agricultural context, 
biophysical parameters provide insight into the structure and function of eco-
systems (van Cleemput et al., 2018). Biochemical parameters, such as nitrogen 
and phosphorus content, define the general nutritional status and identify spe-
cific nutritional deficiencies of the plant. Feeding quality parameters consist of 
a group of parameters that define the nutritional value of a specific plant or 
group of plants for the specified animal species. For instance, digestibility is 
commonly evaluated with the D-value parameter, which is directly related to 
metabolized energy (ME) and, in the case of grass silage for a ruminant, the D-
value multiplied by 0.016 provides ME (MAFF, 1975). Another important pa-
rameter called crude protein is directly related to nitrogen content (Jones, 
1931).  

Remote sensing has been offering tools to provide information about crop pa-
rameters for decades (Bauer and Cipra, 1973; Curran, 1980; Weiss et al., 2020). 
In the context of precision agriculture, the first applications were conducted 
from satellites and various terrestrial platforms (Bhatti et al. 1991; Mulla et al., 
2013). From satellites, optical data has been collected from Landsat TM (Bhatti 
et al. 1991; Thenkabail, 2003) and Sentinel-2 (Clevers et al., 2017; Delloye et al., 
2018), and active data from synthetic-aperture radar (SAR) (Karjalainen et al., 
2008). Terrestrial approaches include crop height measurement using laser 
scanning (Lumme et al., 2008; Hoffmeister et al., 2013; Tilly et al., 2014), trac-
tor-mounted sensors for nitrogen and biomass estimation (Tremblay et al., 
2009) and field spectrometers for feeding quality parameter estimation 
(Pullanagari et al., 2012, Smith et al., 2020). However, these approaches do not 
meet the requirements for precision agriculture in terms of flexibility, high spa-
tial accuracy and cost-efficiency. Developments in drones, sensors and photo-
grammetry have raised crop monitoring for precision agriculture to a new level 
(Tsouros et al., 2019). Drones offer flexible and low-cost platforms for spectral 
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cameras to collect multi- or even hyperspectral data. In addition, photogram-
metric 3D reconstruction based on structure from motion (SfM) and dense im-
age matching algorithms (Wu, 2013; Hirschmüller, 2008) enables a cost-effi-
cient 3D data collection of crops.   

Biophysical parameters, in particular (above-ground) biomass, are the most 
common crop parameter to be estimated using drone-based imaging. Both pho-
togrammetric 3D (Bendig et al, 2014; Li et al., 2016) and spectral data from 
multispectral (Berni et al., 2009; Hunt et al., 2010; Candiago et al., 2015; Liu et 
al., 2019) and hyperspectral sensors (Honkavaara et al., 2013; Aasen et al., 2015; 
Barnetson et al., 2020) have been adopted to estimate the biomass of various 
crops. Furthermore, the combination of 3D and spectral has been claimed to be 
a feasible approach in the context of biomass estimation (Bendig et al., 2015; 
Yue et al., 2017; Viljanen et al., 2018). Nitrogen is the most important nutrient 
to boost crop growth and it can also affect to the structure of a plant such as to 
the stem/ leaf ratio of the grass swards (Van Soest, 1994). Therefore, nitrogen 
(such as, nitrogen concentration or nitrogen uptake) has been a widely esti-
mated biochemical parameter in the remote sensing literature (Berger et al., 
2020a), and only a few studies spectral data have been collected from drones. 
Prior to Publication III, drone-based methods were mainly conducted by multi-
spectral sensors (Geipel et al., 2016; Liu et al., 2016). Feeding quality parame-
ters have been estimated especially for different grass swards used for forage 
production for ruminants directly by pasturing or by harvesting and preserving 
it to silage. One of the first studies to estimate those parameters applying drones 
was done by Capolupo et al. (2015), where hyperspectral vegetation indices and 
partial least squares regression models were used to estimate ME and crude 
protein. Linear regression models have been used by Barnetson et al. (2020) 
with hyperspectral data and Michez et al. (2020) with multispectral data.  

Machine learning methods have been adopted for agricultural crop parameter 
estimation mainly due to their ability to handle a large number of data and non-
linear tasks (Chlingaryan et al., 2018). In contrast to physically based methods, 
they are variable-driven approaches. They are also often considered as non-par-
ametric and nonlinear methods in contrast to parametric and linear regression 
methods (Verrelst et al., 2019). Parametric regression methods are typically 
built by fitting the model between a crop parameter and a single vegetation in-
dex or another metric that has been selected based on physical knowledge of 
plant properties. Considering the drone-based crop parameter estimation, the 
first approaches were typically in this category, such as biomass estimation 
based on the correlation with the NDVI index (Swain et al., 2010) or the photo-
grammetric surface model (Bendig et al., 2014). Non-parametric linear meth-
ods, such as partial-least-squares-regression (PLSR), have been adopted, espe-
cially with hyperspectral data (Capolupo et al., 2015). The high performance of 
machine learning methods in various remote sensing tasks (Lary et al., 2016; 
Chlingaryan et al., 2018) inspired the employment of them for drone-based crop 
estimation, such as the use of the random forest algorithm (RF) to estimate bi-
omass (Viljanen et al., 2018) and feeding quality parameters of grass in Publi-
cation IV. The latest rising trend, considering the machine learning methods in 
remote sensing, has been deep learning algorithms, in particular CNN (Katten-
born et al., 2021). For instance, Castro et al. (2020) presented promising results 
when they estimated the biomass of grass based on RGB images collected from 
drones using such an approach. 
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3. Material 

3.1 Study areas and biophysical ground truth 

All study areas were located in southern Finland. The size of the areas ranged 
from 2.5 ha to 3000 ha (Table 1). In publications I and II, the study was done in 
the city of Lahti, where European Spruce Bark beetles had been causing serious 
damage to Norway spruces. In Publication V, the study was done in in Kouvola, 
in the Mustila Arboretum, where there is an exceptionally large variety of coni-
fer and broad-leaved tree species related to boreal forests. The study area in 
Publication III was in the city of Vihti, in an agricultural remote sensing test 
field that included malt barley parcel and an experimental site of grass silage. 
Experimental grass sites were also used as a study area in Publication IV. The 
areas were located in Jokioinen with four different experiments established in 
two different parcels, including timothy meadow fescue grass crops. 

Table 1. Summary of study areas. 

 Location (Municipal-
ity in Finland) 

Size Description 

Publication I Lahti 8 ha Norway spruce dominated urban 
forest 

Publication II Lahti 3000 ha Norway spruce dominated urban 
forest 

Publication III Vihti 35 ha Agricultural test site with barley and 
grass parcels 

Publication IV Jokioinen 2.5 ha Experimental site of grass silage 
(primary and regrowth) 

Publication V Kouvola 40 ha Arboretum with a large variety of 
tree species 

 
Biophysical ground truth refers here to observations or measurements of trees 

in forest and crops in agricultural fields. Remote sensing techniques are not able 
to directly measure the biophysical properties of a plant, so accurate reference 
observations and measurements of variables (such as the health status of the 
spruce and biomass in a barley field) were essential in developing these tech-
niques. The variables were either categorical or continuous. Information on the 
variables used as input data to train and validate the machine learning models 
(Section 4.4) is summarized in Table 2.  

In the forest-related studies (I, II and V), ground truth variables were categor-
ical, and observations were made by experts in the field. In publications I and 
II, ground truth was related to the health status of Norway spruces, considering 
bark beetle infestation. Various symptoms were assessed in trunks and crowns 
at the individual tree level. The method of observing symptoms is described in 
more detail in a study by Blomqvist et al. (2018). In publications I and II, the 
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observations of crown colour were selected to indicate the health status of 
spruces. Symptoms were initially categorized into four classes, but due to the 
low number of observations in one class, three were used in the final analysis. 
Consequently, health status was a categorical variable that included three clas-
ses (healthy, infested and dead). In Publication V, ground truth included the 
species and genus of 673 test trees. Test trees had 26 different species from 14 
genera, defining two categorical variables.  

In the agricultural studies (III and IV), all ground truth variables were contin-
uous and were measured using direct and indirect methods (Table 2). Biomass 
(fresh and dry) was measured with a common method in agricultural research 
called ‘cut and dry’ (Ali et al., 2016). This method involves first cutting a sample 
of a fresh crop from a specified area and then weighing it before and afterwards 
drying in order to determine fresh and dry biomass, respectively. This method 
produces information about above-ground biomass and, in the case of grass, it 
directly defines the quantity of the grass, i.e. the yield of the grass. In publica-
tions III and IV, biochemical variables (such as nitrogen content) and the feed-
ing quality variables of grass (such as digestibility (D-value)) were measured in 
the laboratory from dried samples. In Publication IV, the state-of-art method in 
feeding quality analysis—the near-infrared reflectance spectroscopy (NIRS) 
technique (Decruyenaere et al., 2009)—was used as a ground truth that pro-
vided mass-based measures for the biochemical variables of the leaf. 

Table 2. Summary of ground truth information used as an input in the classification and estimation 
phases. The number of samples refers to the number of individual trees in publications I, II and V 
and the number of test plots in publications III and IV. In Publication III, 36 samples of barley crop 
were analysed separately from 8 samples of grass. In Publication IV, 104 samples were collected 
during the primary growth and 117 samples during regrowth. These samples were analysed sep-
arately. FY: Fresh yield and DMY: Dry Matter Yield (kg/m2 in Publication III, (kg/ha in Publication 
IV); Nitrogen content: D-value: digestible organic matter in dry matter (g/kg DM); iNDF: indigesti-
ble neutral detergent fibre (g/kg DM); NDF: neutral detergent fibre (g/kg DM); WSC: water-soluble 
carbohydrates (g/kg DM); Ncont: nitrogen concentration (referred to as Nitrogen % in Publication 
III: 10g/kg DM and g/kg DM in Publication IV); NU: nitrogen uptake (referred to as Nitrogen content 
in Publication III: kg/m2 and kg/ha in Publication IV). 

 Plant Number of 
samples 

Type of the 
variables 

Variables 

Publication I Picea abies 78 categorical Health status 

Publication II Picea abies 330 categorical Health status 

Publication III Phleum pratence, 
Festuca Partensis, 
Hordeum vulgare 

36+8 continuous Biomass (fresh and dry; FY, 
DMY), Nitrogen (uptake and 
concentration)  

Publication IV Phleum pratence, 
Festuca Partensis 

104+117 continuous Biomass (fresh and dry; FY, 
DMY), Feeding quality (D-value, 
iNDF, NDF, WSC, Ncont, NU) 

Publication V 26 different tree 
species 

673 categorical Species, Genus 

 
The geospatial location of the ground truth is also an important observation 

for matching the remote sensing data to it. GNSS were utilized to locate the 
ground truth in publications I–IV. In the forest, the accuracy of the GNSS meas-
urements was not sufficient to precisely locate the test trees in the area; thus the 
coordinates were matched visually to treetops based on collected high-resolu-
tion orthophotos. Ground truth included more supporting information that was 
utilized during the analysis. For instance, based on the measured diameter-
breast-height, small trees were eliminated from the analysis in publications I 
and II. The clear-bounded plots of experimental grass sites were digitized di-
rectly to the orthophotos. 
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The collection of biophysical ground truth was carried out by collaborating 
forestry and agricultural researchers from the University of Helsinki, in Publi-
cations I and II, and the Natural Resources Institute Finland, in Publications 
III–V.   

3.2  Remote sensing data 

Remote sensing data were collected mainly using drones as a platform. All 
drones used in the data collection were multicopters with varying numbers of 
rotors. They built at the Finnish Geospatial Research Institute (FGI) for re-
search purposes. The drone used in publications I and II had relatively limited 
operational parameters, but the drones used in publications III–V were signifi-
cantly more developed (Table 3). The relatively low payload of the octocopter 
did not enable to mount the spectral and RGB cameras simultaneously to the 
drone. Instead, the hexa- and quadrocopters were able to carry multiple cam-
eras at the same time making the data collection more efficient. A single-board 
computer and GNSS receiver were installed in drones in publications III–V to 
record the trajectory of the drone and the timing data for all devices. In publi-
cations II and III, a small, manned aircraft (Cessna) was operated as well. Com-
pared to drones, the payload capacity and flight time of small aircraft are signif-
icantly higher, but they are not as flexible as drones to operate, especially when 
mapping relatively small areas. 

 

Table 3. Summary of drones used. 

   Typical opera-
tional: 

Additional support-
ing equipment 

 

Type Frame Autopilot Pay-
load 

Flight 
time 

Single-
board 
computer 

GNSS 
re-
ceiver 

Publica-
tion 

Octocopter Droidworx 
AD-8 
frame 

MikroKopter 1.5 kg 7 min - - I, II 

Hexacopter Tarot 960 Pixhawk 1, with Ardu-
coper 3.15 firmware 

4 kg 20 
min 

Rasper-
ryPi2 

NV08C-
CSM 
L1 

III, V 

Quadrocopter Gryphon 
dynamics 

Pixhawk 1, with ArduPi-
lot APM Copter 3.4 
firmware 

4 kg 25 
min 

Rasper-
ryPi3 

NV08C-
CSM 
L1 

IV 

 
 

The entire study was carried out using a Fabry-Pérot interferometer (FPI) –
based spectral camera as the main sensor. The FPI camera technology was de-
veloped by the VTT Technical Research Centre of Finland (Mäkynen et al., 2011; 
Saari et al., 2011). The FPI consists of two parallel reflective surfaces. By chang-
ing the gap between them, it is possible to collect different wavelengths in frame 
format. Due to this basic principle of FPI technology, the acquisition of spectral 
bands is sequential in time, which needs to be considered in data processing 
when the camera is used in a mobile platform such as a drone (Honkavaara et 
al., 2013, 2017; Oliveira et al., 2016). All versions of the FPI camera were proto-
types and allowed for the configuration of a certain group of spectral bands 
within the camera’s spectral range before data acquisition. Overall, 32 to 36 
spectral bands were acquired for each study area. Summary information on the 
FPI spectral imagers used is shown in Table 4.  
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Table 4. Summary of FPI-based spectral cameras. ‘No. bands’ refers to the number of originally 
acquired spectral bands in these studies. ‘FWHM’ refers to full width at half maximum, presenting 
the range of wavelengths covered by a single band. 

Spectral 
camera 

Spectral range No. 
bands 

FWHM Image size 
(pix) 

Pixel size Focal 
length 

Publications  

FPI2012b 500-900 nm 36 15-30 nm 1024 x 648 0.011mm 10.9mm I–IV 
FPI Rikola 
VNIR 

400-1000 nm 36 10-15 nm 1010 x 
1010 

0.02mm 9.0mm V 

FPI SWIR 1100-1600 nm 32 20-30 nm 320 x 256 0.005mm 12.2mm V 

 
In addition to spectral cameras, regular consumer digital cameras (RGB) were 

mounted to drones. The purpose of the RGB cameras was to collect data at a 
high spatial resolution. As a result of applying different RGB camera systems, 
GSDs of the RGB cameras were 10–40% of the spectral camera GSD (Table 5). 
Consequently, RGB cameras were the main technique used for 3D data produc-
tion. In addition, images from RGB cameras were employed to support the 
georeferencing of the spectral images (see Section 4.1). In publications III and 
IV, the RGB images’ digital values (DN) were converted to reflectance to repre-
sent a three-band spectral sensor. 

Remote sensing data was acquired in extensive flight campaigns (Table 5). 
Flight campaigns were planned separately for each test area to meet the require-
ments of the study. In publications II and III, one objective was to compare the 
effects of different spatial resolutions in applications. Therefore, in Lahti and 
Vihti, data were collected with various flying heights and also with small 
manned aircraft at 450 m to 900 m flying height. In addition, the Vihti study 
area consisted of two different targets—grass and barley—where flights were 
planned separately. Multitemporal data collection was carried out in the Jokio-
inen study area, where primary growth at the grass site was imaged four times 
and regrowth three times. In Publication V, data was collected with two different 
spectral sensors, but they were not possible to collect simultaneously due to the 
maximum payload capacity of the drone.  

In addition to the general data acquisition plans, flight parameters (such as 
flying height and speed) should be planned carefully to confirm that the quality 
of data meets the set requirements and expectations. All sensors were central-
projection cameras that collected vertical aerial images. Thus, classic photo-
grammetric models and formulas starting from collinearity equations were ap-
plied in flight planning (see, e.g., Mikhail, 2001). Flying height is an important 
flight parameter because, along with sensor properties, it defines the GSD and 
image coverage. By increasing the flying height, the image coverage increases, 
which increases the speed of data collection. Decreasing the flying height im-
proves the spatial resolution, enabling observation of smaller details. Also, reg-
ulations need to be taken into account when selecting the flying height. When 
the data campaigns in test areas were done, Finnish regulation allowed drone 
flights with a visual-line-of-sight and a maximum 150 m flying height without 
specific permission procedures. Considering all of the abovementioned aspects, 
flying heights of drone campaigns were selected from 50 m to 140 m (Table 5). 
Flying heights over 90 m were mainly used. But when the GSD requirements 
were small targets, especially in grass-related studies (III, IV), 50 m was also 
used. Overlaps between images should also be enough that the same point can 
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be observed in multiple images, which is the core idea of stereoscopic photo-
grammetry and SfM techniques. For SfM software, such as Agisoft Photoscan, 
the 60% side and 80% forward overlaps are recommended at the minimum 
(Agisoft, 2019), and they also exceeded in all of the spectral datasets in Publica-
tion I. When flying height and sensor properties were known, the flight speed 
and distance between flight lines were calculated to achieve the recommended 
overlaps.  

Table 5. An overview of flight campaigns considering the study area, campaign description, plat-
forms and sensors. Multitemporal (no. campaigns): ‘Yes’ if the campaign was multitemporal and 
number of flight campaigns. No. flights: Number of individual flights to cover the study area. *In 
Vihti, aircraft data was collected in a single flight but changing the sensors and flying height during 
the flight. 

Publi-
cation 

Study area Campaign Platform Sensors 

 Location (tar-
get) 

Mul-
titem-
poral 
(no. 
cam-
paigns) 

No. 
flig
hts 

Flying 
height 
(m) 

UAV/aircraft 
(type) 

Spectral GSD 
of the 
spec-
tral 
cam-
era 
(cm) 

RGB GSD 
of 
RGB 
(cm) 

I-II Lahti  No 2 90 UAV (Octo) FPI2012b 9 Samsung 
NX1000 

2 

II Lahti No 1 500 Aircraft FPI2012b 50 -  

III Vihti (grass) No 1 140 UAV (Hexa) FPI2012b 14 Samsung 
NX500 

3.7 

III Vihti (grass) No 1 50 UAV (Hexa) FPI2012b 5 Samsung 
NX500 

1.3 

III Vihti (barley) No 4 140 UAV (Hexa) FPI2012b 14 Samsung 
NX500 

3.7 

III Vihti   (barley) No 1* 450 Aircraft FPI2012b 62 -  

III Vihti   (barley) No 1* 700 Aircraft -  Nikon D3X 5 

III Vihti   (barley) No 1* 900 Aircraft -  Nikon D3X 10 

IV Jokioinen (pri-
mary growth) 

Yes (4) 2 50 UAV 
(Quadro) 

FPI2012b 5 Sony A7R 0.64 

IV Jokioinen (re-
growth) 

Yes (3) 1 50 UAV 
(Quadro) 

FPI2012b 5 Sony A7R 0.64 

V Kouvola No 3 120 UAV (Hexa) FPI Rikola 
VNIR 

8 Samsung 
NX300 

3 

V Kouvola No 3 120 UAV (Hexa) FPI SWIR 20 Samsung 
NX300 

3 

 
In addition to data collected by drones, supporting remote sensing data was 

also collected during field campaigns. Ground control points (GCP) were in-
stalled and their coordinates measured with the virtual reference station real-
time kinematic GNSS devices in publications III–V to support geometric pro-
cessing. In publications I–III and V, ASD Field Spec Pro spectrometer measured 
irradiance data during the data collection to support radiometric processing. 
Furthermore, in all studies, reference reflectance panels were installed, meas-
uring 1 m × 1 m for drone campaigns and 5 m x 5 m for aircraft campaigns were 
installed. Their reflectance was measured with an ASD spectrometer, as they 
were used as a reference in reflectance transformation (Section 4.2). 
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4. Methods  

This chapter introduces the methodology of developed remote sensing work-
flows, from collecting remote sensing and biophysical ground materials to esti-
mating and classifying the results. The summarized methodology of all publica-
tions is presented in Figure 4. The method workflow can be divided into four 
main steps, starting from geometric and radiometric processing and ending on 
feature-extraction to estimation and classification, using machine learning 
methods. This chapter introduces the implementation of these steps.  
 

 

Figure 4. Thematic summary of the method’s workflow, including the four main steps: 1. geomet-
ric processing, 2. radiometric processing, 3. feature extraction and 4. estimation and classi-
fication. The arrows describe the data flow between steps, starting from inputs, i.e. remote 
sensing and biophysical ground truth materials, and ending with the outputs, i.e. estimating 
and classifying the results, models and accuracy. If these models are also used to classify or 
estimate also unknown individuals, a result can be also classification maps, such as spruce 
health maps in publications I and II. GCPs: ground control points; IOP: interior orientation 
parameters; EOP: exterior orientation parameters; CHM: canopy height model. 

4.1 Geometric processing 

The aim of geometric processing is to georeference the image data and collect 
the photogrammetric 3D information about the object. Accurate geometric pro-
cessing is crucial, especially when integrating data from different platforms, 
dates and sensors. Geometric processing can be divided into steps: georeferenc-
ing and point cloud generation and processing (Figure 4). 

In georeferencing, image exterior and sensor interior orientation parameters 
are estimated, allowing the positioning of the data in the object coordinate 
frame and its use for the 3D reconstruction of the object. Exterior orientation 
parameters (EOP) include the position (3 parameters) and orientation (3 pa-
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rameters) of the camera at the time of exposure. The interior orientation param-
eters (IOPs) of the camera often comprise the principal distance, principal point 
coordinates and lens distortion parameters. The EOPs can be measured by 
GNSS and IMU systems onboard the drone, and the accuracy level will depend 
on the quality of the systems utilized as well as on external conditions. In the 
case where such a system does not exist, the estimation of the EOPs will rely on 
the photogrammetric bundle block adjustment (BBA) process, and the absolute 
georeferencing to a geographic coordinate system will require the use of GCPs. 
For the IOP estimation, the most common approaches are pre-estimation of the 
parameters in the laboratory or field or the estimation simultaneously with 
EOPs in the BBA. The BBA uses tie points (i.e. points that have been extracted 
and matched in multiple overlapping images) as the observations to solve IOPs 
and EOPs, and it can be supported with GCPs and the initial values of IOPs and 
EOPs.  

In all publications, IOPs and EOPs were solved in BBA, and it was supported 
with GCPs in publications II–V. Coordinates of GCPs were measured during the 
field campaign using a GNSS receiver and artificial targets in publications III–
V, and GCPs coordinates of natural targets were measured from open national 
datasets in Publication II (Table 6). Additionally, image position (X, Y and h) 
was calculated from the onboard GNSS trajectory and used as initial observa-
tions in the BBA. The RGB images and three or four spectral bands selected from 
the FPI cameras had their EOPs estimated using Agisoft PhotoScan Professional 
software in publications I and III–V, and using SocetGXP for aircraft data in 
Publication II. For the remaining bands of the FPI hyperspectral images, in pub-
lications I and II, the band alignment was carried out using affine 2D image 
transformation (Honkavaara et al., 2013); and in publications III–V, EOPs were 
determined via a 3D band-matching approach (Honkavaara et al., 2017). 

After estimating the camera parameters, 3D dense point clouds were gener-
ated by Agisoft Photoscan using the RGB and FPI data in Publication III. Dense 
point clouds were generated with the original images (quality setting in Pho-
toscan: ultra high), doubled (high) or 4-times (medium) pixel size (Table 6). The 
root-mean-square errors (RMSEs) of the residuals in the image coordinates (re-
projection errors in Agisoft) were estimated with less than 1.6-pixel error for all 
datasets in all studies (Table 6).  

In the point cloud processing step, canopy (or crop) height models (CHM) 
were created. CHM is the difference between the digital surface model (DSM) 
and the digital terrain model (DTM). The DSMs were calculated by interpolating 
the 3D point cloud to a regular grid. DTM was determined from open national 
laser scanning data in the forest-related studies (I, II and V). In agricultural 
studies, DTM extraction was more critical because the height of a crop is low 
compared to trees in forests, meaning that the uncertainty of the DTM accumu-
lates rapidly in the CHM. Furthermore, in agriculture areas, the terrain level is 
affected by farming activities, such as tillage, thus the open national datasets are 
not up-to-date in most cases. Therefore, the DTM was extracted from the pho-
togrammetric point cloud itself using the ‘classify ground points’ tool of Agisoft 
PhotoScan, as described by Viljanen et al. (2018).  
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Table 6. Summary of geometric processing. Quality setting parameter refers to a parameter used 
in photoscan dense matching: Ultrahigh: images with original pixel size, High: doubled pixel size, 
Medium: 4-times pixel size. 

 Software Ground 
control 
points 

Reprojection 
error (pix) 

Quality setting parameter 
in dense matching 

Publication I PhotoScan No <0.6 High-Medium 

Publication II SocetGXP, PhotoScan Natural <1.3 High-Medium 

Publication III PhotoScan Artificial <1.6 Ultrahigh 

Publication IV PhotoScan Artificial <1.3 High 

Publication V PhotoScan Artificial <0.6 High 

 

4.2 Radiometric processing 

The aim of radiometric processing is to create accurate reflectance orthomo-
saics. Several physical conditions during data collection, such as atmospheric 
effects, variable weather conditions, sensor non-uniformities and illumination 
geometry affect the values measured by the image sensor. In radiometric pro-
cessing, these effects are minimized so that the variation in the orthomosaics is 
only caused by the object itself. 

The radiometric processing of the FPI-based spectral cameras followed the 
approach developed by Honkavaara et al. (2013; Honkavaara and Khoramshahi, 
2018). The approach can be divided into four parts: (1) sensor correction, (2) 
relative correction due to the illumination changes, (3) anisotropic corrections 
using the bidirectional reflectance distribution function (BRDF), and (4) abso-
lute reflectance transformation.  

First, sensor correction—including a photon response non-uniformity 
(PRNU) and dark signal correction—was carried out using methods provided by 
the VTT as a developer of the sensor (Mäkynen et al., 2011). Besides, the effect 
of different wavelengths in the centre and border of the frame (i.e. the spectral 
smile) can be corrected in the sensor correction phase by combining data from 
different bands. Next, relative and anisotropic correction parameters were 
solved using the radiometric block adjustment (RadBA) in-house software 
(Honkavaara et al., 2013; Honkavaara and Khoramshahi, 2018). The algorithm 
considers pixel values of the same object area observed from multiple overlap-
ping images (radiometric tie point) and estimates the radiometric model param-
eters by minimizing the differences between observed and modelled values. The 
relative model parameter concerns the changes in illumination between data 
cubes. Irradiance measurements during the flight are measuring the same phe-
nomena and they can be given as a priori value for adjustment. Irradiance meas-
urements were collected from drones with wide-bandwidth relative irradiance 
sensors integrated into spectral cameras and from the ground with ASD spec-
troradiometer. Different surfaces reflect the light in different ways, depending 
on the direction of incoming light from the sun and outgoing direction to the 
sensor in passive remote sensing. BRDF is a function that models this phenom-
enon. RadBA uses the radiometric tie point observations to solve the parameters 
of the BRDF model developed by Walthall et al. (1985). Finally, the absolute 
reflectance transformation was done using the reflectance reference panels and 
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applying the empirical line method (Smith and Milton, 1999), which is a com-
monly used way to take atmospheric effects into account in low altitude map-
ping (Aasen et al. (2018). The model for the reflectance factor was thus: Rjk(θi,θr,φ) = DNjkarelj − babsaabs anif(θi,θr,φ)j (1)
where Rjk( i, r, ) is the hemispherical directional reflectance factor (HDRF) 
(Schaepman-Strub et al., 2006) of the object point k in image j; i and r are 
the incident illumination and reflected light (observation) zenith angles; is 
the relative azimuth angle of reflected and incident light, is the grey value 
observed by the camera of the object point k in image j; aabs and babs are the 
linear parameters to absolute reflectance transformation, arelj is the relative cor-
rection parameter and anif( i, r, ) is the anisotropic factor. 

Radiometric processing was performed using the above-mentioned procedure 
in all publications with small modifications (Table 7). The weather during the 
data acquisition has an impact on the image data and therefore on radiometric 
processing strategies. In publications I–IV, the datasets were collected on both 
sunny and cloudy conditions, but the data collection for Publication V happened 
on a sunny and cloud-free day (Table 7). From the sensor corrections, PRNU 
and dark signal correction were applied to all FPI datasets, while a spectral smile 
correction was applied only to datasets used in publications I and II. Spectral 
smile effects are significant only on the border of the images. Therefore, due to 
large overlaps (over 60% of the side and 80% in forward direction) of the im-
agery data in publications III–V, the effect for the orthomosaics values was con-
sidered to be minimal. The use of the spectral smile correction led to a reduced 
number of spectral bands from the original 36 to 22 bands. The results of radi-
ometric block adjustment were assessed visually and statistically, and the best 
correction strategy was chosen for all datasets. A relative correction was used 
especially during the cloudy and varying weather conditions, and calculation 
was supported in some cases by irradiance measurements (Table 7). The BRDF 
correction was mainly used in sunny weather and especially for agricultural tar-
gets where the variation in values is naturally lower than in forests. In publica-
tions I–III and V, absolute reflectance transformation was done manually using 
a reference image. Since the development of RadBA software (Honkavaara and 
Khoramashahi, 2018), the absolute parameters were also adjusted automati-
cally in Publication IV (Table 7). Finally, reflectance orthomosaics were calcu-
lated by following Formula 1 and orthorectifying the images in RadBa software. 
The reflectance output of RadBA is HDRF (Honkavaara and Khromashahi, 
2018) but is referred here simply as reflectance orthomosaic.

For the RGB camera, the orthorectification was carried using Agisoft Pho-
toscan, and the absolute calibration using the reference panels and exponential 
function were performed in publications IV and V.
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Table 7. A summary of radiometric processing of the spectral camera in four correction steps:  
sensor (PRNU: photon response non-uniformity, dark: dark signal, smile: spectral smile correc-
tion) relative (UAV/ASD irrad: parameter calculation was supported by irradiance measurements 
from a drone (UAV)/ground (ASD), anisotropic and absolute correction (ref: transformation was 
done using a reference image, adj: parameters were adjusted in RadBA). 

 Correction step 

 Weather Sensor  Relative  Aniso-
tropic  

Absolute  

Publication 
I 

Sunny/Cloudy PRNU, dark, 
smile 

Yes (UAV irrad) Yes/No Yes (ref) 

Publication 
II 

Sunny/Cloudy PRNU, dark, 
smile 

Yes (UAV irrad) Yes/No Yes (ref) 

Publication 
III 

Sunny/Cloudy PRNU, dark Yes (ASD irrad) Yes/No Yes (ref) 

Publication 
IV 

Sunny/Cloudy PRNU, dark Yes (UAV irrad) Yes/No Yes (adj) 

Publication 
V 

Sunny PRNU, dark No No Yes (ref) 

 

4.3 Feature extraction 

Feature extraction was the third step in the method’s workflow (Figure 4). The 
aim of feature extraction is to calculate features from the remote sensing data 
for the estimation and classification process. The inputs for feature extraction 
were reflectance orthomosaics and CHMs, and the outputs were numerical fea-
ture sets, such as average, percentiles, maximum and minimum reflectances, 
and vegetation indices or heights. The values were computed from regions de-
fined in the orthomosaics and CHMs, which corresponded to a group of pixels 
in a window (m x m) or the values within a certain diameter from the centre 
coordinate. The feature extraction process was divided into three steps (Figure 
4). Firstly, the area of interest was defined, including the location and dimen-
sion. Secondly, the extracted values were used to calculate the interested fea-
tures. Thirdly, extracted features were organized into one or multiple feature 
sets to be used in the estimation and classification phase.  

The location of the biophysical ground truth samples was defined during the 
data collection, but the dimensions were not necessarily defined (Section 3.1). 
The object, such as a tree, consists of multiple observations since the GSDs of 
the remote sensing data were significantly smaller than the site of the objects. 
In Publication I, the area was defined as a circle, 1m in diameter, centred at the 
top of the tree. In Publication II, the GSD of spectral images collected from air-
craft was 0.5 m, and the features were computed from a 3 x 3 –pixel area. In 
Publication V, the trees were delineated by selecting pixels above 5 m ground 
level based on the CHM to extract features. In agricultural-related studies, the 
size of the extracted areas in remote sensing data followed similar dimensions 
of the area where the field sample was collected to calculate the biophysical 
ground truth. The plots of experimental grass sites (Publications III and IV) 
were clear-bounded and digitized directly to the orthomosaics.  

In publications I and II, features were extracted for the same trees of the 
ground truth samples and also for other trees in order to produce tree health 
maps of the entire study area. Individual trees were automatically detected in 
both studies. In the case of drone data, tree crowns were segmented based on a 
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watershed segmentation algorithm (Hyyppä et al., 2001). Input data for the al-
gorithm was the CHM, which was produced using DSM and DTM as described 
in section 4.1. First, CHM was filtered (smoothed) and then the treetops were 
extracted based on local maxima. The method is called watershed segmentation 
due to the analogy of the last step to water flows; if CHM is turned upside down, 
one segment is formed from pixels from where water would flow to the same 
local minima (a tree top). For the aircraft spectral data, the reflectance ortho-
mosaics were used for detecting individual trees. The method takes advantage 
of the fact that treetops are the brightest pixels in the orthomosaics and includes 
classification and filtering steps before the treetop is defined based on the local 
maxima.    

The values of pixels inside the defined area built the set of numbers from 
which different descriptive statistics were then calculated to be used as features. 
The arithmetic mean (i.e. average) was calculated in all publications. In the ag-
ricultural-related publications III and IV, it was the only statistical feature for 
spectral data (Table 8). In forest-related studies, the variation of reflectance val-
ues is high, especially in sunny illumination, causing a bright and dark side for 
treetops, which might mean that the average is not the optimal statistic to be 
used as a feature. Thus, in publications I and II, the average of the six brightest 
pixels was calculated. And in Publication V, the average of the brightest 25% and 
50% and the standard deviation were calculated.  

The spectral features were calculated from all spectral bands and for each of 
them in all publications. In addition, vegetation indexes were calculated in pub-
lications I–IV. The development of vegetation indices has a long tradition in re-
mote sensing, and the combination of two or more spectral bands can improve 
the sensitivity to the vegetation properties and reduce the effects of radiometric 
calibration uncertainties and other disturbances. In publications I and II, vege-
tation indices were calculated following the well-known formula for the NDVI. 
In publications III and IV both FPI2012b-based and RGB-based indices were 
calculated and selected based on the earlier literature. (Formulas can be found 
in Publications I-IV.) Indices were not used in Publication V. Instead, different 
numbers of principal components were calculated in order to reduce the dimen-
sions of the spectral data (Table 8).  

3D features correspond to the structure of the object; they were calculated 
from the RGB-based CHM in publications III–V and also from the FPI2012b-
based CHM in Publication III. In publications III and IV, eight features were 
calculated: average, minimum, maximum, standard deviation and 50th, 70th, 
80th and 90th percentiles. In Publication V, the 29 calculated features included 
percentiles, canopy densities and the proportions of vegetation points. The se-
lection of extracted 3D features was made based on the application and the ear-
lier literature. For instance, agricultural biomass is already directly linked to 
crop height (Bendig et al., 2014), but not for tree species and accordingly 3D 
features were selected to better describe the shape of the canopy than the actual 
height.  
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Table 8. Summary of extracted features. Calculated features: avg: average, 6_bright: average of 
6 brightest pixels, std: standard deviation, avg50: average of the brightest 50% pixels, avg25: 
average of the brightest 25% pixels. Number of spectral features calculated from bands, indices 
and principal components (PC). No. 3D features: Number of calculated 3D features. No. all fea-
tures: Number of all features together. *In addition to 11 hyperspectral indices, 4 multispectral 
indices were calculated. **Different numbers of principal components were extracted for radio-
metrically not-corrected and corrected. 

 Camera Calculated 
spectral fea-
tures 

Number of Spectral features No. 3D 
fea-
tures 

No. all 
fea-
tures   Bands Indices PC 

Publication I FPI2012b avg, 6_bright 22 3 - - 50 

Publication II FPI2012b avg, 6_bright 24 3 - - 54 

Publication III FPI2012b avg 36 11 - 8 55 

RGB avg 3 2 - 8 13 

Publication IV FPI2012b avg 35 11 (+4)* - - 50 

RGB avg 3 8  8 19 

Publication V FPI Rikola 
VNIR 

avg, std, avg50, 
avg25 

36 - 9, 
17** 

- 180, 
212** 

FPI SWIR avg, std, avg50, 
avg25 

24 - 12, 
15** 

- 144, 
156** 

RGB avg, std, avg50, 
avg25 

3 - - 30 33 

 
The extracted features were then organized into multiple feature sets (Table 

9). The use of multiple feature sets allows for a comparison of the effects of dif-
ferent data measurement parameters on estimation or classification accuracy 
(Objective 3). Feature sets were selected separately in all studies based on the 
data and aims of the study. In publications I and II, FPI2010b-based spectral 
bands and indices form the sets; in Publication II, they were organized sepa-
rately based on two different spatial resolutions (9 cm and 50 cm). Various spa-
tial resolutions were also compared in Publication III. The effects of radiometric 
correction were studied in publications III and V, forming the feature sets with 
and without radiometric calibration. The performance of different spectral sen-
sors was in publications III–V (Table 9). Spectral and 3D features were also in-
tegrated into the same feature sets and compared to performance when only one 
of them was used in publications III–V. 

 

Table 9. The summary of feature sets according to the objective of the study effect on different 
data measurement parameters (Objective 3). 

 Radiometric 
processing  

Spectral 
sensor 

Spatial 
resolution 

Integration of spec-
tral and 3D data 

Number of 
feature sets 

Publication I     2 

Publication II   x  4 

Publication III x x x x 21 

Publication IV  x  x 5 

Publication V x x  x 14 
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4.4 Estimation and classification using machine learning  

 
Machine learning is the last step in the method workflow. It takes the remote 

sensing features sets and biophysical ground truth variables as input in order to 
produce estimation and classification models and validate them as the output 
results (Figure 4). Indeed, the approach is supervised learning. For the categor-
ical parameters, the machine learning task was classification and for continuous 
parameters the task was estimation (Table 10). Algorithms were selected indi-
vidually in the context of the study in all publications.  

The k-nearest neighbour algorithm (k-NN), which has already been used for 
decades in remote sensing, was the selected algorithm for Publication I and an 
alternative algorithm in Publication V. K-NN is a simple algorithm. When used 
in classification, it will select the class-based on the k closest (meaning here the 
Euclidean distance) training samples in the feature space. The performance of 
K-NN was calculated with many values of k, and the best selected was 3–4 in 
both publications. Feature sets in Publication V consisted of hundreds of fea-
tures, so feature selection was necessary. The genetic algorithm (Broadhurst et 
al., 1997) was used there for feature selection by searching for a subset of varia-
bles that maximize overall classification accuracy. 

The Support Vector Machine (SVM) algorithm (Boser et al. 1992) was applied 
for the classification task in Publication II. SVM attempts to determine the op-
timal separation line (or hyperplane in high-dimensional spaces) by maximizing 
the gap between classes. The radial basis function was used as a kernel to handle 
nonlinearities, and its parameters were optimized by applying a cross-validation 
search. The biophysical variables in Publication II were health classes of spruce 
(healthy, infested and dead), but the number of observations was not equal. Es-
pecially the infested class was in the minority, i.e., the data was imbalanced. 
This could lead to an underestimation of this important class for the application 
because, in basic mode, SVM maximizes the overall accuracy. For that reason, 
the classifications were also done with a modified cost function in order to have 
an equal total cost for each class. SVM is also sensitive to the scale of different 
features. Although the reflectance and indices used as features in this study were 
already within the limited range, they were also scaled individually to the same 
range. The implementation was done in Matlab using the LibSVM tool (Chang 
and Lin, 2011). 

The random forest (RF) algorithm (Breiman, 2001) was applied in publica-
tions III–V. RF is based on a large number of decision trees that are trained 
independently on a random subset of data. When RF is used to classify, the out-
put class is the mode of all the individual decision trees. For estimating contin-
uous variables, the output prediction is the average prediction of all the trees. 
This means that RF cannot extrapolate, i.e., predict values higher or lower than 
the range in the training data. The advantages of RF (compared to SVM, for ex-
ample) are that RF requires relatively lower optimization of parameters, the 
range of features can vary, and the feature selection is not crucial; but in con-
trast, it provides knowledge about feature importance (Belgiu and Drăguţ 2016). 
The RF implementation in Weka software, mainly via python scripts, was used 
in publications III and IV. And the randomForest package in the R statistical 
software was used in Publication V.  
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Linear regression models were also used in publications III and IV, in order 
to form a reference method to demonstrate the predictive power of RF in com-
parison to classical linear methods. A simple linear regression (SLR) model was 
used in Publication III by selecting the variables with the highest correlation 
coefficient to the explanatory variables. In Publication IV, multilinear regres-
sion (MLR) models implemented in Weka software were used, and multiple fea-
tures were selected, based on backward elimination and the Akaike information 
criterion (Akaike, 1974). 

The accuracy of algorithms was assessed using the common method, called 
leave-one-out cross-validation (LOOCV), in all publications (Table 10). In 
LOOCV, one observation is used as testing data and the rest for training data, 
and the process is repeated for all observations. LOOCV is well-suitable partic-
ularly also when only few samples are available, and generally provides slightly 
optimally biased results (Varma and Simon, 2006). LOOCV assesses the specific 
model built with specific data but it does not necessarily indicate whether the 
model is generalizable enough to be used in other conditions. Indeed, the hold-
out method was used in publications II and IV. In Publication II, the hold-out 
method was applied to study the smaller subset from a limited geographical area 
as training data sufficient to build accurate classifiers and a model sensible to 
different spatial resolution. In Publication V, hold-out was used to learn if the 
model was general enough to be used in other similar type of grass field.     

In the classification tasks, general statistics were calculated based on the con-
fusion matrix that included the overall accuracy, Cohen’s kappa (Cohen, 1968) 
and the producer’s and user’s accuracy in individual classes. In the estimation 
tasks, the Pearson correlation coefficient (PCC), root mean square error (RMSE) 
and normalized RMSE using the average of reference values (RMSE%) were cal-
culated. 

 

Table 10. Summary of machine learning algorithms and accuracy assessment methods. LOOCV: 
Leave-one-out cross-validation, HO: hold-out. 

 Task Algorithms Accuracy assessment 

Publication I Classification K-nearest neighbour (k-NN) LOOCV 

Publication II Classification Support vector machine (SVM) LOOCV, HO 

Publication III Estimation Random forest (RF), Single linear re-
gression (SLR) 

LOOCV 

Publication IV Estimation Random forest (RF), Multilinear regres-
sion (MLR) 

LOOCV, HO with independent 
test data 

Publication V Classification Random forest (RF), K-nearest neigh-
bour (k-NN) 

LOOCV 
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5. Results 

This chapter is divided into three sections that present the results related to 
each objective defined in Section 1.2. Section 5.1 presents the main results con-
sidering the classification of health status and species of individual trees (Ob-
jective 1). Section 5.2 introduces the estimation results of agricultural crop pa-
rameters (Objective 2). Finally, Section 5.3 presents the effects of radiometric 
processing, spectral and spatial resolution, and the integration of spectral and 
3D data on classification and estimation accuracy (Objective 3). 

 

5.1 Classification of health status and species of individual trees 

The developed workflow (Figure 4) was employed to detect individual trees 
and classify them based on health status in publications I and II and based on 
species and genera in Publication V. The health status of mature spruces were 
successfully classified into three classes that present different colonization 
phases of the outbreak caused by European spruce bark beetles. The K-NN 
method achieved an overall accuracy of 76% (kappa: 0.60) and an SVM overall 
accuracy of 81% (kappa: 0.70) when 78 spruces were classified as ‘healthy’, ‘in-
fested’ or dead, using the spectral features from the drone data. This result was 
achieved using three indices, which were formed from five spectral bands (551, 
627, 726, 773 and 794 nm) selected by analysis of variance within the health 
classes). When the 330 spruces were classified using spectral features from 
small manned aircraft, the best observed overall accuracy assessed with LOOCV 
was 79% (kappa: 0.54). The overall accuracy was still at the same level (80%, 
kappa: 0.51) when only the features from the 78 spruces inside the area covered 
by the drone flight were used to train the model and 252 were used as testing 
data. This indicates that ground truth observations can also be collected only 
from smaller representative areas. Even more interestingly, the overall accuracy 
remained at the same level (81%, kappa: 0.51) when applying the classifier 
model estimated from the drone data (78 spruce area) to classify the trees on 
the aircraft data. This means that the estimated classifier was not sensitive to 
spatial resolution (GSD: 9cm from drone vs 50cm from aircraft) or the time dif-
ference of three weeks between the two data collections.  

The classification of spruce health status was also calculated for entire test ar-
eas based on automatically detected trees and classification models. These re-
sults were visualized to spruce health maps, which may be used to detect hotspot 
areas of the infestation (Figure 5). 
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The classification of 26 tree species from 14 different genera was studied in 
Publication V. Integrating spectral features extracted from novel FPI-based 
VNIR and SWIR cameras and photogrammetric 3D features led to the highest 
classification accuracy. K-NN supported with GA feature selection achieved an 
overall accuracy of 82% (kappa: 0.81) and RF 78% (kappa: 0.76) for species and 
84% (kappa: 0.87) and 82% (kappa: 0.78) for genus, respectively. Coniferous 
trees were typically well-discriminated considering the genus, but the confusion 
of species within the same genus appeared. The genus of broadleaved trees was 
typically more confused than that of coniferous trees. However, the situation 
was the opposite when considering species because the broad-leaved tree gen-
era were mainly represented by only one species, while the coniferous genera 
were represented by seven species.  

  

Figure 5. Visualized spruce health maps. (Modified figures from Publications I and II)  

 

5.2 Estimation of agricultural parameters 

Various crop parameters of barley and grass for silage were estimated in pub-
lications III and IV. Crop parameters were estimated using variable feature sets. 
Table 11 summarizes the results considering the models which combine the 
spectral features with the highest spectral resolution (FPI) and 3D features with 
the highest spatial resolution (RGB).  

Above-ground biomass is the fundamental parameter to measure the quantity 
of the agricultural yield. Both the fresh yield (FY) and the dry matter yield 
(DMY) were estimated in all study areas. In general, the estimation accuracy 
was similar for both biomass variables, which was expected since they are highly 
correlated to each other. However, the accuracies differ among the datasets. For 
barley fresh biomass, the RF outperformed the SLR classifier, with an RMSE% 
of 31% and a PCC of 0.96. For Vihti grass dataset biomass estimation, SLR led 
to better accuracy with an RMSE% of 1.6% and a PCC of 0.85. The ground truth 
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of the Vihti grass dataset consists of only 8 samples with a low standard devia-
tion, meaning that RF was not able to create a stable model with so few samples. 
For the Jokioinen datasets, RF and MLR led to similar results. The best accuracy 
was obtained with an MLR for the FY of primary growth (RMSE%: 12%, PCC: 
0.98). The Jokioinen datasets consist of about 100 multitemporal samples with 
a high standard deviation, which explains the higher RMSE% than in the Vihti 
dataset. 

Both the nitrogen uptake (NU)—the amount of nitrogen in the biomass (kg/m2 
in Publication III and kg/ha in Publication IV)—and the nitrogen concentration 
(Ncont; (10g/kg DM in Publication III and g/kg DM in Publication IV) were es-
timated for the Vihti barley and Jokinen grass datasets. For barley, the RF out-
performed the SLR classifier, with RMSE% of 21.6% and PCC of 0.96 for NU. 
For the Jokioinen grass datasets, the RMSE% varied from 10.6% to 20.4% and 
the PCC from 0.84 to 0.96, depending on the stage of growth and classifier (Ta-
ble 11). 

The feeding quality parameters describe the quality of grass swards consider-
ing the nutrition process of animals, particularly ruminants. Various feeding 
quality parameters were estimated for the Jokioinen datasets separated for pri-
mary and regrowth. This separation was done in the regrowing season due to 
differences in crop properties after the harvesting of the first yield, primary 
growth. Digestibility of organic matter (D-value) describes the available energy 
in the forage dry matter; this is a feeding-quality parameter, which reduces 
quickly in the Nordic countries, especially during the primary growth stage. RF- 
and MLR-based estimators provided similar estimation accuracies for the D-
value. The RMSE% (1.7–2.1%) and PCC (0.93–0.95) of the primary growth were 
slightly better than in the regrowth phase (Table 11). Similar results were ob-
tained also for other feeding quality parameters, neutral detergent fibre (NDF), 
indigestible neutral detergent fibre (iNDF) and water-soluble carbohydrates 
(WSC). 
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Table 11. The normalized root-mean-square errors (RMSE%) and Pearson correlation coefficient 
(PCC) of estimated crop parameters (FY: fresh yield; DMY: dry matter yield; D-value: digestible 
organic matter in dry matter; iNDF: indigestible neutral detergent fibre; NDF: neutral detergent 
fibre; WSC: water-soluble carbohydrates; Ncont: nitrogen concentration; NU: nitrogen uptake) 
using FPI-based spectral features and RGB-based 3D features and Random Forest (RF) and 
Single linear regression (SLR) for the Vihti datasets, and RF and Multiple linear regression (MLR) 
for the Jokioinen datasets. The accuracy was assessed based on leave-one-out cross-validation 
(LOOCV). 

Study area, crop Crop parame-
ter 

RF SLR/MLR 

RMSE% PCC RMSE% PCC 

Vihti, barley FY 31.0 0.96 39.1 0.94 

DMY 33.2 0.95 41.4 0.92 

Ncont 35.6 0.91 52.5 0.80 

NU 21.6 0.96 28.8 0.94 

Vihti, grass FY 4.8 0.49 4.5 0.71 

DMY 2.3 0.67 1.6 0.85 

Jokioinen, grass, primary growth FY 13.4 0.98 12.0 0.98 

DMY 14.7 0.97 15.6 0.97 

D-value 2.1 0.93 1.7 0.95 

iNDF 20.7 0.92 16.4 0.95 

NDF 3.5 0.94 3.2 0.95 

WSC 12.4 0.91 12.0 0.92 

Ncont 10.6 0.84 13.2 0.93 

NU 13.6 0.96 14.7 0.96 

Jokioinen, grass, regrowth FY 17.2 0.96 12.9 0.96 

DMY 16.1 0.94 13.1 0.96 

D-value 2.5 0.86 2.6 0.86 

iNDF 24.8 0.84 25.7 0.83 

NDF 4.7 0.81 5.1 0.79 

WSC 22.0 0.88 19.3 0.91 

Ncont 12.9 0.84 11.2 0.89 

NU 20.4 0.90 18.3 0.92 

 
In Publication IV, the models estimated from the training datasets were ap-

plied in independent test area datasets to verify if the models could be general-
ized to estimate with sufficient accuracy the crop parameters of other areas of 
the same kind of grass fields. Multitemporal models, based on the data collec-
tion of 3–4 dates, were also compared to models that were trained separately 
for each date. Figure 6 presents the results of these two experiments for DMY, 
D-value and NDF.  
Models based on individual dates provided RMSEs of 125–498 kg/ha and a mul-
titemporal RMSE of 389 kg/ha for the DMY training data in the primary growth 
stage (Figure 6). Similar findings of accuracy for multitemporal and individual 
date-based models were also observed for the regrowth phase and the D-value. 
Since the performance of multitemporal models was yielding an accuracy simi-
lar to the individual date-based models, this indicates that remote sensing fea-
tures collected on different dates were comparable enough to build stable esti-
mators for these parameters. Overall, when machine learning models are tested 
with independent test data, the accuracy reduces compared to training accuracy. 
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In the case of primary growth, the RMSE values of the testing data for the DMY 
and D-value were 1.3–1.5 higher than for the training data and 1.9–2.3 in the 
case of regrowth. The estimation results of NDF were not as consistent as the 
estimation of the DMY and D-value. 
 

 

Figure 6. Estimated and measured reference values for the training and testing data for the pri-
mary (1. column) and regrowth (3 column) phase and for models for each date (2 and 4 col-
umn) using FPI-based spectral and RGB-based 3D features and RF estimator. DMY: dry 
matter yield; D-value: digestible organic matter in dry matter; NDF: neutral detergent fibre; 
RMSE: absolute root mean square error; R: Pearson correlation coefficient. (Modified figure 
from Publication IV). 

5.3 Effects of measurement parameters on classification and es-
timation accuracies 

5.3.1 Radiometric processing  

 
The effect of radiometric processing on estimation and classification accuracies 
was studied in publications III and V. The average RMSE% of biomass and ni-
trogen parameters were respectively 19% and 27% lower when relative and ani-
sotropic corrections were applied than when such corrections were not applied 
(Figure 7). An absolute radiometric correction yielded an improvement of 3–
11% compared to the uncorrected data for the classification accuracy of the tree 
species and genus with FPI Rikola VNIR and FPI SWIR cameras. The improve-
ment was greater in species classification than in genus classification and 
greater with the FPI SWIR camera than with the Rikola VNIR camera.  
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Figure 7. Left: Average RMSE% of biomass and nitrogen estimation using radiometrically cor-
rected and uncorrected data. Right: Overall classification accuracy of tree species and genus 
using hyperspectral VNIR and SWIR sensors with and without radiometric correction.  

5.3.2  Spectral sensor 

 
In publications III–V, the performance of spectral sensors was compared (Sec-
tion 3.2). Hyperspectral (HS) cameras performed 12–14% better than RGB 
when comparing the average RMSE% in biomass and nitrogen estimation (Fig-
ure 8). A similar improvement between RGB and hyperspectral cameras in the 
VNIR range also occurred in tree species and genus classification experiments. 
The SWIR range hyperspectral camera data achieved approximately 10% better 
classification accuracy than RGB but 3% worse than the VNIR camera (Figure 
8). The combination of spectral features from the SWIR and VNIR camera did 
not significantly improve the classification accuracy compared to the use of only 
VNIR-based spectral features. 
 

Figure 8. Left: Average RMSE% of biomass and nitrogen estimation using hyperspectral (HS) 
and RGB sensors. Right: Overall classification accuracy of tree species and genus using 
RGB, hyperspectral VNIR and SWIR sensors. 

 
In addition to RGB and hyperspectral cameras, a simulated multispectral cam-
era—consisting of the RGB and one NIR band from FPI camera—was conducted 
to evaluate the performance of the spectral resolution in grass quantity and 
quality parameter estimation. As expected, the RMSE% decreased when the 
spectral resolution increased from 3 wide RGB bands from the visible spectral 
range to 36 relatively narrow hyperspectral bands from the VNIR range when 
the estimator was assessed and trained for both quantity and quality parameters 
as well as for the primary and regrowth phases (Figure 9). When models were 
tested with independent datasets, the RGB models still presented the highest 
RMSE%, while the lowest RMSEs% were obtained with MS in quality parame-
ters estimation for both primary and regrowth and also for the quantity param-
eter estimation in the regrowth phase. This hints that machine learning models 
based on MS features were more generalizable for these feature sets than mod-
els based on HS features.  
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Figure 9. The average RMSE% of grass biomass (FY and DMY) and feeding quality (D-value, 
iNDF, NDF, WSC, Ncont, NU) parameter estimations using RGB, MS (multispectral) and HS 
hyperspectral features. The results are shown separately for the primary and regrowth phase 
and for training and testing data.   

 

5.3.3 Spatial resolution 

The effect of spatial resolution on classification and estimation accuracy was 
studied in publications II and III. Spruce health status was estimated with an 
overall accuracy of 0.81, using spectral features with a spatial resolution of 9 cm 
and an accuracy of 0.73 when using a spatial resolution of 50cm (Figure 10). 
However, when spectral features were used for biomass estimation in the barley 
field, the spatial resolution did not significantly affect the RMSE%, especially 
with RF estimators. For 3D features, in the case of the spatial resolutions of 3.7 
cm and 5 cm, the difference in flying height was remarkable enough (140 m and 
450 m) to affect the CHM quality, which reflected the RMSE% being 30% better 
with a GSD of 3.7 cm than with a GSD of 5cm. Interestingly, a GSD of 10 cm 
resulted in a similar or better estimation accuracy than 5 cm, depending on the 
estimator (Figure 10). 

 

  

Figure 10.  Left: Normalized root mean squared (RMSE%) of biomass estimation using RGB-
based spectral and 3D features, RF and SLR classifiers and spatial resolutions of 3.7 cm, 5 
cm and 10 cm. Right: Classification accuracy of spruce health status with spatial resolution 
of 9 cm and 50 cm. 
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5.3.4 Integration of spectral and 3D features 

 
Integration of spectral and 3D features was investigated in publications III–

V. Overall, the classification accuracy was 0.78 for the tree genus and 0.74 for 
the tree species when using only spectral features (Figure 11). The combination 
of both spectral and 3D features resulted in overall accuracies of 0.84 and 0.81, 
meaning that the addition of 3D features improved the accuracy by approxi-
mately 8%. The integration of both feature sets also improved biomass and ni-
trogen estimation accuracies of barley by 24–41% compared to only 3D features, 
and 8–12% compared to only spectral features (Figure 11). 

 

 

Figure 11. Left: The average RMSE% of barley biomass and nitrogen parameter estimation using 
RGB-based 3D, FPI-based spectral and a combination of both. Right: Classification accuracy 
of tree genus and species using spectral and a combination of spectral and 3D features. 

When both feature sets were combined to estimate quantity parameters of 
grass in primary growth, the RMSE% in the training data was smaller than when 
using only spectral or 3D features (Figure 12). For the quality parameters in pri-
mary and regrowth, and for the quantity parameters in the regrowth phase, the 
inclusion of 3D features did not improve the estimation accuracy significantly. 
However, the RMSE% reduced less with 3D features when the primary growth 
quantity model was assessed in the independent test area, indicating that 3D 
features were more stable than spectral features in this estimation case. The 
quality parameters did not improve with the inclusion of 3D features, based on 
the RMSE% of the testing data. 

  

Figure 12. The average RMSE% of grass biomass (FY and DMY) and feeding quality (D-value, 
iNDF, NDF, WSC, Ncont, NU) parameter estimations using RGB-based 3D, FPI-based spec-
tral and a combination of both. The results are shown separately for the primary and regrowth 
phase and for training and testing data.  
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6. Discussion 

This chapter is divided into two sections. First, the scientific and practical im-
plications concerning each objective are discussed. Secondly, the limitations 
and recommendations for future research are presented.  

6.1 Scientific and practical implications 

Objective 1: To develop drone-based 3D and spectral remote sensing tech-
niques for classifying the health status and species of an individual tree 

 
Remote sensing workflows to evaluate individual tree health status were de-

veloped in publications I and II. Spruces in a forest suffering from bark beetle 
invasion were classified based on their health status (healthy, infested or dead) 
with an overall accuracy of 81% using drone-based hyperspectral imaging. The 
spectra of dead spruce clearly differ from other classes, but the difference be-
tween the spectra of healthy and infested spruce was small, resulting in the pro-
ducer’s accuracy for the infested class being lower than for the healthy and dead 
classes. For instance, Abdullah et al. (2018a) reported that VNIR range spectra 
of needles from infested and healthy spruces differ statistically due to changes 
of in needle biochemical properties, such as chlorophyll and foliar nitrogen con-
centrations. Publications I and II showed that this difference is possible to de-
tect also from a drone at tree level. In particular, forest health mapping using 
drone-based hyperspectral imaging at the individual tree level was demon-
strated for the first time in Publication I. Other studies, which use hyperspectral 
sensors from drones for detecting insect damage, are still rare. But in China, 
they have been employed for mapping damage by the pine shoot beetle (Tomi-
cus spp) (Lin et al., 2019; Liu et al., 2020) and by d. tabulaeformis (Zhang et al., 
2018). 

After publications I and II, drone-based mapping of damage caused by the 
European spruce bark beetle has been investigated—especially in the Czech Re-
public for reasons mentioned in the introduction—with multispectral sensors in 
the VNIR range (Klouček et al., 2019; Minarik et al., 2020; Brovkina et al., 
2018). For instance, Klouček et al. (2019) collected multispectral time series and 
classified the healthy and infested trees with the Maximum Likelihood classifier 
for an overall accuracy of 78–96%, which is similar to the results in publications 
I and II. An interesting approach employing only RGB images with a CNN was 
conducted in Russia, where the mapping of an invasion caused by another bark 
beetle (Polygraphus proximus) in a fir forest (Abies sibirica) was studied 
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(Safonova et al., 2019). They first detected the tree crowns and then classified 
them into four health classes and reported the accuracies of classes from 92.0% 
to 98.8%. 

Tree species and genus recognition were studied in Publication V, where the 
capability of two novel FPI-based sensors operating in the VNIR and SWIR 
range was comprehensively demonstrated for the first time in a forest environ-
ment. The description of the same dataset was earlier published by Näsi et al. 
(2016) and in a preliminary analysis by Tuominen et al. (2017). The best overall 
classification accuracy obtained was 82.3% for 26 species and 86.9% for 14 gen-
era, respectively, in a species-rich arboretum. The comparison of several studies 
involving drone-based spectral imaging for tree species classification published 
in the literature is not straightforward due to a significant difference in the num-
ber of tree species, biomes and natural or managed forests. Such features affect 
the performance of classifications tasks. Nevalainen (2017) reported a classifi-
cation of four species in a boreal forest with an overall accuracy of 95% using 
multilayer perceptron and RF classifiers. Later, the same dataset (but using only 
three out of the four species) was studied by Nezami et al. (2020) employing a 
CNN-based deep learning approach. They reported an overall accuracy of 98.3% 
using point cloud, hyperspectral and RGB layers and, interestingly, an overall 
accuracy of 96% using only RGB data. Drones and FPI-based hyperspectral sen-
sors have also been used to classify tree species in Brazil (Sothe et al., 2019; 
2020, Miyoshi et al., 2020a and 2020b). Sothe et al. (2019) reported a maxi-
mum overall accuracy of 72.4% when structural features from the photogram-
metric point cloud and spectral features were considered to classify 12 tree spe-
cies using the SVM classifier. Miyoshi et al. (2020a) used similar spectral data 
and RF algorithms and reported an overall accuracy of 50% for the classification 
of eight emergent tree species in a highly complex regeneration area in the Bra-
zilian Atlantic forest. From a machine learning perspective, these studies were 
closer to the experiments in Publication V than to studies with only a few tree 
species in a boreal forest since the number of tree species was high and the anal-
ysis methods were similar, yielding quite similar results. However, even more 
recently, CNN-based deep learning methods were reported to further improve 
the classification results (Miyoshi et al., 2020b; Sothe et al., 2020). 

Before the development of drone and sensor technology, the area- or pixel-
based method was mostly used in mapping bark beetle damage (e.g. Lausch et 
al., 2013; Fassnact et al., 2014). Fine spatial resolution enables the individual 
tree-based approach, which provides a new level for forestry management pur-
poses. The information about tree species or infested trees could even be dis-
tributed directly to forest harvesters for logging operations to avoid the spread 
of damage. In the proposed approach, individual trees were also detected based 
on collected remote sensing data but, in the operational system, basic forest in-
ventory attributes, such as the location of trees, species and height, can already 
exist in the context of precision forestry (Holopainen et al., 2014). Various effi-
cient remote sensing technologies, such as aerial, terrestrial and mobile laser 
scanning (ALS, TLS, MLS), can provide this information (e.g., White et al., 2016; 
Kaartinen et al., 2012; Liang et al., 2016; Jaakkola et al., 2010). However, drone-
based photogrammetric point clouds have been employed especially for individ-
ual tree-height estimation (Mikita et al., 2016, Guerra-Hernández et al., 2017, 
Moe et al., 2020) and spectral imaging for species classification (Lisien et al., 
2015, Nevalainen et al., 2017). The basic forest inventory attributes are relatively 
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stable. On the other hand, forest health can change rapidly, particularly during 
a bark beetle invasion. Accordingly, drone-based spectral imaging is a great tool 
for flexible and continuous monitoring of forest health at the individual tree 
level, especially on a local scale. In addition, the mapping coverage potential of 
drones is continuously increasing (Stöcker et al., 2017; Shakhatreh et al., 2019). 
In Publication II, 3000 ha of urban forests were covered by a small, manned 
aircraft. Currently, the same area could also be efficiently collected using 
drones, for example, with fixed wings operating beyond-visual-line-of-sight 
(BVLOS). However, for regional mapping, satellite-based remote sensing is a 
more efficient tool, but drones have been seen to fill the gap from terrestrial and 
satellite-based observations (Abdullah et al., 2019a; Senf et al., 2017). Publica-
tion II showed that drone-based spectra (GSD 10 cm) can be used as a reference 
for data with 50 cm of GSD collected from an aircraft. This is a promising result 
considering the shifting of the scale from local individual tree level to regional 
scale covered by high-resolution satellites. However, further analysis is needed 
to study the advantages with lower-resolution satellites such as Sentinel 2. 
Stakeholders have also seen the advantages of the technology. For example, in 
Finland, big companies in the wood industry and the Finnish Forest Centre, 
which collects and shares forest-related data and enforces forestry legislation, 
have begun to employ drone-based mapping of bark beetle damage (Stora Enso, 
2020; Metsäkeskus, 2019). 

 

Objective 2: To develop drone-based 3D and spectral remote sensing and ma-
chine learning methods for agricultural crop parameter estimation 

 
Drone-based remote sensing methods to estimate agricultural crop parame-

ters were developed employing spectral and photogrammetric 3D data and ma-
chine learning algorithms in publications III and IV. In the biomass estimations, 
RMSE% were at a level of 31–33% for barley and 12–15% for grass in both fresh 
and dry biomass, respectively. Although various case studies involving drone-
based spectral imaging for agricultural biomass estimation have been pub-
lished, most of them utilize only spectral data and single linear regressions (Liu 
et al., 2019; Jenal et al., 2020). However, Karunaratne et al. (2020) conducted 
a similar approach, combining multispectral and 3D features to estimate the bi-
omass of grass pasture with RF. Their result, a normalized RMSE of 16.6% for 
dry biomass, was at the same level (12–15%) as in Publication IV. Castro et al. 
(2020) proposed CNN-based deep learning methods for grass biomass estima-
tion and reports a mean absolute error of 13%. It should be noted that the com-
parison of case studies is not straightforward since the various aspects, such as 
variability of the data and different units (Berger et al., 2020a), affect estimation 
accuracies, and there are different practices to report them. 

Concerning the estimation of biochemical parameters, the nitrogen uptake (N 
kg/ha) was estimated for barley in Publication III, with an RMSE% of 21.6% and 
a nitrogen concentration (g N/kg in dry matter) for grass in Publication IV with 
an RMSE% of 11% (PCC: 0.88–0.96, R2: 0.77–0.92). In the context of feeding 
quality, the crude protein is usually calculated by multiplying the nitrogen con-
centration by 6.25, known as the factor of Jones (1931); thus, the results are 
comparable to studies that estimated crude protein with drone-based imaging, 
such as Capolupo et al. (2015), Michez et al. (2020), Barnetson et al. (2020) 
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reporting R2 of 0.54-0.76 and Wijesingha et al. (2020) with a normalized RMSE 
of 10.6%. Another important feeding quality parameter, the D-value, was esti-
mated with an RMSE% of 1.7–2.1% and PCC of 0.93–0.95 (R2: 0.86-0.9) for the 
primary growth of grass in Publication IV. For this parameter, Michez et al. 
(2020) achieved an R2 of 0.83 with a multispectral sensor, and Capolupo et al. 
(2015) achieved an R2 of 0.8 for metabolic energy (ME) to which the D-value is 
directly related. However, the models of the above-mentioned studies related to 
digestibility were not tested in independent test areas, such as in Publication IV, 
to prove if the models are also relevant in other similar grass fields. For instance, 
Michez et al. (2020) stated that their models cannot be directly used at other 
sites due to differences in site properties and uncertainties of radiometric cali-
bration. 

As a flexible and low-cost technology, drone-based imaging has raised crop 
monitoring for precision agriculture to a new level (Maes and Steppe, 2019; 
Tsouros et al., 2019). As the idea of crop monitoring is to support management 
decisions to improve the sustainability of agricultural production, it is im-
portant to discuss the usefulness of drone-based crop monitoring in those man-
agement decisions, such as in planning optimal fertilizing rates and harvesting 
times. The study by Kaivosoja et al. (2019) showed that drone-based monitoring 
provided very suitable input material compared to satellite- and tractor-based 
monitoring to generate additional fertilization tasks in the barley field studied 
in Publication III. With precision fertilizing, nutrients such as nitrogen are 
spread based on the needs of the crop in furthering sustainable agriculture prin-
ciples in the context of both the environment by reducing the runoff of nutrients 
to water bodies and economically by increasing the productivity of crops. Opti-
mizing the harvesting time for silage-making is an important task especially in 
the Nordic countries, where the feeding quality of grass swards decreases rap-
idly while the biomass is increasing. The achieved accuracies of the biomass and 
D-value means that the optimal harvesting day is possible to find to an accuracy 
of 2–3 days. This accuracy can be seen as suitable for practical purposes. In 
comparison to other methods of evaluating the D-value in the field—such as cut-
ting and analysing the samples in the laboratory and typically providing a single 
value for the field—the advantage of drone-based imaging is the ability to map 
the spatial heterogeneity within the field. This can facilitate the optimal use of 
silage by categorizing it based on feeding quality. Even though drone-based im-
aging is already widely applied in precision agriculture, the significance of user-
friendly tools is highlighted when the technology is expanded to even wider use. 

 
 

Objective 3: To assess the effects of different measurement parameters on 
classification and estimation accuracy 

 
Radiometry is a basis for passive spectral remote sensing, and the importance 

of radiometric calibration has been known for decades (Slater, 1980). However, 
the effects of different radiometric processing levels in drone-based remote 
sensing on classification and estimation accuracies in agricultural and forestry 
applications has not been studied much. The relative and anisotropic correc-
tions conducted in this work improved the biomass and nitrogen estimation ac-
curacy in a barley field by 19–27%, and absolute calibration using the empirical 
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line method improved the tree species and genus classification accuracies by 3–
11% (Figure 7). These results emphasize the importance of radiometric calibra-
tion in actual applications. 

Assmann et al. (2018) reported that different aspects considering the radio-
metric calibration accumulated +-10% uncertainty to NDVI values at tundra 
field sites. Honkavaara et al. (2013) even reported a 40% improvement in wheat 
biomass estimation accuracy with radiometric calibration. However, the im-
portance and complexity of the radiometric calibration depends of the circum-
stances of data acquisition. For instance, the relative calibration of individual 
images is very important in variable lighting conditions, absolute calibration in 
multitemporal data campaigns, and BRDF correction in sunny weather. The 
empirical line method with two or more reference panels was used to compen-
sate for the atmospheric effects on above-canopy reflectance values. This 
method requires that conditions over the panels and the target of interest are 
equal, which is usually a relevant assumption if the panels are located in open 
area far from obstacles, such as trees, that can cause scattered light to the panels 
(Aasen et al. 2018). In the Publication V, the panels were located in relatively 
open areas far from a dense forest, and few individual trees were about 10 me-
ters far from panels meaning that scattered light could cause only minor effects.  
In addition to these radiometric processing options in reflectance mosaic calcu-
lation, the various aspects related to sensor non-uniformities affect radiometric 
quality (Hakala et al., 2018; Kokka et al., 2019). Recently, the radiometric cali-
bration of the FPI-based spectral camera has been further improved so that at-
sensor radiance and irradiance can be used in direct reflectance transformation 
(Suomalainen et al. 2021).   

In general, the increase in spectral resolution and spectral range improved the 
estimation and classification accuracies (Figures 8-9). Hyperspectral features 
with the VNIR range outperformed the RGB features by 10–14% in tree species 
and barley parameter estimation. However, when machine learning models for 
grass quantity and quality were tested with independent datasets, the multi-
spectral features mostly outperformed the hyperspectral features, meaning that 
models based on multispectral features were more generalizable for these than 
models based on hyperspectral features. The reason for this can be related to 
many aspects such as the Hughes phenomenon (Hughes 1968) or differences in 
image quality within the bands of the hyperspectral sensor used (FPI2012b) 
(Honkavaara et al., 2013; Hakala et al.,2018). The related literature focusing on 
comparing the spectral resolution from drones mainly supports these findings. 
For example, Mozgeris et al. (2016) reported that hyperspectral features pro-
vided 3% better tree species classification accuracy than multispectral features. 
In a study by Maimaitijiang et al. (2017), multispectral features in the VNIR 
range outperformed RGB features for nitrogen estimation, but for biomass, they 
provided similar results. Michez et al. (2020) report that RGB provided rela-
tively similar results as a multispectral camera in estimating the heterogeneity 
of grass-feeding quality in a field. 

Hyperspectral sensors characterized the spectral properties in more detail 
than multispectral or RGB cameras (Figure 3). However, the spectral resolution 
and data collection costs are always a tradeoff; thus, it is important to under-
stand the spectral requirements in different applications. The spectral proper-
ties of vegetation are strongly related to biophysical and biochemical parame-
ters (Curran, 1980), which means that changes in spectra are ultimately based 
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on their changes. For instance, the invasion of bark beetles affects the chloro-
phyll and nitrogen concentration of needles (leaves) because the tree aims to 
breakdown their pigments under the stress (Carter and Knapp, 2001; Abdullah 
et al., 2018a). Thus, it is not surprising that wavelengths, which have been de-
tected to be most suitable to separate infested and healthy needles using field 
spectrometers, are similar to the absorption bands of chlorophylls (Foster et al., 
2017; Abdullah et al., 2018a). In addition to needle spectra, many other as-
pects—such as the structure of the needles, spectral properties of woody parts, 
atmosphere and viewing geometry—affect the observed canopy spectra (Rau-
tiainen et al., 2018). Therefore, the requirement of spatial resolution is highly 
dependent on the application and the biochemical and biophysical properties 
behind the application.     

The effect of spatial resolution on classification and estimation accuracies 
were studied in forestry and agricultural case studies. Concerning the spectral 
features, the spatial resolution affected the classification accuracy of the forestry 
application but not the estimation accuracy of the agricultural crop parameters 
(Figure 10). The reason for this difference can be related to the nature of the 
studied object and the feature extraction strategy adopted: the sampling plot 
size of the barley field was clearly larger than the GSD, and the object is rela-
tively homogeneous, which indicates that a different GSD does not affect the 
average spectra. Instead, a GSD of 50cm was only slightly smaller than an indi-
vidual treetop, and pixels at the top are brighter than the surrounding pixels, 
increasing the variability of the spectral sample collected.  

The spatial resolution combined with other parameters—for instance, the 
measuring geometry (flight parameters and camera parameters), geometric dis-
tortions related to errors interior and exterior parameters, relief, and object tex-
tures, among others (Remondino et al., 2014; Tu, et al., 2020)—can affect the 
quality of the photogrammetric point cloud (used in this study to generate DSM, 
DTM and CHM). Consequently, the estimations based on 3D data features 
demonstrated the effects of the data geometric properties and not only from the 
spatial resolution. The results were consistent with the CHM quality that was 
evaluated based on in situ height measurements since the RMSE values for the 
GSD of 3.7cm, 5cm and 10cm were 7cm, 10cm and 10 cm, respectively (Publica-
tion III). Karunaratne et al. (2020) compared the performance of four flying 
altitudes (25–100 m) in grass parameter estimation using both spectral and 3D 
features. In their experiments, the importance of 3D features was lower at 25 m 
than at other flying heights. 

In general, the integration of spectral and photogrammetric CHM-based 3D 
features improved the classification and estimation accuracies over the employ-
ment of only one of them. For example, the addition of 3D features improved 
the accuracy by approximately 8% in tree species classification. Similar findings 
have also been concluded in other tree species classification studies. For in-
stance, Sothe et al. (2019) reported that by including the photogrammetric CHM 
features in the spectral features, the overall accuracy increased by 4.2%. Also, 
3D features that have been extracted from LiDAR (Light Detection And Rang-
ing) data and added to the hyperspectral features have improved classification 
performance (Jones et al., 2010; Piiroinen et al., 2017). The integration of 3D 
and spectral features has also been shown to be an advantage in studies related 
to forest health monitoring (Shendryk et al., 2016; Lin et al., 2019). 
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In agricultural crop parameter estimation, the spectral features mostly out-
performed the 3D features, but the integration of both of them did not increase 
accuracy in all cases (Figures 11-12). In particular, the estimation of grass-feed-
ing quality parameters did not gain from the 3D features. A reason for this can 
be that, even though the leaf/stem ratio is in relation to feeding quality param-
eters (Van Soest, 1994), the extracted 3D features were not able to describe such 
small scale structural details. Although 3D structure is only indirectly linked to 
nitrogen concentration, integration of spectral and 3D features improved 
slightly the estimation accuracy in the case of barley field (Figure 12). A similar 
finding was also reported by Grüner et al. (2020), who stated that especially 
textural 3D features gained the nitrogen estimation accuracy in grass mixtures. 
In the biomass estimation of grass, the CHM-based 3D features were noted to 
be more stable than the spectral features. The great performance of 3D features 
for biomass estimation is consistent with expectations since the CHM has been 
proved to measure crop height directly and thus it correlates strongly with the 
biomass (Bendig et al., 2015; Viljanen et al., 2018; Wijesingha et al., 2019). 
Findings that the integration of photogrammetric 3D and spectral features to 
estimate agricultural yield, i.e. above-ground-biomass improves estimation ac-
curacy, have been widely proven, as stated in a review by Poley and McDermic 
(2020). 
 

 

6.2 Limitations and future research 

 
Detection of bark beetle damage as early as possible benefits forest manage-

ment. In publications I and II, the class ‘infested’ refers to the yellow-attack 
phase and therefore to the identification of early detection, i.e. a green-attack 
phase was not studied because the green-attack phase was not part of the da-
taset. The green-attack phase has been detected at the regional level from satel-
lites, for example in middle Europe from Sentinel-2 (Abdullah et al., 2018b, Huo 
et al., 2021, Fernandez-Carrillo et al, 2020). These studies were conducted in 
area-based plots, where almost all trees were in the green-attack phase, which 
is not a typical situation in the Nordic countries, where damages are distributed 
due to local conditions (Blomqvist et al., 2018). Thus, there is a need to detect 
bark beetle damage at the individual tree level. In Klouček et al. (2019) and 
Honkavaara et al. (2020), multitemporal spectral remote sensing data by drone 
was collected to study the detection of the green-attack phase. In Klouček et al. 
(2019), drone data was collected four times, and they reported that damage was 
in the green-attack phase in the first two attacks, when an overall classification 
accuracy of 10 infested and 40 healthy trees was 0.78—0.84, the user’s accuracy 
was 0.47—0.56 and the producer’s accuracy was 0.90 for infested trees. In the 
study by Honkavaara et al. (2020a), the infestation stayed at the green-attack 
level during seven dates when data was collected, except for one tree. In addition 
to bark beetle damage, the detection of spruces suffering from root-rot was stud-
ied. The best overall accuracy was 0.55 within the classes of ‘bark beetle green 
attack’, ‘root-rot’ and ‘healthy’ using a hyperspectral dataset, even though mul-



Discussion 

55 

tispectral data resulted in a nearly similar performance. The user’s and pro-
ducer’s accuracies for the green-attack class were 0.62–0.64, which is a similar 
level as in the study by Klouček et al. (2019). Although these results are prom-
ising, they were conducted with a small number of test trees (fewer than 55). 
Thus, more comprehensive studies are still needed to find optimal sensors and 
analytical approaches for drone-based green-attack detection. In particular, the 
recent drone studies have been limited to visible and near-infrared spectral 
ranges, but earlier results from the laboratory or satellite measurements sug-
gested that other spectral ranges, particularly the SWIR or thermal ranges (Hais 
and Kučera, 2008; Foster et al., 2017; Abdullah et al., 2019a and 2019b), are of 
high interest when considering the mapping of bark beetle damage. An interest-
ing approach could be flying under the canopy (Hyyppä et al., 2020), where 
early signs of bark beetles in tree trunks could be observed. In addition, further 
development of the method by Junttila et al. (2019) can be considered, wherein 
dual-wavelength terrestrial laser scanning data was used to detect the green-
attack phase via leaf water content measurements. In general, it is not expected 
that the on-going,  fast development of drones and sensors is decelerating. Con-
sequently, new drones and sensors can enhance the accuracy and efficiency of 
drone-based mapping further. Thus, future research is needed to compare and 
evaluate their performance and optimal balance between spectral and spatial 
resolution in different applications. 

The popularity of deep learning methods, such as convolutional neural net-
works (CNN), autoencoders (AE) and recurrent neural networks (RNN), has 
been growing quickly in vegetation remote sensing during recent years, CNN 
being the most popular among them (Ma et al., 2019; Kattenborn et al., 2021). 
In contrast to conventional machine learning methods, such as k-NN, RF and 
SVM used in publications I–V, CNN does not require hand-engineered feature 
extraction. Instead, the algorithm learns directly from input training images 
(2D-CNN). CNN benefits especially from high spatial resolution, but spectral 
resolution has also improved classification performance. Accordingly, it is not 
surprising that drones have been the most-used platform and RGB the most-
used camera for vegetation remote sensing studies using CNN (Kattenborn et 
al., 2021). For instance, Mäyrä et al. (2021) and Sothe et al. (2020) reported that 
the classification accuracy of tree species increased by 5% and 22–26%, respec-
tively, using CNN in comparison to conventional machine learning methods 
(SVM, RF) when only spectral features were used. However, Sothe et al. (2020) 
showed that with careful and enormous feature extraction including spectral in-
dices, CHM and point cloud features, conventional machine learning can pro-
vide almost as good results as CNN, being faster and less sensitive to changes in 
the dataset.  Furthermore, CNN has yielded promising results in insect damage 
mapping (Safonova et al., 2019). In agricultural-related studies, CNN has been 
mainly adopted for classification tasks; however, Nevavuori et al. (2019) 
achieved promising results with CNN in crop yield estimation. Thus, it is more 
likely that adopting deep learning methods instead of conventional machine 
learning methods would most probably improve the gain classification and es-
timation procedures found in publications I–V, presuming that enough training 
samples would be available.  

Considering the usability of the developed machine learning models in practi-
cal situations, it would be highly beneficial if they can be applied at other sites 
without the additional ground truth collection that increases costs significantly. 
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In this context, the validation experiments at individual tests sites are highly 
relevant. The results from bark beetle experiments showed that a smaller subset 
from a limited geographical area as training data was enough to build an accu-
rate model for the entire area, even if the training data was collected with a dif-
ferent spatial resolution (GSD: 9–50cm). In grass experiments, the RMSE% of 
independent test areas was higher than in the training field but was still at an 
acceptable level for the requirements of the application (Figures 6, 9 and 12). 
These independent test fields were similar in second-year timothy-meadow 
mixtures as in the training field. A preliminary study showed that when RGB-
based models trained in the same field were tested in another grass field located 
450 km north of it and the data was collected using a different RGB camera, this 
did not lead to an acceptable performance, which highlights the importance of 
further work towards more generalized models (Honkavaara et al., 2020b). 
Keeping in mind that the concept of machine learning is a data-driven, empiri-
cal approach, there are several practices to improve their performance in the 
context of spectral imaging. The first is to collect a huge amount of training data 
that covers a wide range of both the biophysical variable to be studied and the 
conditions during data collection, such as the imaging geometry and illumina-
tion conditions. The second option is to improve the quality of spectral meas-
urement in order to make them as standardized as possible. Both of these op-
tions will increase the knowledge of physically-based modelling of remote sens-
ing signals. For instance, radiative transfer models (e.g. PROSPECT; 
Jacquemoud and Baret, 1990) can be used to simulate more training data for 
machine learning models (Verger, et al., 2011; Berger et al., 2020b; Annala et 
al., 2020). In this context, the understanding of spectral properties and spectral 
libraries plays a key role (Hovi et al., 2017; Forsström et al., 2021). An option is 
to downscale drone-based spectral characterization to the branch or leaf level 
instead of the current canopy level. In this situation, the compatibility of spec-
tral and structural measures is highlighted, and approaches where both of them 
are characterized simultaneously are beneficial (Aasen et al., 2018; Oliveira et 
al., 2019). To conclude, in the development of machine learning, particularly 
deep learning, the understanding of the nature of remote sensing signals needs 
more attention, not only to collected data itself. 
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7. Conclusions 

Drones have taken their place as flexible and low-cost remote sensing plat-
forms between terrestrial and other aerial platforms, such as manned aircraft 
and satellites. Lightweight spectral sensors offer applicable information about  
plant’s spectral properties. In addition, photogrammetric point clouds are a 
cost-efficient way to collect information about the 3D or structural properties of 
plants. Drone-based spectral imaging is a revolutionary tool to monitor forest 
health at the individual tree level and to estimate agricultural crop parameters. 
Optimal sensors, data collection and processing methods highly depend on the 
accuracy requirements of the different applications. Machine learning methods 
are efficient in estimating and classifying variables related to forestry and agri-
culture based on drone-based remote sensing data. The combination of stand-
ardized remote sensing workflows, an understanding of the physics of remote 
sensing signals and data, which covers the whole range of biophysical variables, 
are crucial when the goal is to build generalizable machine learning models for 
wide use. Fast and continuous development of drones, sensors and machine 
learning methods are expected to continue improving the efficiency, accuracy - 
and therefore the popularity - of drone-based remote sensing methods in for-
estry and agricultural applications further. 
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