120 research outputs found

    Age-Based Metrics for Joint Control and Communication in Cyber-Physical Industrial Systems

    Get PDF

    Tensegrity and Recurrent Neural Networks: Towards an Ecological Model of Postural Coordination

    Get PDF
    Tensegrity systems have been proposed as both the medium of haptic perception and the functional architecture of motor coordination in animals. However, a full working model integrating those two aspects with some form of neural implementation is still lacking. A basic two-dimensional cross-tensegrity plant is designed and its mechanics simulated. The plant is coupled to a Recurrent Neural Network (RNN). The model’s task is to maintain postural balance against gravity despite the intrinsically unstable configuration of the plant. The RNN takes only proprioceptive input about the springs’ lengths and rate of length change and outputs minimum lengths for each spring which modulates their interaction with the plant’s inertial kinetics. Four artificial agents are evolved to coordinate the patterns of spring contractions in order to maintain dynamic equilibrium. A first study assesses quiet standing performance and reveals coordinative patterns between the tensegrity rods akin to humans’ strategy of anti-phase hip-ankle relative phase. The agents show a mixture of periodic and aperiodic trajectories of their Center of Mass. Moreover, the agents seem to tune to the anticipatory “time-to-balance” quantity in order to maintain their movements within a region of reversibility. A second study perturbs the systems with mechanical platform shifts and sensorimotor degradation. The agents’ response to the mechanical perturbation is robust. Dimensionality analysis of the RNNs’ unit activations reveals a pattern of degree of freedom recruitment after perturbation. In the degradation sub-study, different levels of noise are added to the RNN inputs and different levels of weakening gain are applied to the forces generated by the springs to mimic haptic degradation and muscular weakening in elderly humans. As expected, the systems perform less well, falling earlier than without the insults. However, the same systems re-evolved again under the degraded conditions see significant functional recovery. Overall, the dissertation supports the plausibility of RNN cum tensegrity models of haptics-guided postural coordination in humans

    Road Surface Estimation Using Machine Learning

    Get PDF
    Vehicle motion control systems are present on commercial vehicles to improve safety and driving comfort. Many of these control systems could be further improved given accurate online information about the road condition to accommodate for driving under poor weather conditions such as icy roads or heavy rain. However, sensors for direct friction measurement are not present on commercial vehicles due to production costs. Hence, it is beneficial to incorporate an online estimation scheme for road surface classification. This thesis focuses on investigating two fundamentally different machine learning-based methods for road surface classification. The first is an artificial neural network that provides a global function approximation of the underlying dynamics. In particular, Long Short-Term Memory (LSTM) units are used to capture temporal relationships within the training data and to mitigate the vanishing gradient problem. The second is an instance-based learning method referred to as Nadaraya-Watson Kernel Regression, where local function approximations are generated around the input data. Results indicated that both machine learning-based methods were able to classify road conditions to a reasonable degree of accuracy after tuning associated hyperparameters. However, each method has different benefits and drawbacks. The LSTM network model was capable of making accurate predictions on inputs drastically different from data points within the training data set, was generally more accurate on predictions associated with new driving maneuvers, required less storage for implementation, and had relatively short prediction times. Conversely, the Nadaraya-Watson Kernel Regression model was generally more accurate at making predictions on inputs that were very similar to data points within the training data set, did not require any training time to incorporate newly collected data into the model, and generated predictions that were more easily explainable

    Dynamic Walking: Toward Agile and Efficient Bipedal Robots

    Get PDF
    Dynamic walking on bipedal robots has evolved from an idea in science fiction to a practical reality. This is due to continued progress in three key areas: a mathematical understanding of locomotion, the computational ability to encode this mathematics through optimization, and the hardware capable of realizing this understanding in practice. In this context, this review article outlines the end-to-end process of methods which have proven effective in the literature for achieving dynamic walking on bipedal robots. We begin by introducing mathematical models of locomotion, from reduced order models that capture essential walking behaviors to hybrid dynamical systems that encode the full order continuous dynamics along with discrete footstrike dynamics. These models form the basis for gait generation via (nonlinear) optimization problems. Finally, models and their generated gaits merge in the context of real-time control, wherein walking behaviors are translated to hardware. The concepts presented are illustrated throughout in simulation, and experimental instantiation on multiple walking platforms are highlighted to demonstrate the ability to realize dynamic walking on bipedal robots that is agile and efficient

    On-line estimation approaches to fault-tolerant control of uncertain systems

    Get PDF
    This thesis is concerned with fault estimation in Fault-Tolerant Control (FTC) and as such involves the joint problem of on-line estimation within an adaptive control system. The faults that are considered are significant uncertainties affecting the control variables of the process and their estimates are used in an adaptive control compensation mechanism. The approach taken involves the active FTC, as the faults can be considered as uncertainties affecting the control system. The engineering (application domain) challenges that are addressed are: (1) On-line model-based fault estimation and compensation as an FTC problem, for systems with large but bounded fault magnitudes and for which the faults can be considered as a special form of dynamic uncertainty. (2) Fault-tolerance in the distributed control of uncertain inter-connected systems The thesis also describes how challenge (1) can be used in the distributed control problem of challenge (2). The basic principle adopted throughout the work is that the controller has two components, one involving the nominal control action and the second acting as an adaptive compensation for significant uncertainties and fault effects. The fault effects are a form of uncertainty which is considered too large for the application of passive FTC methods. The thesis considers several approaches to robust control and estimation: augmented state observer (ASO); sliding mode control (SMC); sliding mode fault estimation via Sliding Mode Observer (SMO); linear parameter-varying (LPV) control; two-level distributed control with learning coordination

    Controller tuning by means of evolutionary multiobjective optimization: current trends and applications

    Full text link
    Control engineering problems are generally multi-objective problems; meaning that there are several specifications and requirements that must be fulfilled. A traditional approach for calculating a solution with the desired trade-off is to define an optimisation statement. Multi-objective optimisation techniques deal with this problem from a particular perspective and search for a set of potentially preferable solutions; the designer may then analyse the trade-offs among them, and select the best solution according to his/her preferences. In this paper, this design procedure based on evolutionary multiobjective optimisation (EMO) is presented and significant applications on controller tuning are discussed. Throughout this paper it is noticeable that EMO research has been developing towards different optimisation statements, but these statements are not commonly used in controller tuning. Gaps between EMO research and EMO applications on controller tuning are therefore detected and suggested as potential trends for research.The first author is grateful for the hospitality and availability of the UTC at the University of Sheffield during his academic research stay at 2011; especially to Dr. P.J. Fleming for his valuable comments and insights in the development of this paper. This work was partially supported by Grant FPI-2010/19 and project PAID-2011/2732 from the Universitat Politecnica de Valencia and projects TIN2011-28082 and ENE2011-25900 from the Spanish Ministry of Economy and Competitiveness.Reynoso Meza, G.; Blasco Ferragud, FX.; SanchĂ­s Saez, J.; MartĂ­nez Iranzo, MA. (2014). Controller tuning by means of evolutionary multiobjective optimization: current trends and applications. Control Engineering Practice. 28:58-73. https://doi.org/10.1016/j.conengprac.2014.03.003S58732

    Online Optimization-based Gait Adaptation of Quadruped Robot Locomotion

    Get PDF
    Quadruped robots demonstrated extensive capabilities of traversing complex and unstructured environments. Optimization-based techniques gave a relevant impulse to the research on legged locomotion. Indeed, by designing the cost function and the constraints, we can guarantee the feasibility of a motion and impose high-level locomotion tasks, e.g., tracking of a reference velocity. This allows one to have a generic planning approach without the need to tailor a specific motion for each terrain, as in the heuristic case. In this context, Model Predictive Control (MPC) can compensate for model inaccuracies and external disturbances, thanks to the high-frequency replanning. The main objective of this dissertation is to develop a Nonlinear MPC (NMPC)-based locomotion framework for quadruped robots. The aim is to obtain an algorithm which can be extended to different robots and gaits; in addition, I sought to remove some assumptions generally done in the literature, e.g., heuristic reference generator and user-defined gait sequence. The starting point of my work is the definition of the Optimal Control Problem to generate feasible trajectories for the Center of Mass. It is descriptive enough to capture the linear and angular dynamics of the robot as a whole. A simplified model (Single Rigid Body Dynamics model) is used for the system dynamics, while a novel cost term maximizes leg mobility to improve robustness in the presence of nonflat terrain. In addition, to test the approach on the real robot, I dedicated particular effort to implementing both a heuristic reference generator and an interface for the controller, and integrating them into the controller framework developed previously by other team members. As a second contribution of my work, I extended the locomotion framework to deal with a trot gait. In particular, I generalized the reference generator to be based on optimization. Exploiting the Linear Inverted Pendulum model, this new module can deal with the underactuation of the trot when only two legs are in contact with the ground, endowing the NMPC with physically informed reference trajectories to be tracked. In addition, the reference velocities are used to correct the heuristic footholds, obtaining contact locations coherent with the motion of the base, even though they are not directly optimized. The model used by the NMPC receives as input the gait sequence, thus with the last part of my work I developed an online multi-contact planner and integrated it into the MPC framework. Using a machine learning approach, the planner computes the best feasible option, even in complex environments, in a few milliseconds, by ranking online a set of discrete options for footholds, i.e., which leg to move and where to step. To train the network, I designed a novel function, evaluated offline, which considers the value of the cost of the NMPC and robustness/stability metrics for each option. These methods have been validated with simulations and experiments over the three years. I tested the NMPC on the Hydraulically actuated Quadruped robot (HyQ) of the IIT’s Dynamic Legged Systems lab, performing omni-directional motions on flat terrain and stepping on a pallet (both static and relocated during the motion) with a crawl gait. The trajectory replanning is performed at high-frequency, and visual information of the terrain is included to traverse uneven terrain. A Unitree Aliengo quadruped robot is used to execute experiments with the trot gait. The optimization-based reference generator allows the robot to reach a fixed goal and recover from external pushes without modifying the structure of the NMPC. Finally, simulations with the Solo robot are performed to validate the neural network-based contact planning. The robot successfully traverses complex scenarios, e.g., stepping stones, with both walk and trot gaits, choosing the footholds online. The achieved results improved the robustness and the performance of the quadruped locomotion. High-frequency replanning, dealing with a fixed goal, recovering after a push, and the automatic selection of footholds could help the robots to accomplish important tasks for the humans, for example, providing support in a disaster response scenario or inspecting an unknown environment. In the future, the contact planning will be transferred to the real hardware. Possible developments foresee the optimization of the gait timings, i.e., stance and swing duration, and a framework which allows the automatic transition between gaits
    • 

    corecore