9,781 research outputs found

    Mixed Initiative Systems for Human-Swarm Interaction: Opportunities and Challenges

    Full text link
    Human-swarm interaction (HSI) involves a number of human factors impacting human behaviour throughout the interaction. As the technologies used within HSI advance, it is more tempting to increase the level of swarm autonomy within the interaction to reduce the workload on humans. Yet, the prospective negative effects of high levels of autonomy on human situational awareness can hinder this process. Flexible autonomy aims at trading-off these effects by changing the level of autonomy within the interaction when required; with mixed-initiatives combining human preferences and automation's recommendations to select an appropriate level of autonomy at a certain point of time. However, the effective implementation of mixed-initiative systems raises fundamental questions on how to combine human preferences and automation recommendations, how to realise the selected level of autonomy, and what the future impacts on the cognitive states of a human are. We explore open challenges that hamper the process of developing effective flexible autonomy. We then highlight the potential benefits of using system modelling techniques in HSI by illustrating how they provide HSI designers with an opportunity to evaluate different strategies for assessing the state of the mission and for adapting the level of autonomy within the interaction to maximise mission success metrics.Comment: Author version, accepted at the 2018 IEEE Annual Systems Modelling Conference, Canberra, Australi

    Towards the Safety of Human-in-the-Loop Robotics: Challenges and Opportunities for Safety Assurance of Robotic Co-Workers

    Get PDF
    The success of the human-robot co-worker team in a flexible manufacturing environment where robots learn from demonstration heavily relies on the correct and safe operation of the robot. How this can be achieved is a challenge that requires addressing both technical as well as human-centric research questions. In this paper we discuss the state of the art in safety assurance, existing as well as emerging standards in this area, and the need for new approaches to safety assurance in the context of learning machines. We then focus on robotic learning from demonstration, the challenges these techniques pose to safety assurance and indicate opportunities to integrate safety considerations into algorithms "by design". Finally, from a human-centric perspective, we stipulate that, to achieve high levels of safety and ultimately trust, the robotic co-worker must meet the innate expectations of the humans it works with. It is our aim to stimulate a discussion focused on the safety aspects of human-in-the-loop robotics, and to foster multidisciplinary collaboration to address the research challenges identified

    Benefits and Challenges of Multidisciplinary Project Teams: Lessons Learned for Researchers and Practitioners

    Get PDF
    Adopting a multidisciplinary research approach would enable test and evaluation professionals to more effective!y investigate the complex human performance problems faced in today\u27s technologically advanced operational domains. To illustrate the utility of this approach, we present lessons learned based on our experiences as a multi-agency, multidisciplinary team collaborating on an Army research project involving a dynamic military command and control simulation. Our goal with these lessons learned is to provide guidance to researchers and practitioners alike concerning the benefits and challenges of such collaboration. Our project team\u27s diverse members, drawn from both industry and government organizations, offer their multiple p perspectives on these issues. The final sections then summarize the challenges and benefits of multidisciplinary research
    corecore