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Abstract

This thesis delves into the emerging paradigm of goal-oriented communication, particu-
larly in the context of wireless networked control systems. Moving away from traditional
communication metrics, we argue for a shift in focus towards the ultimate purpose or
’goal’ of the communication process. This paradigm envisages the network and control
applications as interconnected parts of a singular system, orchestrated towards a defini-
tive purpose. We explore strategies for the network to learn about the control system’s
behavior, optimizing resource allocation in the process, and for the control system to
adapt its parameters using network information to enhance stability and performance.
To support this paradigm shift, we introduce the Age of Loop (AoL), a novel concept
designed to offer a more holistic view of the control loop communication process. The
AoL metric extends the application of the Age of Information (AoI) by integrating both
downlink and uplink effects and their interplay, setting the stage for more effective
resource allocation strategies.

Our investigation includes theoretical analyses and practical experimentation. We
embark on a measurement campaign utilizing a standalone 5G network in a Bosch
factory setting to measure and analyze AoL behavior, demonstrating its practical ad-
vantages over AoI. Furthermore, we illustrate the practical application of our proposed
methodologies through an Automated Guided Vehicle (AGV) use-case, showing that
theoretical solutions can be successfully adapted to real-world scenarios. In summary,
our work propels the goal-oriented communication paradigm forward, offering innovative
strategies and tools, and providing a compelling case for rethinking traditional network
design principles. This study sets a robust foundation for future research and practical
implementations, promising a significant impact on the future design and operation of
wireless networked control systems.
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Resumé

Denne afhandling dykker ned i det nye paradigme kendt som målrettet kommunikation,
specifikt inden for trådløse og netværksstyrede kontrolsystemer. Vi argumenter for at
skift i fokus fra traditionelle kriterier og mod at fokus direkte for målene for kommu-
nikationsprocessen. I dette paradigme anses både netværket og kontrolsystemerne som
forbundne dele af et enkelt system, der så styres mod et bestemt formål. Vi udforsker
strategier for at netværket kan lære om kontrolsystemets opførsel, og derved optimere al-
lokering af resurser, samt for at kontrolsystemet kan tilpasse sine parametre ved hjælp
af netværksinformation of derved forbedre stabilitet og ydeevne. For at understøtte
dette paradigmeskift, introducerer vi Age of Loop (AoL), et nyt begreb der giver et
holistisk syn på kontrolløkken for kommunikationsprocessen for. AoL er en udvidelse af
Age of Information (AoI), og begrebet integrerer både downlink og uplink effekter samt
deres indbyrdes påvirkninger, hvilket baner vejen for mere effektive strategier indenfor
allokering af resurser. Vores afhandling omfatter både teoretiske analyser samt praktisk
eksperimentering. Vi har gennemført en målekampagne ved hjælp af et selvstændigt
5G-netværk i et fabriksmiljø ved Bosch for at måle og analysere AoL, samt for at demon-
strere dets praktiske fordele over AoI. Desuden illustrerer vi praktisk anvendelse af vores
udviklede metoder gennem eksperimentering med et Automated Guided Vehicle (AGV),
hvilket viser, at vores teoretiske løsninger kan tilpasses virkelige scenarier. Vores arbe-
jde rykker paradigmet indenfor for målrettet kommunikation betydeligt, foreslår nye og
innovative strategier og værktøjer, og giver et stærkt grundlag for at genoverveje tradi-
tionelle netværksdesignprincipper. Afhandlingen lægger et solid grundlag for fremtidig
forskning og praktiske implementeringer, der vil få en betydelig indflydelse på fremtidige
designs og drift af trådløse og netværksstyrede kontrolsystemer
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Introduction

1 Motivation
Communication systems, as we traditionally understand them, have been dominantly
focused on the reliable exchange of data. The design and optimization of these networks
is guided by specific Key Performance Indicators (KPIs), such as data throughput and
latency. While these KPIs are undoubtedly important, they do not fully encapsulate
the nuanced demands of more complex environments [6, 19]. This becomes particularly
evident in industrial settings, where machines, sensors, and control systems must con-
tinuously interact in real-time to execute single or collaborative tasks, some of which
may be critical. In such environments, ensuring smooth operation of these systems
may necessitate more than just adhering to predefined link-level KPIs [11]. Particu-
larly when considering the finite network resources at disposal, the establishment of a
communication paradigm capable of fulfilling these requirements may warrant a shift
in perspective, favoring more context-aware metrics and strategies that can account for
the real-time and collaborative nature of tasks within these complex settings.

This is where a new paradigm known as goal-oriented communication is coming to the
fore. The premise of goal-oriented communication is quite a shift from the traditional
outlook [16]. Instead of concentrating solely on data transmission, the focus moves
towards understanding the ultimate purpose or ’goal’ of that communication. This
paradigm goes beyond the "how" of communication - how to transmit data as efficiently
as possible. Instead, the main idea is to take into account the "why" - why the data is
being communicated and what desired outcome of that communication is.

The paradigm of goal-oriented communication compels us to rethink our founda-
tional approach to network design [11]. Rather than treating control applications and
the network as distinct entities, they are perceived as constituents of a singular, inter-
connected system, orchestrated with a definitive purpose. Take, for instance, a factory
environment where the primary goal is to sustain fluid and efficient operations. In
such a goal-oriented communication scenario, the network could discern a data stream
correlated with a vital control system state and prioritize its communication. Should
a complication emerge within the control system, the network possesses the agility to
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adapt instantaneously, e.g. by rerouting traffic or adjusting parameters to avert dis-
ruptions and uphold operations. Concurrently, the control application could deliver
constant feedback to the network, thus empowering the network to learn, adapt, and
progressively enhance its performance.

The transition towards goal-oriented communication pledges two pivotal advantages.
Firstly, it changes the way we currently envision network resource allocation. This means
that rather than uniformly striving for high throughput and low latency based on preset
requirements, the network can intelligently allocate resources attuned to the unique
state of the control system application. Secondly, goal-oriented communication could
effectively diminish the distance between the network and the applications it underpins,
thereby fostering the development of more complex, intelligent systems. Strategies such
as machine learning could hold a central role in this context, empowering the network to
comprehend application behavior, generate forecasts, and make real-time adjustments.

While the promise of this goal-oriented communication paradigm is undeniable, it is
important to acknowledge that it embodies a considerable departure from established
communication design principles. It calls for novel strategies and technologies, alongside
a re-imagined perspective on network functionality and structure. Foremost, achieving
a granular understanding of application effectiveness is pivotal [7]. This necessitates
the network’s ability to distinguish the specific performance attributes and resource de-
mands of diverse applications. Acquiring such profound comprehension is a challenging
task, underlining the potential indispensability of sophisticated machine learning algo-
rithms and models. The objective is to architect a system that not only accumulates
and processes pertinent data but also effectively learns from and predicts the dynamic
requirements of varying applications. Moreover, the transition from traditional net-
work metrics towards application-centric goals introduces a significant dilemma: How
do we delineate and measure communication effectiveness in this new context? Con-
ventional network performance indicators like latency, throughput, and packet loss are
well-understood, yet the metrics pertinent to goal-oriented communication may fluctuate
extensively based on the application. Quantifying these metrics necessitates compre-
hension of their impact on the application’s success. This also demands the creation of
innovative measurement tools and methodologies. Machine learning has potential here
too, aiding in discerning which metrics hold the most relevance for specific applications
and dynamically fine-tuning network parameters to optimize these metrics [11].

In this context, the inclusion of the Age of Information (AoI) and the proposed Age
of Loop (AoL) concepts extends the design space and potential strategies for managing
the complexities of goal-oriented communication. AoI, which quantifies the freshness
of information, offers a promising metric for assessing the relevance and timeliness of
information [11]. This attribute could be particularly useful in systems where informa-
tion freshness is critical, such as real-time monitoring systems, autonomous vehicles,
and IoT applications. In fact, recent literature sees numerous researchers exploring
AoI as a viable metric for analyzing and enhancing wireless networked control sys-
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tems [3, 5, 8, 10, 14]. This trend underscores the emerging shift towards innovative
perspectives in network design and assessment, particularly in the realm of control sys-
tems research.

Nevertheless, an intrinsic challenge with the application of Age of Information lies in
its inclination to restrict optimizations to a single communication link. Consequently, it
might inadvertently overlook the complex interplay between downlink and uplink com-
munications, thereby neglecting a holistic overview of the communication process. This
becomes particularly impactful in closed-loop control systems, where the importance
of feedback-based control signals to system stability and performance is paramount.
For instance, in our work [4], we illustrate how the application of AoI may fall short
in encapsulating the complexities of these systems, resulting in sub-optimal behavior
for closed-loop control. To overcome these limitations, we introduce the Age of Loop
concept. AoL aims to integrate both downlink and uplink effects, as well as their in-
terrelation. By doing so, it provides a more holistic understanding of the control loop
communication process, laying the groundwork for an optimized resource allocation
strategy.

In this thesis, we delve into the goal-oriented communication paradigm, paying par-
ticular attention to its application in wireless networked control systems. We design
strategies that enable the network to learn about the control system’s behavior, thereby
optimizing resource allocation. Simultaneously, we explore scenarios where the control
system can adapt its parameters by leveraging network information to enhance stability
and performance. Both strategies underline an important paradigm initially put forth
by Witsenhausen [18]: in the context of distributed control problems, actions taken at
the control system level can directly impact the communication system, and vice versa.
To accomplish this, we fundamentally rely on age-based metrics, introducing a new con-
cept, the Age of Loop, which propels our results beyond the current state-of-the-art.
Moving beyond theoretical and analytical considerations, we also initiate a measurement
campaign utilizing a standalone 5G network. This allows us to measure and analyze
AoL behavior within a Bosch factory setting, demonstrating its practical superiority
over AoI. Moreover, we examine an Automated Guided Vehicle (AGV) use-case to illus-
trate that solutions conceived within an analytical framework can be readily adapted
to the experimental model. This further underscores the applicability and adaptability
of our proposed methodologies and concepts.

2 Thesis Objectives and Methodology
The objective of this thesis is to explore and tackle a set of key issues highlighted in the
preceding section. Specifically, it intends to shed light on the following three research
questions, providing preliminary responses to each:

Q1: How can we construct a comprehensive model that enables the concurrent op-
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timization of control and network aspects, facilitating mutual learning between
these components within the framework of goal-oriented communication?

Q2: How can we proficiently employ the Age of Information and the newly proposed
Age of Loop metrics to critically assess and enhance control system performance,
while concurrently optimizing network resource efficiency?

Q3: How can we harness the empirical insights derived from AoL behavior in a real-
world 5G network setting to bridge the gap between theoretical constructs and
practical applications, and subsequently employ these insights to enhance the op-
erational efficiency of real-time applications, such as AGVs?

The responses to these research questions will be articulated through a series of re-
search articles. Figure 1 offers a visual representation of the interconnected relationship
between each research paper and the corresponding research question. This diagram
also serves as a roadmap of the methodology deployed to fulfill the objectives of this
thesis. Each research question is envisioned as part of a broader topic, with every topic
being interrelated as they align toward a specific goal.

The first research question resides within the broader research realm of "Goal-
Oriented Communication in Wireless Networked Control Systems." Here, we delve into
the interplay between communication and control, pinpoint gaps in existing research,
and propose hypotheses accompanied by potential solutions. Specifically, we endeavor
to construct comprehensive models that encapsulate both control and network aspects,
enabling their joint optimization. Consequently, we design learning-based control strate-
gies that intelligently adapt to network behavior and performance, as well as fine-tune
network resource allocation based on the dynamic states of the control system.

Our second research question explores solution methodologies using age-based met-
rics. We identify the limitations of AoI when modeling WNCS scenarios, which propels
us to propose a new metric: the Age of Loop. This metric enables the formulation
of learning-based solution strategies for a variety of control problems, showcasing its
advantages over AoI and pushing performance results beyond current state-of-the-art
standards.

The third research question is centered around the validation of solution strategies
derived from the first two questions. We examine the empirical behavior of AoL data
in a real-world 5G network setting, bridging the chasm between theoretical constructs
and practical applications. The insights gleaned from this process are then employed
to bolster the operational efficiency of real-time Automated Guided Vehicle (AGV)
applications.
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Fig. 1: Relationship between the topic, the research questions and the corresponding papers included
in the thesis.

3 Thesis Outline
This thesis, structured as a compendium of papers, is divided into two main sections
where significant contributions and findings are highlighted. Part I continues with Chap-
ters 4 and 5. Chapter 4 elucidates the theoretical background pertaining to Wireless
Networked Control Systems, including the Age of Information and Age of Loop. Chap-
ter 5 features comprehensive overviews of the individual papers incorporated into the
thesis, while also enumerating patent applications and open source code contributions
developed during the course of the PhD research. Finally, conclusions and discussions
concerning prospective research directions are detailed in Chapter 9.

Part II showcases the contributions made in the form of submitted and published sci-
entific papers, forming the crux of the thesis. The papers are organized chronologically,
methodically addressing the research questions initially outlined in this section.
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4 Exploring the Core Theories: Control, Communi-
cation, and Age-based Metrics

In this chapter, we offer a concise review of the theoretical background central to our
contributions. We commence by laying out the foundational elements of wireless net-
worked control systems, along with an exploration of existing solutions proposed by
current literature. Subsequently, we introduce age-based metrics and expound upon
their potential utility as a method for goal-oriented communication.

4.1 Wireless Networked Control Systems
Wireless Networked Control Systems are a subset of networked control systems where
the communication among various control elements, including sensors, controllers, and
actuators, is wireless. There are many advantages of WNCS deployment in comparison
with traditional control systems in terms of flexibility, maintainability, and lower costs.
In this context, WNCS is considered an essential enabler for future industrial, logistics,
and transport applications, where a high level of flexibility, data fusion, resource sharing,
and cost reduction are desired.

The development of WNCS, however, presents unique challenges due to the unreli-
ability and limited resources of wireless networks, as represented in Figure 2. For these
reasons, the design and analysis of such systems require unique consideration of the
wireless networking aspects along with the control system design.

The Dynamics in Control System Architecture

A conventional control system architecture encompasses a structured network of sen-
sors, actuators, and controllers, operating in tandem to manage the behavior of the
system. The workflow within this network initiates with sensors, which are responsible
for capturing and transmitting the real-time state of the system to the controller. Once
the controller receives these state measurements, it utilizes them to compute the control
inputs. These inputs are then forwarded to the actuators, effectively influencing the
system’s behavior based on the inputs.

To provide a mathematical perspective, let us consider X(t) ∈ Rn as the state-
space representation obtained from sensor data, and U(t) ∈ Rm as the control input
generated by the controller and transmitted to the plant. For all integers n and m, and
at any given time instance t, the system dynamics can be encapsulated by a differential
equation Ẋ(t) = f(X(t), U(t)). In the canonical case of a linear time-invariant (LTI)
plant, the function f represents a linear combination of the system state and control
input, as described by the following equation:

Ẋ(t) = f(X(t), U(t)) = AX(t) + BU(t) (1)
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Fig. 2: Components of the control system are connected via wireless communication, thus leading to
imperfections and constraints.

Here, A ∈ Rnxn and B ∈ Rnxm are the state transition and control input matrices,
respectively, which essentially characterize the control system behavior.

The controller, leveraging the state-space representation X(t), computes the control
input U(t). Conventionally, this computation is carried out by applying a state-feedback
control law, which can be represented mathematically as follows:

U(t) = KX(t) (2)
In this equation, K ∈ Rmxn symbolizes the controller gain matrix. It is through

these set of equations and control laws that the entire operation of a control system is
steered and monitored.

Optimal Control Design

For many control applications, it is desirable to design the controller so as to optimize
a certain performance index. One common approach is to minimize the quadratic cost
function, leading to what is known as the Linear Quadratic Regulator (LQR) [12]. The
LQR problem is defined as follows:

minimize
U(t)

∫ ∞

0

[
X(t)T QX(t) + U(t)T RU(t)

]
dt

subject to Ẋ(t) = AX(t) + BU(t)
(3)
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Here, Q ≥ 0 and R ≥ 0 are arbitrary positive defined matrices that are chosen by the
designer to specify weights between state regulation and control effort [12].

The solution to the LQR problem is a state-feedback controller of the form U(t) = KX(t),
where the optimization to find the U(t) is done in an online fashion each time a new
control command is generated, by solving the Algebraic Riccati Equation [15]:

AT P + PA−PBR−1BT P + Q = 0,

K = R−1BT P,

U(t) = KX(t).
(4)

For A and B controllable, the infinite time horizon LQR with Q, R > 0 gives a conver-
gent closed-loop system [15], where the stability can be guaranteed.

Control system under imperfect communication

Wireless networks, distinguished by their dynamic behavior, present a set of unique
challenges compared to wired control loops. As illustrated in Figure 2, constraints
intrinsic to wireless communication can result in variable delays and packet dropouts,
often contributing to deteriorated performance or instability in the control system.

Existing literature typically partitions solutions to these challenges into two primary
categories:

• Control over Network [9, 17, 22]: This category concentrates on designing control
systems under the premise of predictable network constraints. The primary objec-
tive is to optimize the Quality of Control (QoC) within the volatile environment
induced by the network’s behavior. The proposed solutions frequently depend
on robust assumptions about the network’s behavior, such as packet dropouts
following a Bernoulli distribution or constant delay models.

• Control of Network [13, 21, 23]: This category primarily targets the communica-
tion network itself. It encompasses pivotal aspects such as radio resource manage-
ment, routing or congestion protocols, and network topology. The principal aim is
to achieve network configurations that satisfy Quality of Service (QoS) constraints.

Both categories, however, display a clear delineation between the control and the
network entities, each optimized independently. This leads to proposed solutions that
lean heavily on assumptions about the behavior of either the network or the control.

In response to these realities, this thesis approaches a third category: Control-
Oriented Network. Here, the network’s decisions are influenced not solely by network
QoS Key Performance Indicators (KPIs), but also by the overarching goals of the ap-
plication. Age-based metrics play a pivotal role in achieving this integration, and will
be introduced in the subsequent section.



4. Exploring the Core Theories: Control, Communication, and Age-based Metrics 11

Fig. 3: Workflow of AoL behavior in WNCS.

4.2 Age of information and Age of Loop
The concept of Age of Information forms a crucial framework in understanding the fresh-
ness of knowledge related to the status of remote systems. As a quantifiable measure,
AoI marks the time span between the generation of the latest received data and the
present moment, represented mathematically as ∆(t) = t − U(t) where U(t) indicates
the time when the newest data was generated, as highlighted in [1, 20].

However, it is important to note that the AoI’s formal definition is inherently ap-
plicable to a singular communication link. Studies exploring Wireless Network Control
Systems (WNCS) through the lens of AoI have so far been confined to separate analyses
of either uplink (UL) [3, 5, 10] or downlink (DL) [8, 14] transmissions. Nonetheless,
the intrinsic structure of WNCS involves a closed-loop incorporating both UL and DL,
wherein each can potentially impact the other. This creates implications on system
performance and network resource utilization. To illustrate, a high UL AoI denotes less
current knowledge for the controller about the plant, necessitating quicker delivery of
the control signal and consequentially, greater network resource usage by the DL link.

In order to address these considerations, we introduce the Age-of-Loop metric, aimed
at assessing the overall age of a WNCS closed-loop. This is clarified through the WNCS
example on Fig. 3. Consider the closed-loop control system where an AGV sends its
states update and expect a feedback control command from an edge controller. In this
context, denote S = {ts1 , ts2 , . . . , tsi , . . . }, tsi+1 ≥ tsi , a sequence of time instances where
data packets at the AGV are generated and subsequently sent to the edge controller,
while C = {tc1 , tc2 , . . . , tci

, . . . }, tci+1 ≥ tci
, the time instances where the corresponding
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feedback control command is received by the AGV from the controller, satisfying an
arbitrary arrival process where tci > tsi . Additionally, we can define δi = tci − tsi the
total time encompassing the packet generation until the control loop is closed, which can
include the time spent for transmissions (DL and UL), queuing and control computation.
For a given timestamp t, the latest control loop cycle was initiated at the timestamp:

s(t) = sup{tsi ∈ S : tsi + δi ≤ t}, (5)

such that we can define the Age of Loop as:

∆L(t) := t− s(t). (6)

Remark: The AoI is defined for two independent links, requiring instantaneous and
perfect feedback channel for the sender to know the age at the receiver. This is a practical
limitation often neglected in the literature. In contrast, AoL can be easily implemented
and exploited in a real network, as it captures the behavior of both UL/SL directions
into a single metric that can be easily measured at either of the end points.

5 Summary of Contributions
This chapter presents succinct synopses for each paper included in Part II. Each sum-
mary outlines the problem addressed, the paper’s primary goal, and the key findings.
Thus, the thesis encompasses an assortment of theories, models, ideas, and results de-
rived from these papers, highlighting essential discoveries and contributions in the forth-
coming publications. Moreover, we enumerate patent applications and open source code
contributions developed during the course of the PhD research.

5.1 Research Papers
Paper A: "Wireless control of autonomous guided vehicle using
reinforcement learning"
Description

This paper identifies a significant challenge in the real-time control and coordination
of mobile robots from an edge cloud infrastructure over a wireless communication net-
work. This method is viewed as crucial for future industrial, logistics, and transport
applications due to its potential for flexibility, data fusion, resource sharing, and cost
reduction. The primary problem lies in achieving low latency, reliability, and stability
due to uncertainties such as network-induced delays, data packet dropouts, network
topology, channel fading, and network throughput. Existing models and approaches fail
to adequately consider these factors, leading to non-optimal reliability and issues with
control stability.
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Objective

The paper’s objective is to propose and examine a more comprehensive model for the
control communication protocol to read the AGV state and send control commands.
The aim is to enhance the performance of the Autonomous Guided Vehicle (AGV) by
employing a learning-based approach to optimize vehicle speed based on channel infor-
mation, thus improving both the application’s stability and communication reliability.
An essential part of the study also involves using a reinforcement learning approach to
address the trade-off between increased speed and system stability.

Main Findings

The research demonstrates that system performance and stability are significantly af-
fected by the reliability of the wireless link with fading. There is a notable trade-off
between AGV speed, control stability, and channel quality, which can be managed ef-
fectively using a reinforcement learning approach. This approach can find the optimal
speed of AGV to complete a mission path in the shortest time. As a result, the proposed
solution maintains system stability on par with widely used baseline state-of-the-art con-
trollers while reducing AGV mission time by more than 30%. The study also validates
the impact of vehicle velocity on system stability from both a channel and control per-
spective. It shows how reinforcement learning algorithms can offer an effective solution
to improve AGV stability and mission time.

Paper B: "Radio Access Scheduling using CMA-ES for Optimized
QoS in Wireless Networks"
Problem

The paper addresses the challenge of resource allocation of limited radio resources for
applications with various Quality of Service (QoS) requirements, a well-known issue in
wireless communications. Traditional approaches to this problem often fail to balance
complexity, fairness, latency, throughput, and other network requirements effectively.
Moreover, the issue of reproducibility and comparison of results in machine learning
(ML) techniques for radio resource management, especially Reinforcement Learning
(RL), remains unresolved due to a lack of standard problem definition and open imple-
mentations.

Objective

The paper aims to propose a solution for the TimeFreqResourceAllocation-v0 problem
using a learning-based black-box methodology, specifically the Covariance Matrix Adap-
tation Evolution Strategy (CMA-ES). This problem, as introduced by Nokia Bell Labs
in its open-source framework Wireless Suite, entails an OFDM resource allocation task
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where a limited number of frequency resources need to be allocated to a large number
of User Equipments (UEs) over time. The goal is to provide an approach that improves
overall QoS performance and scales effectively with the growing number of UEs in terms
of computational resources.

Main Findings

The study reveals that the proposed black-box optimization technique, CMA-ES, for
the TimeFreqResourceAllocation-v0 problem shows superior overall performance in QoS
provision compared to standard classical and RL approaches. It demonstrates that
CMA-ES not only improves performance but also scales more effectively with the in-
creasing number of UEs in terms of computational resources, a feat that is not matched
by Reinforcement Learning approaches. The results of the paper confirm that the pro-
posed approach can outperform traditional baselines provided by Nokia and even surpass
Deep Reinforcement Learning techniques.

Paper C: "Age of loop for wireless networked control systems
optimization"
Problem

The paper addresses the challenge in Wireless Networked Control Systems (WNCS),
specifically concerning the joint design of control and communication for future wireless
industrial applications. It focuses on the Age of Information (AoI) metric, which is
usually defined for a single communication direction and fails to capture the closed-loop
dynamics. Furthermore, conventional design approaches typically decouple control and
communication systems, which leads to over-provisioning of network resources and does
not effectively reflect the interplay between these systems in real-world applications.

Objective

The primary objective of this paper is to extend the concept of AoI by introducing a
new metric, the Age of Loop (AoL). The AoL considers both uplink and downlink of the
control loop in WNCS and thus provides a more precise system state estimation. Using
this newly proposed metric, the paper aims to learn the WNCS latency and freshness
bounds and to minimize the long-term WNCS cost with the least amount of bandwidth.

Main Findings

We find that the proposed AoL metric, as a measure of the age of a WNCS closed-
loop, offers a more efficient and accurate evaluation of the WNCS performance than
the standard AoI metric. When applied to a case study involving a remotely controlled
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inverted pendulum system, the AoL metric significantly outperforms policies based on
fixed latency requirements. Moreover, by proposing a bandwidth allocation policy based
on the AoL and channel quality information, the authors demonstrate that it’s possible
to learn the system robustness and thus prevent over-provisioning of network resources
in a networked control system.

Paper D: "Control-Aware Scheduling Optimization of Industrial
IoT"
Problem

The research focuses on the frequency resource allocation challenge within Wireless
Networked Control Systems (WNCS). In many industrial settings, remote Internet of
Things (IIoT) devices vie for limited network resources. The allocation of these re-
sources by a centralized network base station is crucial to ensure the overall control
system’s stability. Traditional scheduling approaches either decouple the control and
communication entities leading to over-provisioning of network resources, or they do
not adequately consider the time and frequency dynamics of a real network scheduler,
which can impact the strict timing requirements of WNCS.

Objective

The paper’s main objective is to design a joint network and control scheduling solu-
tion that estimates the control system’s degradation based on the network state and
utilizes this information to assign frequency resources to each device. The authors aim
to develop a scheduler that adheres to the 3GPP MAC scheduling scheme and gener-
alizes for any new IIoT device entering the network, thus significantly reducing system
complexity, especially in highly dense scenarios.

Main Findings

The proposed control-aware scheduler mechanism, formulated as a Markov Decision
Process (MDP), successfully estimates each IIoT device’s control performance based on
its current network conditions. This allocation scheme generalizes for multiple control
dynamics and can be solved in polynomial time, which significantly reduces the overall
system complexity. When compared to traditional scheduler baselines and evolutionary
approaches, the solution provides better performance. It minimizes the overall control
cost, increases system capacity, and assures the long-term stability of the overall system.

Paper E: "Goal-Oriented Wireless Communication for a Remotely
Controlled Autonomous Guided Vehicle"
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Problem

The study addresses the issue of precise remote trajectory tracking control of Au-
tonomous Guided Vehicles (AGVs) over time-varying wireless channels in dynamic
factory environments. One of the inherent problems in this setup is the dependency
between the data rate and the resulting control accuracy for the system. While the
Age-of-Information (AoI) metric offers a solution for measuring the freshness of trans-
mitted data, it does not account for both downlink and uplink effects and their interplay.
Moreover, it neglects the role of correlated fading, which significantly influences remote
path tracking.

Objective

The research aims to propose a goal-oriented wireless solution that continuously adapts
data transmission rates based on the Age-of-Loop (AoL) metric to achieve precise remote
trajectory control of an AGV. The researchers intend to demonstrate how the physical
AGV process varies as a function of AoL, linking control planning and radio resource
allocation. The project also involves formulating a model that dynamically adjusts the
transmission data rate, optimizes the AGV trajectory, and outperforms fixed-data rate
policies and AoI-based solutions.

Main Findings

The study showed that the proposed model of a remote AGV control that dynamically
adjusts the wireless transmission rate successfully optimizes the AGV trajectory. By
employing the AoL concept, the model accounted for both downlink and uplink effects as
well as the channel correlated fading effect. Numerical analysis affirmed the importance
of the proposed solution in goal-oriented AGV applications, delivering superior perfor-
mance than fixed-data rate policies and AoI-based solutions, achieving higher system
trajectory accuracy. The findings indicate the potential for this approach to improve
precision in complex factory scenarios in future works.

Paper F: "Experimental Study of Information Freshness for Goal-
Oriented Wireless Communication in a Factory"
Problem

The problem at hand is the traditional approach of wireless data transmission that pri-
marily focuses on rate and reliability but doesn’t necessarily align with the ultimate
application goal. Age of Information (AoI), a metric quantifying the freshness of infor-
mation, has been the common attribute representing the relevance of information but
falls short as it is constrained to a single communication link, limiting its effectiveness
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for closed-loop control systems. The Age-of-Loop (AoL) metric, which takes into ac-
count both downlink and uplink effects, as well as their interplay, was introduced as
an alternative to AoI. However, its practical application in closed-loop control systems
with wireless links needs to be explored further.

Objective

The study aims to leverage the goal-oriented wireless communication paradigm to en-
hance the effectiveness of wireless data transmission in the context of Wireless Net-
worked Control Systems (WNCS). This involves setting up a measurement campaign
within a factory environment to collect and analyze AoL data and to experimentally
validate its significance for WNCS problems. Furthermore, the study aims to propose
a numerical model to characterize the AoL behavior and use it to address the problem
of wirelessly controlled Autonomous Guide Vehicle (AGV), formulating this problem
as a semi-Markov-Decision Process (MDP) where the AGV trajectory is optimized by
controlling network model parameters.

Main Findings

The study successfully set up an experimental setup within a factory environment to
model and analyze the wireless channel behavior of an AGV, utilizing a 5G standalone
network. The research proposed a model for a remote AGV control system that dynam-
ically adjusts the wireless transmission rate to optimize the AGV’s trajectory, consid-
ering both the effects of downlink and uplink using the AoL concept, and the channel-
dependent fading effect. The study showed that the obtained optimized policy using
AoL provided better AGV performance than AoI baseline solutions, validating the pro-
posed solution with experimental data. These findings underline the significance of the
proposed solution for AGV applications, particularly in factory settings.

Paper G: "Goal-Oriented Wireless Communication and Control
using Age of Loop"
Problem

The current communication paradigm optimizes network performance indicators such
as throughput, latency, and packet loss, which may lead to over-provisioning of network
resources, especially in the context of Wireless Networked Control Systems (WNCS).
There is a need to go beyond content-agnostic wireless connectivity and consider the ap-
plication’s end-goal, which requires a high granularity level of understanding application
effectiveness. Existing metrics such as Age of Information (AoI) quantify information
freshness but are constrained to a single communication link, making them sub-optimal
for closed-loop control problems.
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Objective

This paper aims to present Age-of-Loop (AoL) as a suitable metric for goal-oriented
communication in WNCS. By considering both downlink and uplink effects, AoL serves
as a more holistic measure that can optimize the overall sense-connect-control cycle in
WNCS, such as the remote control of Autonomous Guided Vehicles (AGVs). Using an
experimental setup within a factory environment, the paper seeks to analyze AoL be-
havior and showcase its use as a key metric for AGV performance optimization through
reinforcement learning.

Main Findings

The study successfully set up a measurement campaign using a 5G-SA network within
a factory environment to empirically evaluate AoL behavior. A model was developed to
analyze and optimize the trajectory of an AGV using AoL, resulting in two proposed
solutions: an AGV speed controller and a network radio resource scheduler. These
findings indicate that using AoL allows for the creation of goal-oriented solutions that
can be managed by either the application or the network. This approach provides a
practical advantage over AoI, as it does not require time synchronization for end-to-end
evaluation.

5.2 Patent applications
In addition to the main papers, the following patents, which are not included in the
thesis, have been submitted during the Ph.D. studies:

[1] de Sant Ana, Pedro M., and Nikolaj Marchenko, “A Method for Efficient Radio
Resource Allocation based on Application QoS Requirements,” European patent,
submitted 2020.

[2] de Sant Ana, Pedro M., and Nikolaj Marchenko, “A Method for Improved RF-
Prediction and Planning based on Ray Tracing Enhanced with Deep Learning
Neural Networks,” European patent, submitted 2020.

[3] de Sant Ana, Pedro M., and Nikolaj Marchenko, “Control-Aware Scheduling Method
and Apparatus,” European patent, submitted 2022.

[4] de Sant Ana, Pedro M., and Nikolaj Marchenko, “Adaptive Network using Pilot-
Assisted Image Transmission,” European patent, submitted 2022.

[5] de Sant Ana, Pedro M., and Nikolaj Marchenko, “RF-based gesture recognition
for COVID-19 monitoring and detection,” European patent, submitted 2022.
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5.3 Open source code
As part of the work developed in Paper B, the following open source code contribution
is available:

https://github.com/nokia/wireless-suite/blob/master/wireless/agents/bosch_
agent.py

6 Conclusions and Future Work
The research insights shared in this thesis span a diverse spectrum of topics pertain-
ing to goal-oriented communication within the context of wireless networked control
systems. Primarily, the investigation has orbited around the three research questions
delineated in Section 2, each emphasizing the intricate interaction between control and
network elements, the use of age-based metrics, and the empirical validation of theoret-
ical outcomes.

In what follows, we reexamine each of these three research questions, offering conclu-
sions drawn from the findings in this thesis, while also envisioning potential trajectories
for future research.

Q1: How can we construct a comprehensive model that enables
the concurrent optimization of control and network aspects, fa-
cilitating mutual learning between these components within the
framework of goal-oriented communication?
In Paper A, we articulate a model that incorporates the interplay between control and
network, providing preliminary understanding about the mutual influence of control
and communication facets and their impact on the overall application. This model
serves as the groundwork for model design and problem formulations in Papers E and
F. Intriguingly, our study in Paper A presented a counter-intuitive example where fast
scale fading could actually be beneficial to the AGV control. This occurs by helping
to de-correlate the transmissions and potentially averting a series of errors, thereby
enhancing control system stability. A prospective direction for this work could be the
employment of Radio Intelligent Surfaces (RIS) to artificially generate fading effects
that could bolster control system stability.

Although Paper B isn’t directly aligned with the primary focus of this PhD thesis,
it allowed us to gain critical insights about the communication model proposed by
Nokia, specifically an OFDM transmission. These insights were adapted for the WNCS
problems posed in Paper D and G, thereby crafting a framework for analyzing and
optimizing both control and communication KPIs.

While the integrated consideration of control and communication aspects within our
models is promising, it currently remains a research-oriented initiative. We observe a

https://github.com/nokia/wireless-suite/blob/master/wireless/agents/bosch_agent.py
https://github.com/nokia/wireless-suite/blob/master/wireless/agents/bosch_agent.py
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gap in contemporary 3GPP standards regarding the establishment of joint communi-
cation and control models. The introduction of "survival time" in the 3GPP Release
15 is a step forward, albeit a very generalized one, that remains application-agnostic
and still decouples control and communication entities. This challenge paves the way
for a potential research direction: how to effectively define control models within 3GPP
standards. For additional insights, this problem parallels certain standardization chal-
lenges that are strikingly similar to those targeted by the 3GPP TR 22.876 in Release
19 regarding the study on AI/ML Model.

Q2: How can we proficiently employ the Age of Information (AoI)
and the innovative Age-of-Loop (AoL) metrics to critically assess
and enhance control system performance, while concurrently op-
timizing network resource?
In Paper C, we probe into the potential of age-based metrics for analyzing control sys-
tem performance by taking the well-established inverted pendulum control problem as
a case study. In this pursuit, we introduce the Age of Loop metric, serving as a measure
of the age of a WNCS closed-loop. We show that this metric offers a more precise and
efficient assessment of WNCS performance compared to the standard AoI. Specifically,
by employing learning-based methodologies, we discover that we can correlate the sta-
bility of the control system to the current AoL state of the WNCS. This pivotal finding
forms the bedrock for Papers E and F, where we extend this methodology to tackle a
distinct control application - specifically, the AGV control, which minimizes trajectory
error based on the AoL measurements. While Paper E emphasizes on analytical results,
Paper F adopts a more experiment-oriented approach. In Paper G, we exploit AoL to
exemplify a control-oriented network scheduler, where network resource allocation is tai-
lored based on the current states of AoL, thereby averting unnecessary overprovisioning
of network resources.

The exploration of AoL-oriented network schedulers, exemplified in Paper G, has
potential to be broadened to encompass a variety of applications, each with their distinct
requirements and limitations. Specifically, there’s a vast opportunity to examine how
network resource distribution in the Industrial Internet of Things (IIoT) domain can
be significantly fine-tuned through the cooperative design of both network and control
components. The study proposed in [2] serves as a promising example in this context,
as a future research direction.
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Q3: How can we harness the empirical insights derived from Age-
of-Loop (AoL) behavior in a real-world 5G network setting to
bridge the gap between theoretical constructs and practical ap-
plications, and subsequently employ these insights to enhance the
operational efficiency of real-time applications, such as AGVs?
In Paper F, we expanded upon the work of Paper C, showcasing the tangible application
of AoL within wireless networked control systems. In this study, we executed a com-
prehensive measurement campaign utilizing a 5G standalone network. The objective
was to measure and analyze AoL behavior in an actual Bosch factory setting located in
Stuttgart-Feuerbach, providing a tangible assessment of AoL performance in practical
settings. We analyzed the collected AoL data and developed a Gilbert-Elliot communi-
cation model. This model numerically characterized the observed AoL behavior within
the factory, and we went a step further to validate our proposed model utilizing em-
pirical AoL data. This step serves to translate the empirical findings into a theoretical
construct that can be used for further analysis and optimization.

The AoL model we constructed laid the foundation for a wireless controlled Au-
tomated Guided Vehicle application. We were thus able to statistically validate the
network’s impact on the AGV’s track-error performance, providing a real-world demon-
stration of how AoL insights can be employed to enhance the operational efficiency of a
real-time system.

To cap it all, we formulated a problem aimed at optimizing AGV trajectory by con-
trolling network model parameters within a Semi-Markov Decision Process framework.
The optimized policy, derived using AoL, resulted in superior AGV performance com-
pared to baseline solutions utilizing AoI. These findings underscored the significance of
the proposed solution for AGV applications, particularly within factory environments.
This demonstrates the practical value of AoL insights in optimizing real-time applica-
tions, thereby effectively bridging theory and practice.

As a potential future endeavor, we aspire to address more complex factory envi-
ronments by embedding AGV path control planning into the currently proposed semi-
Markov Decision Process framework. The objective of this integration is to optimize not
only the trajectory of a single AGV, but also the operational plans of multiple AGVs
concurrently navigating within a factory environment. This takes into account the di-
versity in task assignments for AGVs, as different tasks might demand varying stability
requirements and thus different resource allocations. By including this complex dimen-
sion of resource scheduling among multiple AGVs, we anticipate the development of
a comprehensive model capable of managing dynamic conditions in real-world factory
settings. For example, AGVs performing tasks that require higher precision might need
more frequent updates, requiring more network resources, while those running less criti-
cal tasks could operate with less frequent updates. Our model would aim to dynamically
allocate the resources based on these diverse needs to ensure overall system performance.
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This holistic approach to AGV operations, planning, and scheduling will aid in achiev-
ing more efficient, flexible, and robust AGV operations across the factory floor. It is
expected that such a strategy will significantly enhance operational productivity and
efficiency in advanced manufacturing scenarios.
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Abstract
Real-time wireless networked control of an Autonomous Guided Vehicle (AGV) from
an edge cloud controller is an attractive approach to reduce hardware costs of AGVs,
e.g., for industrial applications. We specify a networked control protocol for AGV and
investigate how system performance and stability are affected by the reliability of the
wireless link with fading. Particularly, there is a trade-off between the AGV speed,
the control stability, and the channel quality. Our model takes into account end-to-
end latency, which includes control loops and communication. Considering the model
complexity, we employ a Reinforcement Learning (RL) approach in order to find the
optimal speed of AGV to complete a mission path in shortest time. The proposed solution
achieves system stability at par with widely used baseline state-of-the-art controllers,
while reducing the AGV mission time by more than 30%.

1 Introduction
Real-time control and coordination of mobile robots and vehicles performed from the
edge cloud infrastructure over a wireless communication network is seen as an essential
enabler for future industrial, logistics, and transport applications, where a high level
of flexibility, data fusion, resource sharing, and cost reduction are highly desired [1].
However, achieving the low latency, reliability and stability for real-time control required
in many industrial applications remains a critical challenge, due to often uncertain highly
time-varying network-induced delays, data packet dropouts (data losses/packet losses),
network topology, channel fading, and network throughput [2].

Such uncertainty often leads to non-optimal reliability of control applications when
classic model-based approaches are employed. In contrast, in recent years the use of
learning-based methods is proposed, which aim to learn how to act in particular local
conditions and achieve desired control stability [3]. In this context, the authors in [4]
analyze the path tracking problem of a wireless controlled AGV, where a Kalman filter
is designed to provide end-to-end delay estimation. However, an important shortcom-
ing of this approach is that the proposed latency model does not consider the channel
time correlation, which is dependent on the AGV speed and directly impacts the AGV
stability. This effect is actually studied by the authors in [5], where they provide an
analytical approach on the relationship between the AGV velocity, the channel outages,
and the control system stability, providing an upper bound, by exhaustive search, on
the consecutive channel outages to retain the stability of an AGV control system. Given
this background, we aim to extend the problem raised in [5], proposing a more elabo-
rated communication protocol and using a learning methodology to optimize the vehicle
velocity based on the channel information. Other related works, such as [6] and [7], fo-
cus on network planning and design optimization solutions, which is not the scope of
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this paper, where we seek to enhance the AGV performance by using a learning-based
approach for improving both the application stability and communication reliability.

This paper has three main contributions. First, we propose a model for the control
communication protocol, which is then used to read the AGV state and send control
commands. Second, we analyze the stability of AGV for the defined model and corre-
lated wireless fading channel. Finally, we utilize a reinforcement learning approach to
optimize the AGV speed while improving the system stability and, thus, achieving the
shortest mission time with lower failure rates. One of the main insights obtained from
our model is that there is an interesting tradeoff with respect to the speed: increasing
speed may deteriorate stability, but at the same time help the wireless link to faster
overcome a deep fade. The proposed learning approach is inherently capable to address
this trade-off and adjust the speed accordingly.

The rest of the paper is organized as follows: in the next Section, we present the
system model for the control protocol and AGV. In Section 3, we elaborate on the
problem of AGV stability over imperfect channel. Finally, in Section 4, we present a
reinforcement learning approach for optimizing the AGV velocity.

2 System Model for the AGV Control

2.1 Control Protocol
Figure A.1 shows the overall model of the communication protocol we use to com-
munication with an AGV. The model shows the details of the interaction between the
communication and application control loops. First, the readings of the AGV state z(k),
at step k ∈ Z+, are stored into memory and communicated to the controller over the
communication channel. For simplicity of visualization and modeling, we assume that
the uplink channel is error- and delay-free, and the input values are immediately deliv-
ered to the controller. The readings of input values are done strictly periodically with
the input cycle time ∆Tin, as it is commonly done across various control systems [1].

At the controller, the input values z(k) are also stored into the memory. A control
application is called periodically, with interval time ∆Tc, which is also commonly done
in real-time controllers. The control application gets the most recently stored input
values, and produces an output u(k) for the AGV, according to the predefined metrics
and control goals (see 2.2). In our model we neglect the processing time required for
the control algorithm.

The output parameters u(k) are communicated back to the AGV. We assume that
the downlink channel is not necessary error-free, and the control values can get lost.
Details to the channel model and the impact of packet loss are discussed later in Sec-
tion 3.2. To provide higher end-to-end reliability, it is common across industrial control
communication protocols, to perform multiple transmissions of the same data at the
application level. In the proposed system, as shown in Figure A.1 the transmissions are
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Fig. A.1: Networked control system model to operate AGV from remote controller.

initiated periodically with time interval Tb. As a result, K transmissions of the same
output values are performed until new output values can be generated with the control
cycle Tb. In practice, similar periodic transmission mechanism should be applied in
uplink to provide reliable delivery of input values. However, in this paper we focus on
studying the impact of downlink communication, assume perfect uplink transmissions,
and leave the investigation of the uplink for future work.

At the AGV side, the received command values u(k) are stored in memory. The
output application is called periodically with the time interval ∆Tout, when the most
recently stored command values are called from the memory and applied to the AGV
drives.

In the presented model, each time cycle (∆Tin, ∆Tc, ∆Tb and ∆Tout) can be config-
ured independently of each other. By providing such system decoupling, a more flexible
implementation of input, control, and communication systems can be achieved. In our
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Fig. A.2: Pure Pursuit geometry model

model, we assume that the system is well synchronized, and input, output, communi-
cation and control cycles are well adjusted to each other. As a result, ∆Tout = ∆Tin =
∆Tc = K∆Tb.

2.2 Pure Pursuit AGV Controller
The proposed AGV solution follows a pure pursuit control law [8], which has been proved
to be a very effective path tracking strategy, including applications on two vehicles at
the DARPA Grand Challenge [9] and three vehicles at the DARPA Urban challenge [10],
as is commonly used as baseline comparison.

The model approach to pure pursuit control consists of geometrically calculating the
curvature of a circular arc that connects the rear axle location to a goal point on the
path ahead of the vehicle. The goal point is determined from a look-ahead distance Ld
from the current rear axle position to the desired path, as exposed in Fig. A.2.

For a given AGV position, X(k) = [x(k), y(k)], at time k and a predefined reference
path Xref = {(xref, yref)}, we select the goal point, G(k) = [xg, yg], as a value from Xref,
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such that the condition ∥G(k) −X(k)∥ = Ld is satisfied. The vehicle steering angle δ
then can be determined using only the goal point location and the yaw angle ϕ between
the vehicle heading vector and the look ahead vector, i.e.,

δ = tan−1
(

2Lsin(ϕ)
Ld

)
(A.1)

As defined in [11], we can set an input state vector z(k) = [x(k), y(k), v(k), ϕ(k)].
The control output vector u(k) = [a(k), δ(k)] is defined by the AGV acceleration a and
steering angle δ for a given vehicle wheelbase L.

2.3 AGV State Update
We apply linear control methods to the AGV dynamic model, such that the AGV state
update is based on the linearized vehicle model [11] given by the solution of (A.2).

ż = ∂

∂z
z = f(z, u) = A′z + B′u (A.2)

where A′ and B′ can be calculated as following

A′ =


0 0 cos(ϕ) −v sin(ϕ)
0 0 sin(ϕ) v cos(ϕ)
0 0 0 0
0 0 tan(δ)

L 0

 B′ =


0 0
0 0
1 0
0 v

L cos2(δ)

 (A.3)

The system is linear, continuous and time varying. We can get discrete-time mode
with forward Euler discretization with sampling time dt:

zk+1 = zk + f(zk, uk)dt (A.4)

Using first degree Taylor expansion over z and u, we obtain the discrete, time varying
and linear model for the state space update as

zk+1 = zk + (f(z, u) + A′zk + B′uk −A′z −B′u)dt

= (I + dtA′)zk + (dtB′)uk + (f(z, u)−A′z −B′u)dt

= Āzk + B̄uk + C̄

(A.5)

where Ā, B̄ and C̄ are respectively given by:

Ā = I + dtA′

B̄ = dtB′

C̄ = (f(z, u)−A′z −B′u)dt

(A.6)
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Fig. A.3: Safety stability representation.

2.4 Safety Stability Criteria
It is unarguably critical for many AGV applications to ensure driving safety, for which
we determine that the AGV must operate within a feasible region constraint defined
according to the road boundaries. This lateral safety corridor, as illustrated in Fig. A.3,
can be expressed as a function of the cross-track error (XTE) [12]. As described in
(A.7), the XTE is defined by the deviation, d(k), at time k, between the actual AGV
position and the closest point on the planned track. X(k) denotes the AGV position
and X∗

ref(k) its nearest point at the reference track. We define that the AGV must obey
the following criteria for a given maximal allowed path deviation ϵ:

d(k) = ∥X(k)−X∗
ref(k)∥ ≤ ϵ, k ∈ Z+ (A.7)

As demonstrated in [11], the XTE is directly impacted by the AGV speed. Fur-
thermore, as we will discuss in the next section, d(k) might present random behavior
throughout the path under imperfect channel communication. In practice, the threshold
of (A.7) may be crossed out, and higher speeds v mean a higher chance of breaking the
criterion. We denote pϵ to be the probability of exceeding the threshold, such that

P [d(k) < pϵ|v2] ≤ P [d(k) < pϵ|v1]
∀v1, v2 ∈ R : v2 ≥ v1

(A.8)
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3 AGV Control over Imperfect Communication Chan-
nel

3.1 AGV Pure Pursuit Control over Imperfect Channel
Following the model of Fig A.1, a sequence of channel downlink outages may lead the
AGV to use outdated output from the controller. For a sequence of N AGV cycles ∆Tout
with no information update from the controller (which also is equivalent to N ·K ·∆Tb
consecutive channel outages) the AGV state will be updated by

zk+1 = Āzk + B̄uk−N + C̄ (A.9)

where uk−N is the control input command outdated by N AGV cycles randomly dis-
tributed according to the channel fading effect. Therefore, as long as the constraint in
(A.7) holds, we keep updating the AGV states according to (A.9).

3.2 Communication Channel Model
The communication channel is modeled as a first-order Markov process [13], also known
as Gilbert-Elliot channel. Basically, the time-correlation property is represented by two
states: the good state G if the packet can be successfully received; and the bad state B,
otherwise. The corresponding transition probability matrix is defined as M(x) = M(1)x,
with:

M(x) =
[
p(x) q(x)
r(x) s(x)

]
, M(1) =

[
p q
r s

]
(A.10)

Where p(x) = 1 − q(x) is the probability that the transmission in the slot time i is
successful, given that the transmission in slot i − x was successful. Same logic applies
for r(x) = 1 − s(x) but for unsuccessful transmissions. Given the matrix M(1), the
channel properties are completely characterized. In particular, it is possible to find that
the marginal probability of a packet error, εp, is given by:

εp = 1− r

1− p + r
(A.11)

For Rayleigh fading, ϵ is expressed as:

εp = 1− eγth (A.12)

Where γth is the minimum threshold SNR required to successfully decode the received
signal. The Jakes’s channel correlation coefficient is given by

ρ = J0(2πfdTs) (A.13)
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where J0() is the zero-order Bessel function of the first kind, fd is the Doppler frequency
shift and Ts is the sampling time. The error probability of a single back to back failure,
s, is then written as [13]

s = 1− Q(θ, ρθ)−Q(ρθ, θ)
eγth − 1 (A.14)

where Q(., .) is the Marcum Q function and θ is defined as:

θ =
√

2γth

1− ρ2 (A.15)

The main motivation for this channel model is to demonstrate the impact of time
correlated channel errors at the AGV stability. We can verify that higher Doppler
deviation (i.e. higher speeds) reduces the channel time correlation, thus also reducing
the probability of channel constant link outages. This behavior is, in fact, well explored
by the authors in [5].

3.3 The Impact of Correlated Fading on the AGV Stability
The subsections 3.2 and 2.4 demonstrated that there is a dichotomous behavior when
it comes the speed impact over the AGV stability. From channel perspective, higher
speeds result in a channel with a lower time correlation, thus minimizing a long burst
of communication errors. Nevertheless, from control perspective, higher speeds provide
higher cross-track error and, as a consequence, a higher probability of stability loss.

In order to better understand this trade-off between channel reliability and control
stability, we first propose to analyze the AGV behavior under two different scenarios
with Rayleigh fading as defined in the previous subsection: 1) We fix the channel SNR
and vary the cross-track error criteria; 2) We establish a certain XTE criteria, and
check the AGV behavior over different SNRs. In both cases, we analyze, by exhaustive
searching, the stability performance of multiple vehicle velocities, thus showing if there
is any optimal speed in which the AGV should achieve to minimize the number of
stability failures along the path.

These scenarios will be evaluated according to the reference path showed in Fig. A.4,
considering the main parameters indicated in Table E.1. The region segmentation in
Fig. A.4, serves for further analysis in Section 4. For this subsection there is no difference
between regions.

The Fig. A.5 illustrates the result for the first scenario, showing each AGV speed
performance under different XTE criteria for a fixed 10 dB SNR. While for the second
scenario, the Fig. A.6 shows the impact of multiple SNRs over the optimal velocity
considering a fixed XTE criteria of 1.25 m. Basically two insightful conclusions can
be highlighted from these results. First, adjusting the AGV speed according to the
channel condition is not evidently intuitive. Both plots actually show the stability
performance getting worse under very low speed. As explained in subsection 3.3, this
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Fig. A.4: AGV reference path.

Table A.1: System Parameters

Bandwidth 200 kHz
Channel sampling time, ∆Tb 1 ms
Message size 78 Bytes
Carrier frequency 900 MHz
Spectral efficiency 3.12
AGV sampling time, ∆Tin 10 ms
Number of repeated output transmissions, K 10

happens because the channel correlation increases for lower speeds, thus boosting the
number of successive link outages. Second, too high AGV velocities are not the best
choice either. In these situations, besides there is a smaller channel probability of error,
the system control stability is more quickly broken, as exposed by subsection 2.4.
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Fig. A.5: Probability of stability loss for each velocity considering different XTE criteria under fixed
10 dB SNR.

3.4 Problem Formulation
In Section 3, we demonstrated the vehicle velocity role at the trade-off between control
stability and channel reliability. In other words, the channel is operating independently,
and it will eventually fail, causing the AGV stability loss. However, the main question
is: What the AGV can do, in turn, to minimize the stability loss?

A potential answer to this question can be exemplified in Fig. A.5 and Fig. A.6,
where we showed that adjusting the AGV speed can considerably reduce the probability
of stability loss under different XTE criteria and SNRs. Hence, if the AGV finds a way
to optimize its speed based on the channel knowledge, it can independently increase its
stability.

We can extend this problem to a more general AGV use case. Considering the path
of Fig. A.4, we aim to minimize the stability loss while also minimizing the AGV mission
time towards the goal point. So, the AGV must do the path as fast as possible while
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Fig. A.6: Probability of stability loss for each velocity considering 1.25 m of XTE criteria under
different SNRs.

maintaining a minimal stability loss.
More formally, we can establish a control policy π(uk, zk) that, for each time step k,

selects the control command uk given the current AGV state zk throughout the AGV
trajectory {z1, u1, z2, u2, . . . , zT , uT } until termination at time step T . Similar to the
robot control problem introduced in [14], we can define a cost function according to
(A.16), where the AGV is penalized for each time step taken until achieving the final
destination, as well as highly penalized for deviating the path above a certain threshold
ϵ.

∀ρ1, ρ2 ∈ R−
∗ : ρ1 ≪ ρ2

c(zk) =
{

ρ1, if ∥X(k)−X∗
ref(k)∥ > ϵ

ρ2, otherwise
(A.16)

Hence, we aim optimizing the AGV trajectory by finding an optimal control policy
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π∗ = {u∗
1, . . . u∗

T } that minimizes the expected trajectory cost:

π∗ = argmin
u1,...,uT

T∑
k=1

E[c(zk)]

s.t. zk+1 = f(zk, uk−N ) (A.17)

where f is the AGV state evolution defined in (A.9).
Finding π∗ means that, for every AGV state throughout the path, the controller

provides an optimal control decision, more specifically accelerating or decelerating the
AGV, such that (A.16) is minimized although the system is subject to random outdated
control commands as a consequence of the channel conditions. This decision-making
control process can be represented as a typical Markov Decision Process (MDP) frame-
work [15], where for any given state, the AGV establishes a policy for deciding a proper
action that minimizes the cost function as a result of the environment interaction. The
general problem is P-complete and can be solved with polynomial complexity to the size
of the state/action space [15].

4 Solution Proposal
To solve the MDP in (A.17), we advocate a reinforcement learning methodology for two
main reasons. First, using a non-learning approach, such as linear matrix inequality
(LMI) methods, as proposed by the authors in [16], would require the cost function
to be convex [17]. Moreover, the time complexity and memory limit can exponentially
grow with the number of states [17]. Second, if we take into account the variety of
environments, the range of possible XTE criteria, and, especially, the need for complete
channel probability knowledge, it turns out to be unfeasible to solve this MDP using
traditional Dynamic Programming (DP) algorithms, such as value iteration or policy
iteration.

4.1 RL Model Configuration
Observation space

We propose a discrete state space, in which both x and y coordinates of the planned
path, as represented in Fig. A.4, are sampled by 10 m spacing. We also include in the
observation space the instantaneous SNR. In more details, there are 11 samples for x
axis (from 0 to 110 m), 6 samples in y axis (from -40 to 20 m) and 4 samples for the
SNR in {9 dB, 10 dB, 11 dB, 12 dB}. This will result in a total of 264 states (11x6x4).
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Action space

The proposed algorithm for each step must decide between two actions: increasing or
decreasing the AGV target speed by 0.25 km/h.

Reward

As formulated in (A.16), we set the AGV to be penalized by -0.1 reward for each step
taken until complete the planned path. Moreover, it will be punished by -1000 in case
of stability loss.

RL algorithm

We evaluated the AGV performance applying State–action–reward–state–action (SARSA)
algorithm [18], where both exploration and learning rate exponentially decay over time.

According to [19], SARSA will converge with probability one to an optimal policy
and action-value function as long as all state-action pairs are visited an infinite number
of times and the policy converges in the limit to the greedy policy (which is already
arranged, since the exploration rate asymptotically converges to zero).

4.2 Simulation Test Scenario
We will evaluate the proposed algorithm considering the following scenario:

• The AGV will pursuit the path as established in Fig. A.4.

• The channel SNR will vary among the set {9, 10, 11, 12} dB, as evaluated in Fig. A.6,
and the SNR along the pathway will be selected according to three different path
regions: (0 < x ≤ 40) m, (40 < x ≤ 80) m, and (x > 80) m. So, for every
simulation, we uniformly random pick the SNR for each path region.

• The AGV has a fixed cross-track error criteria of 1.25 m, as discussed in Fig A.5,
with further channel parameters details as described in Table E.1.

• Monte Carlo simulation considering 100 jobs of 1000 evaluations.

4.3 Simulation Results
We compare the proposed RL framework performance with common baseline state-
of-the-art controllers, such as the Stanley controller [9], the winner of the DARPA
Grand Challenge in 2005, and the Linear–quadratic regulator (LQR) speed and steering
controller [11], the Stanford’s entry in the 2007 DARPA Urban Challenge. We leave the
comparison to other more sophisticated and recent approaches, e.g., model predictive
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Table A.2: Simulation results under error-free channel

Mission Time Stability Loss

Stanley Controller, [9] mean 9.28 s 0.0 %
std 0.011 s 0.0 %

LQR Controller, [11] mean 13.46 s 0.0 %
std 0.009 s 0.0 %

Proposed RL
Solution I

mean 10.26 s 0.0 %
std 0.0 s 0.0 %

controllers [8], for follow-up work, where more complex scenarios and system models
need to be considered to employ their benefits.

We analyze their performance of stability loss and mission time under the proposed
scenario defined in subsection 4.2. For comparison purposes, we also check their behavior
under an error-free communication channel, where we can also explore the RL framework
behavior under three different training cases:

• Proposed RL solution I: We first assume zero channel transmission errors over
the path, so that we train the RL algorithm under an error-free scenario.

• Proposed RL solution II: Here, we train the RL algorithm over the proposed
scenario defined in subsection 4.2, where the channel is subject to errors along
the path, but we only consider the AGV position (x, y) in the state space, with
unknown SNR information.

• Proposed RL solution III: As specified in subsection 4.1, we now train the RL
algorithm considering the instantaneous SNR as part of the AGV state.

The whole implementation was carried upon the open-source library python robotics [20].
The Table A.2 provides the results for the error-free case, while the Table A.3 present
the outcome of each controller under the proposed scenario.

We can verify in Table A.2 that, when the channel is error-free, it allows the con-
trollers to achieve higher speeds (thus reducing the mission time) while fully respecting
the stability criteria. In this situation, the Stanley controller is recognized to be more
suitable [11].

For the results of Table A.3, where the controllers were subject to imperfect channel
communication, we can highlight three relevant conclusions. First, the RL solution I
(trained in the error-free channel), increases its stability loss to more than 20%. How-
ever, this approach is already enough to overcome the performance of both benchmark
controllers. Second, the RL solution II provides a clear indication about the trade-off
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Table A.3: Simulation Results under the test scenario

Mission
Time

Stability
Loss

Stanley Controller, [9] mean 18.77 s 23.65 %
std 0.128 s 1.29 %

LQR Controller, [11] mean 20.35 s 23.71 %
std 0.056 s 2.43 %

Proposed RL Solution I
(from error-free scenario)

mean 10.27 s 20.49 %
std 0.028 s 1.03 %

Proposed RL Solution II (trained
in Test Scenario without SNR)

mean 12.95 s 17.81 %
std 0.076 s 1.71 %

Proposed RL Solution III (trained
in Test Scenario with known SNR)

mean 12.95 s 15.91 %
std 1.409 s 1.12 %

between speed and stability, such that, compared to the RL solution I, it was able to
learn a new control approach capable of improving the stability loss by augmenting the
mission time. Finally, when we add the SNR information to the RL algorithm (RL
solution III), it was possible to achieve the best stability loss performance, while also
reducing the path duration by more than 30% compared to the benchmark controllers.

5 Conclusions and Future Works
This work elaborated on a control protocol model and analyzed its use case over a cloud-
controlled AGV. We could verify the vehicle velocity’s impact at the system stability,
considering both channel and control perspective. Based on those results, we formulated
an MDP to improve the AGV stability and mission time, advocating a reinforcement
learning algorithm as a candidate solution. We compared the proposed scheme with
state-of-the-art baseline controllers, showing a considerable performance improvement
in stability loss and mission time.

As future perspectives, we plan to analyze the impact of the uplink channel under
more complex scenarios, which will probably require more advanced RL methodologies,
such as deep reinforcement learning, as well as performance comparison with leading-
edge controller approaches like MPC.
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Abstract
In this paper, we explore a radio access scheduling problem, TimeFreqResourceAllocation-
v0, proposed by Nokia Bell Labs in its open-source framework Wireless Suite. We elab-
orate on a learning-based black-box methodology using the Covariance Matrix Adapta-
tion Evolution Strategy (CMA-ES) as a candidate solution for QoS-aware scheduling.
The proposed approach achieves the best score performance compared to either baseline
methodologies (e.g., Round Robin, Proportional Fair, etc.) or common Deep Reinforce-
ment Learning approaches.

1 Introduction
Resource allocation of limited radio resources for applications with different Quality of
Service (QoS) requirements is a well-known problem in wireless communications [1].
Classical approaches and their drawbacks in terms of complexity, fairness, latency,
throughput, and other network requirements have been extensively studied by the re-
search community [1–3]. In recent years, machine learning (ML) techniques for radio
resource management, especially Reinforcement Learning (RL), has been increasingly
gaining more attention [4]. Many authors are proposing RL based scheduling approaches
for different applications, such as device-to-device (D2D) communication [5], edge com-
puting [6], massive MIMO [7] and LTE/Wi-Fi coexistence [8, 9]. However, it remains a
challenge in the research community to easily compare and reproduce those results due
to a lack of standard problem definition and open implementations.

However, recently, Nokia Bell Labs has open-sourced its Wireless Suite [10] frame-
work, a collection of well-known problem implementations that are intended to establish
performance benchmarks, stimulate reproducible research and foster quantitative com-
parison of algorithms for telecommunication problems, especially with the use of ML
techniques.

The first environment proposed by Nokia is the TimeFreqResourceAllocation-v0 [10],
which simulates an OFDM resource allocation task, where a limited number of frequency
resources are to be allocated to a large number of User Equipments (UEs) over time.
Researchers are invited to develop a new agent that interacts with this environment and
takes effective resource allocation decisions.

In this paper, we present a solution for the TimeFreqResourceAllocation problem,
which we approach as learning-based black-box optimization using Covariance Matrix
Adaptation Evolution Strategy (CMA-ES). The proposed approach shows better overall
performance in QoS provision compared to standard classical and RL approaches. It
also scales better with the growing number of UEs in terms of computational resources,
which is not the case for Reinforcement Learning approaches.

The rest of this paper is organized as following: in the next Section, we provide more
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Fig. B.1: The main steps of the resource allocation process.

details about the problem modeling. In Section 3, we derive a solution proposal for the
problem while presenting the obtained results in Section 4.

2 Problem Description and Modeling
As specified by the challenge description in [10], on each episode of this environment, the
agent must allocate Nf downlink frequency resources to User Equipment (UEs). This
takes place in a free-space environment with K UEs, where each UE has specific traffic
requirements (some require high guaranteed bit rates, others low packet delivery delays,
etc.). The main steps of the allocation are shown in Figure B.1. This recreates a well-
known case of OFDM resource allocation, where a MAC scheduler allocates frequency
resources to UEs under different radio conditions. The problem is formulated as a
Markov Decision Process (MDP) and implemented using Open AI Gym [11]. The MDP
properties are specified in the next subsections.
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2.1 Environment Dynamics
At the beginning of an episode, a fixed number of K UEs are scattered randomly
throughout an empty Euclidean space of size 1 km2 containing a base station (BTS)
centered at coordinates (0, 0). The BTS transmits with EIRP= 13 dBm. The carrier
frequency is fc = 2655 MHz and the system bandwidth BW = 5 MHz. The transmit
power is distributed equally across all Physical Resource Blocks (PRBs). Free space
propagation is assumed and the UEs move at random speeds in random rectilinear
trajectories throughout the environment (bouncing off the edges at specular angles).
The UE speeds are normally distributed as described in [12].

Each episode begins at time step t = 0 with p = 0 and TTI= 0, where p denotes
the current PRB being allocated and TTI is the Transmission Time Interval. One TTI
is assumed to last 1 ms exactly. The environment is then time-stepped and the TTI
counter is increased by 1 when p = t mod Nf = 0. The environment is run indefinitely
(i.e. for a very large number of time steps).

When the environment starts, each UE gets assigned a random QoS Identifier (QI)
class from a total of 4 QIs. This assignment is uniform (There are exactly K/4 UEs of
the same QI and all QIs are assigned).

On the first time step of each TTI (i.e. when t mod Nf = 0) new traffic packets for
each UE are generated according to a random process specific for specific QoS Identifier
class (see Table B.1). These packets are then added to the UE traffic buffer. A packet
size in a UE buffer decreases each time step according to the UE spectral efficiency
and to the number of radio resources allocated by the agent to the UE. The maximum
number of packets that each buffer can store (i.e. its buffer size) is defined up to L = 100.

2.2 Observation Space
The state vector is a concatenation of vectors providing the following information at
each time step:

• Channel Quality Inidicator (CQI) of a UE k: qk ∈ [0, 15]∀k ∈ [1, K].

• Sizes (in bits) of all packets in each UE buffer: S = sk,l ∈ RKxL.

• Ages (in TTIs) of all packets in each UE buffer: E = ek,l ∈ RKxL, where ek,l is
the age of the lth packet of the kth UE.

• QoS Identifier (QI) classes of each and all UEs as a one-hot vector: ck ∈ [0, 1, 2, 3]∀k ∈
[1, K]. The QI classes are given in Table B.1.

• Current PRB being allocated p ∈ [0, ..., Nf − 1], which can be calculated from the
current time step as p = t mod Nf .
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Table B.1: Traffic characteristics of each QoS Identifier class

QI classes Resource Type Guaranteed Bit Rate (GBR) (kbps) Packet Delay Budget (PDB) (ms)
3 or [0,0,0,1] GBR (Conversational Voice) 29.2 100
2 or [0,0,1,0] GBR (Conversational Video) 1250 150
1 or [0,1,0,0] Delay Critical GBR 10 30
0 or [1,0,0,0] Non-GBR (web browsing) N.A. 300

2.3 Action Space
On each time step, the agent may take one of K possible actions by assigning the
current frequency resource to the k-th UE. If an action is chosen that allocates the
current PRB to the k-th UE, the size of the oldest packet in the k-th UEs buffer is
reduced by a number of bits equal to the number of transmitted bits. The number of
bits transmitted in one PRB depends on the UE channel quality.

2.4 Reward
The agent receives a reward of 0 on all time steps except on those leading to a state
wherein p = 0. These are called TTI transition time steps.

The reward received on the TTI transition time steps is the negative sum of non-
GBR buffer sizes (to encourage the agent to empty the non-GBR queues as fast as
possible), plus the negative sum of delay traffic (to encourage the agent to respect the
Packet Delay Budgets). Note that this reward is calculated before new traffic is added
to the UEs buffers:

rt = r
(GBR)
t + r

(nonGBR)
t (B.1)

where r
(GBR)
t and r

(nonGBR)
t are defined as:

r
(GBR)
t = −

K∑
k=1

L∑
l=1

Sk,l

ek,l>PDBk, ck∈[1,2,3]

(B.2)

r
(nonGBR)
t = −

K∑
k=1

L∑
l=1

Sk,l

ek,l>PDBk, ck=0

−
K∑

k=1

L∑
l=1

Sk,l

ck=0

(B.3)

2.5 Evaluation
After proposing a scheduler candidate, the evaluation is performed by running 16 ran-
dom episodes with a maximum of 65536 time steps each, collecting the reward obtained
by the agent on each time step. The result is calculated as the average reward obtained
in all time steps on all episodes.
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3 Solution Proposal
According to the reward definition in (B.1), we can imply that the ultimate goal is
optimizing scheduling decisions in order to minimize the overall UEs buffer (Sk,l), thus
maximizing the reward function.

We propose a methodology where the base station resource allocation decision is
based on calculating a metric for transmission priority given the state space information.
More precisely, for each time step, the current RB is assigned to the user k∗ with the
highest priority value among K total users according to the following equation:

∀k ∈ [1, K]

k∗ = argmax
k

{
α · qk + β ·

L∑
l=1

sk,l + γ ·max
l
{ek,l}+ µ · 1

nk

}
(B.4)

where α, β, γ and µ are priority weights that need to be tuned, and nk is a fairness
measure indicating how many RBs was historically allocated to the user k.

This metric is formulated to explore the observation space information and adapt
its weights according to the environment requirements. More precisely, for each user,
we basically consider its current CQI value, the total amount of packets in its buffer,
the age of the oldest packet and a fairness metric that motivates spreading the RB
assignments among all users.

In the next subsections we propose a random black-box optimization to derive tuned
values for α, β, γ and µ. The biggest advantage of using such methodology instead of an
RL approach is the fact that we now reduce the problem complexity from an amount
that is proportional to the number of state-action values (which also grows exponentially
with the number of UEs) to a continuous search in R4. Furthermore, it is interesting
to highlight that this priority optimization does not rely on the environment conditions
(number of UEs, buffer size, bandwidth, etc.), thus not requiring any re-training or
transferring learning from a certain condition to another.

3.1 Random Black Box Optimization
According to the problem definition, we can imply that for any given combination of
α, β, γ, and µ, the environment will allocate RBs among the users and eventually provide
feedback through the reward function. So, we can formulate the environment dynamics
as f : R4 → R an objective function where we want to maximize the reward defined in
(B.1) given the priority weights α, β, γ and µ. The goal is to find candidate solutions
α, β, γ, and µ in which the values of rt over time are as maximum as possible.

As described in [13], black-box optimization refers to the situation where function
values of evaluated search points are the only accessible information on f . The restric-
tion here is that we are not directly searching for a global optimum, but this can be
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substantially beneficial in situations where this value is neither feasible nor relevant in
practice. The pseudo-code 1 illustrates a general methodology of a randomized black-
box search. It is interesting to highlight from this pseudo-code that variations in steps
1 and 4 mostly define different approaches for black-box optimization, such as genetic
algorithms (GA).

Algorithm 1 Randomized black box search.
Input: Priority metrics: α, β, γ, δ
Output: Reward cost function after episode completed

Initialize distribution parameters : θ(0)

1: for generations g=0,1,2,3,... do
2: Sample λ independent points from distribution P (x|θ(g))→ x1, . . . , xλ

3: Evaluate the sample x1, . . . , xλ on f
4: Update parameters θ(g+1) = Fθ(θ(g), (x1, f(x1), , . . . , (xλ), f(xλ)))
5: break, if criterion met
6: end for

3.2 Covariance Matrix Adaptation Evolution Strategy
The CMA methodology [13] is a randomized non-linear non-convex black-box optimiza-
tion, where the search distribution, P , as indicated in step 2 of the pseudo-code 1, is a
multivariate normal distribution. The main idea is sampling λ independent candidate
solutions and selecting µ off-springs (e.g., the best 20% solutions). We then use these
best candidate solutions for estimating the covariance matrix of the next generation.
The parameters update (step 4 in pseudo-code 1) determines the overall variance of the
mutation at generation g. This property plays a virtual role in the CMA strategy by
providing a capacity to adaptively increase or decrease the search space for the next
generation. This property is also intuitively interesting because there might be situa-
tions where we want to explore more and increase the standard deviation of the search
space. However, there can also be situations where we are confident we are close to a
good optimum and just want to tune the solution. In fact, this technique overcomes
a limitation of traditional black-box optimization algorithms, such as GA, where the
standard deviation noise parameter remains always fixed.

The pseudo-code 2 outlines the baseline procedure of CMA-ES. As described in [14],
we need to define, for an arbitrary state dimension n, the following state variables:

• m ∈ Rn, σ > 0, C ∈ Rnxn, the parameters for a multi-variate normal distribution
N (m, σ2C).

• ps ∈ Rn, pc ∈ Rn, two evolution paths, initially set to zero.
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Algorithm 2 Pseudo-code for CMA-ES.
Initialize: State variables: m, σ, C, ps, pc

1: Set the sizes of parent and offspring population λ and µ.
2: while stop condition not met do
3: for i ∈ {1, . . . , λ} do
4: xi ← N (m, σ2C)
5: end for
6: sort xi according to f(xi)
7: m’ = m
8: m← update-m(x1, . . . , xλ)
9: ps ← update-ps(ps, σ−1C−1/2(m−m′))

10: pc ← update-pc(pc, σ−1(m−m′, ||ps||))
11: C ← update-C(C, pc, (x1 −m′)/σ, . . . , (xλ −m′)/σ))
12: σ ← update-sigma(σ, ||ps||)
13: end while

The way we model the update functions in steps 8 to 12 of the pseudo-code 2 basically
define many variants of the CMA strategy. We can refer to its baseline version in [15]
and some important extensions for handling fitness noise in [16] and multi-modality
in [17].

3.3 Optimizing Resource Scheduling using CMA-ES
We applied CMA strategy to optimize the tuning parameters defined in (B.4), thus max-
imizing the reward function defined in (B.1). The CMA-ES implementation was carried
using the open-source library PyBrain [18], considering a maximum of 200 evaluations
with exponentially decreasing step sizes. The environment scenario was considered to
be using the default parameters established by Nokia:

• Number of UEs: 32

• Number of Physical Resource Blocks (PRBs): 25

• Buffer size: 8 packets

• Effective Isotropic Radiated Power : 13 dBm

• Carrier frequency: 2655 MHz

• Maximum packet size: 41250 bits

• Mean inter-arrival time of non-GBR traffic: 10 TTIs
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Fig. B.2: Random Scheduler.

Fig. B.3: Round Robin Scheduler.
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Fig. B.4: Proportional Fair Scheduler.

Fig. B.5: RR If Traffic scheduler.
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The source code for the proposed solution after optimization can be found as bosch_agent.py
in the Nokia repository [10]. In the next section, we compare the proposed solution result
with the baseline algorithms and RL approaches.

4 Simulation Results
We compared the CMA-ES reward function performance with baseline algorithms pro-
vided by Nokia, such as Round Robin (RR) [19], Round Robin If Traffic (RR IFtraffic),
which is a variant of RR that checks the need of transmission before allocating resources,
Proportional Fair (Pff) [19] and a Random scheduler that decides which user to allocate
RBs according to a uniform random variable. Their implementations are available in
the source code in [10].

We also evaluated the performance of advanced deep reinforcement learning tech-
niques, such as Actor-Critic (A2C) [20] and Proximal Policy Optimization (POP) [21].
Both implementations were carried using Open-AI Stable Baselines [22] using MLP
policy and 400000 time steps for training over the Nokia environment.

4.1 Baseline Results
The Figures B.6, B.7, B.8 provide the simulation results for 1000 random episodes
of each baseline algorithm. The mean and standard deviation of each distribution is
summarized in Table B.2. As we can note, the Round Robin IfTraffic provides the best
reward performance, with an average of -3781.09 over all timesteps and all episodes.

4.2 Deep RL and CMAES Results

Table B.2: Reward performance of each scheduler after 1000 epochs evaluation.

RR Random Pff RR IF Traffic A2C POP CMAES
Mean: -72547.94 -72286.80 -9717.30 -3781.09 -72240.33 -73803.17 -1531.79
Std: 5608.97 5807.31 6808.53 1769.90 6778.20 6642.11 234.63

The Figures B.6, B.7, B.8 and Table B.2 summarize the results for 1000 random
episodes of the Deep RL techniques and the proposed CMA-ES. It was surprising that
the Deep RL approaches, besides the long training duration, were unable to overcome
even round-robin. We can presuppose some specific reasons for this poor performance,
such as high variance at the value function estimation and over-fitting in some environ-
ment patterns, causing the algorithm to work under sub-optimal performance. To cope
with such issues, we can think of advanced hyperparameter optimization strategies and
more complex network architecture, but at the cost of higher training complexity. It is
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Fig. B.6: A2C RL Scheduler.

Fig. B.7: POP RL Scheduler.
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Fig. B.8: CMA-ES Scheduler.

important to emphasize, however, that, as also explored in [4], it might still be an open
research question of how RL can properly be applied in such problems.

On the other hand, the CMA-ES has shown promising performance, surpassing all
the baseline algorithms, including the RR IfTraffic. The Figure B.9 provides a more
detailed comparison of CMA-ES performance, especially its low variance demonstrated
in Figure B.9a. In Figure B.9b, we see the performance variation in the first 100 episodes.

5 Conclusions
In this paper, we elaborated on a solution for an open source problem proposed by
Nokia Bell Labs regarding network resource allocation. We defined a priority metric
calculation and applied a black-box optimization approach technique, named CMA-
ES, to tune its parameters. The results show that the proposed approach was able to
overcome traditional baselines results provided by Nokia, as well as Deep Reinforcement
Learning techniques.
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(a)

(b)

Fig. B.9: (a) Performance comparison between CMA-ES and RR IfTrafiic. (b) Results for the first
100 random episodes.
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Abstract
Joint design of control and communication in Wireless Networked Control Systems
(WNCS) is a promising approach for future wireless industrial applications. In this
context, Age of Information (AoI) recently has been proposed as a metric that is more
representative than communication latency in conduct of systems with a sense-compute-
actuate cycle. Nevertheless, AoI is commonly defined for a single communication di-
rection, Downlink or Uplink, which does not capture the closed-loop dynamics. In this
paper, we extend the concept of AoI by defining a new metric, Age of Loop (AoL), rel-
evant for closed-loop WNCS problems. The AoL is defined as the time elapsed since
the piece of information causing the latest action or state (depending on the selected
time origin) was generated. We use the proposed metric to learn the WNCS latency and
freshness bounds, and apply such learning methodology to minimize the long-term WNCS
cost with the least amount of bandwidth. We show that, using the AoL, we can learn the
control system requirement and use this information to optimize network resources.

1 Introduction
Networked control systems (NCS) are an essential part of many industrial domains such
as factory automation, logistics, or transportation. Wireless NCSs (WNCS) enable
mobile control applications where wiring is not possible or high flexibility is required.
However, due to the nature of the wireless medium, reliability of WNCS remains an
open challenge, in particular for low-latency applications.

In a conventional approach, one would separately derive worst case requirements
from the control system and impose them on the communication system. Communica-
tion latency metric is then often used as a benchmark metric to design and evaluate the
communication system. However, such decoupling in system design for low-latency and
high reliability leads to over-provisioning communication network resources.

Furthermore, actions taken at a control system level can have a direct impact on the
communication system and vice-versa, as formulated by Witsenhausen as counterex-
ample for distributed control problem in [1] and exemplified for an autonomous guided
vehicle (AGV) use case in [2].

For systems with a sense-compute-actuate cycle like the ones considered in this paper,
where the receiver is interested in fresh knowledge of the remotely controlled system,
rather than the individual packet delay, the notion of Age of Information (AoI) [3] has
been proposed as more representative than communication latency. The AoI defines the
time that has elapsed since the newest update available at the destination was generated
at the source, and it captures not only the communication delays but also the impact
of the packet generation at the controlled process.

In recent work on WNCS, authors have been increasingly exploring the inter-relation
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between the control and communication systems with help of AoI. In [4] and [5], for ex-
ample, the authors demonstrate how the latency and reliability trade-off directly impacts
the system level stability, proposing a co-design of both control and communication en-
tities. Specifically in [4], authors have demonstrated a counter-intuitive conclusion that
the plant can still be stabilized with an arbitrarily large delay under certain channel
conditions. Another interesting finding was presented in [6], where authors elucidate an
example how one can optimize long-term system performance by assuming more risks
with less reliable transmissions in exchange for lower latency.

Despites its benefits, the drawback of AoI is that it has been used so far to sep-
arately optimize transmissions in uplink (UL) and downlink (DL). However, WNCS
applications are closed-loop applications, where the UL communication can affect the
DL and vice-versa, resulting in system performance changes or in the use of network
resources. In this context, we propose to explicitly address the two-way nature of the
control-communications interplay.

This paper contains two main contributions:

1. We propose a new metric, the Age of Loop (AoL), which extends the current AoI
definition to take into consideration both UL and DL of the control loop in WNCS,
and thus can provide a more precise system state estimation.

2. We demonstrate how to apply the AoL metric for joint WNCS optimizations with
the application example of a remotely controlled inverted pendulum system [7].
With a Reinforcement Learning (RL) approach, we find the bandwidth allocation
policy based on the AoL state, which significantly outperforms policies based on
fixed latency requirements.

The rest of this paper is organized as following: in the next two sections, we introduce
the system and WNCS model, respectively. In Section 3, we define the AoL and show
how we can evaluate the control system performance using the proposed metric. Finally,
in Section 5, we formulate the bandwidth allocation problem and propose a solution,
where the results are analyzed in Section 6.

2 System Model
We consider the classical inverted pendulum system model, a widely used benchmark
problem in both control and RL domain. As illustrated in Figure D.1, a pole is attached
by a joint to a cart, which can be moving along a frictionless track. The pendulum
starts upright at a random initial angle θ0 ∈ (θ0,min, θ0,max), and the goal is to prevent
it from falling over by applying a force to the cart. While conceptually simple, the
system dynamics are highly unstable and continuously requires fast control cycles to
keep stability. When, in turn, being controlled over a wireless channel, the problem
becomes an illustrative model of strict timing requirement.
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Fig. C.1: Inverted pendulum system model.

2.1 Control System Model
The system dynamics can be represented by the differential equations [8]:

θ̈ =
g · sin(θ) + cos(θ)

(
−F −mplθ̇2sin(θ)

mc+mp

)
l( 4

3 −
mpcos2(θ)

mc+mp
)

,

ẍ = F + mpl(θ̇2sin(θ)− θ̈cos(θ))
mc + mp

,

(C.1)

where x and θ are, respectively, the cart position coordinates and the pole angle from
vertical reference. The mass of the cart is mc, and the mass of the pendulum is mp,
while l is the length of the pendulum, and F is the force applied to the cart under
gravity g. We use the Newton’s notation (□̇, □̈) to represent derivatives w.r.t time.

By defining a state space vector X = [x, ẋ, θ, θ̇], we can design a standard optimal
controller in two steps. First, computing the Jacobian of (D.1) around the operating
point X = [0, 0, 0, 0] to linearize the plant, so that the system dynamic takes the linear
time invariant form: {

Ẋ = AX + Bu + w,

u = −KX,
(C.2)

where u is the linear state feedback control policy of gain K, w is a process disturbance
modeled as a zero-mean and one-standard deviation Gaussian white noise, A and B are
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the system transition matrix, respectively calculated as [9]:

A =


0 1 0 0
0 0 −12mpg

13mc+mp
0

0 0 0 1
0 0 12(mpg+mcg)

l(13mc+mp) 0

 , B =


0
13

13mc+mp

0
−12

l(13mc+mp)

 . (C.3)

The second step consists of finding the optimal control policy, u∗, subject to (D.2)
that minimizes the cost function,

J(u) =
∫ ∞

0

(
XT QX + uT Ru

)
dt, (C.4)

where R and Q are arbitrary positive defined matrices in which we can assign weights
to state space variables and control signal. In control theory this kind of problem
formulation is known as Linear-Quadratic-Regulator (LQR) [10].

The optimal control policy then can be defined by solving the Algebraic Riccati
Equation [10] as:

AT P + PA− PBR−1BT P + Q = 0,

K∗ = R−1BT P,

u∗ = K∗X.

(C.5)

For (A, B) controllable, the infinite horizon LQR with Q, R > 0 gives a convergent
closed-loop system [10], where the stability can be easily guaranteed.

2.2 Networked Control Model
As defined in [2], we adopt a similar NCS model to define the system behavior over the
wireless medium operating in Frequency Division Duplexing (FDD) mode with sepa-
rated frequency bands for the uplink (UL) and downlink (DL) directions, which makes
the medium access for UL and DL independent from each other in time domain. Fig-
ure D.2 illustrates the proposed model, showing the details of the interaction between
the communication and application control loop. First, the sensor readings of the appli-
cation describe the system states, Xi, which are stored in memory and communicated to
the controller over the uplink channel. The readings and transmissions of sensor values
are done strictly periodically with the cycle time ∆Tin, as it is commonly done across
various control systems [11].

At the controller, the received sensor values are also stored into the memory. The
control application gets the recent values, and produces a control signal ui according
to (E.4). Immediately after producing a control command, the controller sends it over
a downlink channel to the controlled system. After finishing the current transmission,
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Fig. C.2: WNCS Model.
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the controller keeps waiting for the next state update from the controlled device, and
starts the procedure once again.

At the controlled system side, the received command ui is stored in the memory.
The output application for actuators control (e.g., motor drives) is called periodically
with the time interval ∆Tout, calls the most recently stored command values from the
memory and applies them to the application drives, producing the system dynamics of
(D.1).

2.3 Wireless channel model
Both the DL and UL transmissions can suffer latency while delivering the information,
which, in this model, depends on two main factors: the current channel quality and the
total bandwidth allocated for the transmission. To evaluate this behavior, we consider
the 3GPP 4-bit CQI Table 7.2.3-1 [12], where we can estimate the amount of time to
deliver the data considering both the channel quality indicator (CQI) and the total
bandwidth allocated at the transmission. The following two assumptions have been
adopted: a) the UL finishes its transmission within ∆Tin, and b) the DL only starts a
new transmission after finishing the current one. The details of the bandwidth allocation
problem are discussed later in Section 5.

2.4 System Model Discussion
It is important to emphasize that (F.7) is guaranteed to be bounded according to the
Riccati-equation [10]. However, the combination of two main factors might affect the
system LQR performance. The first is the uplink effect, which represents the level of
knowledge the controller has about the plant, meaning that, if ∆Tin is too high or the
uplink takes overly long to deliver sensor data, the controller will compute the control
signal using old state feedback, causing the control command to be ineffective or even
harmful for the plant. The second is the downlink effect, or simply the overall delay
to deliver the control signal. This is important because if the plant applies outdated
control commands for too long, the stability of the controlled system might also be
compromised.

Each of these factors might affect the plant in different ways and cannot be indepen-
dently decoupled, which means that a delay in the UL will impact the DL transmission,
provoking cumulative effects at the plant and at the network resources.

3 Age of Information and Age of Loop
Age of information (AoI) provides a measure for quantifying the freshness of the knowl-
edge we have about the status of a remote system. It represents the time duration
between the generation time of the freshest received data and the current time. We can
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refer to its formal definition as in [3, 13], where, at time t, if the newest data (i.e., with
the largest generation time) received at the destination was generated at time U(t), the
AoI ∆(t) is defined as ∆(t) = t− U(t).

The formal AoI definition, however, is inherited to a single communication link.
Papers which so far explored WNCS related problems using AoI are limited to specific
analysis over only the UL [5, 14, 15] or DL [4, 6] transmissions. However, wireless
networked control systems, as the one considered in this paper, rely intrinsically on
both DL and UL with a closed-loop, where the UL communication can affect the DL
and vice-versa, impacting system performance and the use of network resources. A
simple intuitive example that can illustrate this idea is that a high UL AoI implicates
less knowledge that the controller has about the plant, which demands more urgency to
deliver the control signal and, as a consequence, more network resources usage by the
DL link. To address this implications, we propose a new metric to evaluate the overall
age of a WNCS closed-loop, which we refer to as Age-of-Loop (AoL).

Specifically, we can first verify that the state values Xi are periodically generated and
transmitted at time intervals of ti = {i ·∆Tin},∀i ∈ N+, , where we can define {Xi, ti}
the sequence of generated state values and its respective time step. The control signal,
in turn, is asyncrhonous and must finish the current DL transmission to start a new one
upon reception of a new status update. We can define a sequence {uj , t̂j} ∀j ∈ N+ with
aperiodically generated control commands uj at time step t̂j . If {Xi, ti} is the freshest
state feedback that spawned a new control signal, we can extend the DL transmission
definition to include state time information, i.e., DL : {uj , t̂j , ti}. Reciprocally, every
state feedback also occurs under the input of the freshest control command, so that we
can also extend the UL transmission definition to include control time information, i.e.,
UL : {Xi, ti, t̂j}.

We consider two plausible definitions of the AoL depending on the selected time
origin: the DL-AoI is DL-initiated, meaning that the time origin is a new control com-
mand; the UL-AoI is UL-initiated, i.e., the time origin is a new status update in the
UL. The DL AoL metric captures the time elapsed since the control command that led
to the latest received update in the controller was generated. Analogously, the UL AoL
metric refers to the time elapsed since the status update that caused the latest applied
control command was generated at the sensor. Mathematically, if the origin is the DL,
the current AoL is the difference between the current time t and the time when the
freshest received control command was generated:

DL AoL(t) = t− t̂j . (C.6)

Likewise, if the time origin is the UL, the AoL is calculated as the difference between
the current time and the time when the freshest received state was spawned:

UL AoL(t) = t− ti. (C.7)

Essentially, the main idea of AoL is to establish a metric that encompasses the behavior
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of two separated and locally measured entities (DL and UL) into a single instance, in
which we can observe from different perspectives. It is important to note that, in the
case of two independent AoI links, we inherently need an instantaneous and perfect
feedback channel to the source to know the instantaneous age at the destination, thus
making complex and potentially imprecise the union of two directions; AoL fixes this. In
practice, it also offers the possibility to design solutions that enclose the whole closed-
loop behavior by checking the loop age from either an UL or DL perspective. For
example, we can potentially design a power allocation policy for the UL by observing
the current UL AoL status. Likewise, we are able to define a modulation coding scheme
algorithm for the DL transmissions by observing the DL AoL. It will be proven that
they are both valid to optimize the stability of the WNCS. To illustrate the proposed
concept, Figure C.3 shows a representative time diagram of the AoL behavior.

4 AoL Evaluation
We aim to estimate the performance of the control system measured according to (F.7)
using the current AoL status calculated at the controller (DL AoL). More formally, we
can use the value function definition [16] to estimate the expected LQR cost, i.e.,

V (∆AoL(t)) =
∫ ∞

t

(XT QX + uT Ru)dt. (C.8)

Since the control policy is unchangeable over time and the plant operation is sampled
at cycles of ∆Tout, (C.8) becomes the recursion problem:

V (∆AoL(t)) =
t+∆Tout∫

t

(XT QX + uT Ru)dt

+ V (∆AoL(t + ∆Tout)),

(C.9)

where we can solve iteratively using a temporal difference (TD) learning algorithm [16]
with actual state transitions, such that:

V (∆AoL(t))← V (∆AoL(t)) + α

[ t+∆Tout∫
t

(XT QX + uT Ru)dt

+ γV (∆AoL(t + ∆Tout))− V (∆AoL(t))
]

, (C.10)

where α and γ are, respectively, the learning rate and the discount factor of future values.
We can emphasize that (C.10) converges asymptotically to the correct predictions with
probability 1 if the step-size α decreases according to the usual stochastic approximation
conditions [16].
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Fig. C.3: Time Diagram of AoL Behavior.
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4.1 Numerical Evaluation
Considering the following inverted pendulum configuration: mc = 1.0 kg, mp = 0.1 kg,
l = 0.5 m, g = 9.8 m/s2 and ∆Tout = 1 ms, we evaluated the expected LQR behavior for
different AoL states using (C.10).

Figure C.4 illustrates the obtained result, where we can emphasize three extensive
conclusions. First, low AoL values, as expected, provide the best system performance,
such that the theoretical LQR upper bound is achieved if the AoL is close to zero.
Second, prior to an AoL around 40 ms, the LQR slightly decrease. After that point,
however, the system starts to progressively become less tolerable to additional AoL
delays. The third and most relevant conclusion is the fact that between 10 and 40 ms,
there is no considerable variation at the system performance, meaning that we can avoid
over-provisioning network resources by learning the system robustness.

Fig. C.4: Expected LQR Cost vs Age of Loop.
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4.2 AoI vs AoL
We performed the same numerical evaluation using a state space comprised of a single
DL AoI or a single UL AoI. The goal is to verify the estimation error of the value
function when we change the state space for a single AoI metric instead of AoL. We
analyze the value function estimation by verifying the Temporal Difference (TD) error,
given by:

t+∆Tout∫
t

(XT QX + uT Ru)dt

+ γV (∆AoL(t + ∆Tout))− V (∆AoL(t)),

(C.11)

which indicates, for each state, how far the predicted value function deviates from the
actual value. For example, the learning rule in (C.10) adjusts state value in a direction
that tends to reduce the TD error.

Lower TD errors indicates better accuracy about the value function estimation over
each state, which is ultimately important for learning better policies, especially in RL
context. Figure C.5 illustrates the obtained result along training episodes. We can
verify that, as expected, the estimated values are more precise when the whole loop age
is considered. The DL and UL AoL values can be merely different, especially because
of ∆Tin. After generation, the DL data might spend time between state transmissions
before finishing the loop, which does not happen in UL case. Thus explaining the slight
different behavior of both values in Figure C.5.

5 Bandwidth Allocation Problem
As discussed in section 4, the AoL status of a WNCS can provide an estimation of the
system LQR performance, so that we can use the learned value function to build a policy.
In this work, we explore the bandwidth allocation problem of a remote controller, where
two main objectives must be satisfied: minimize the LQR cost while using the minimum
amount of bandwidth.

In more details, we can define B = {b1, b2, . . . , bi, . . . , bN}, bi+1 > bi a set of band-
widths in which the controller, for every DL transmission, must decide for a certain
bandwidth allocation b ∈ B given the current AoL state information and the current
channel quality. So, for T = {t1, t2, . . . , ti, . . . tN} ti+1 > ti the time instances where con-
trol packets starts transmission and C = {c1, c2, . . . , ci, . . . , cN} the corresponding CQI
of each transmission, the goal is to find an allocation policy π : {∆AoL(ti), ci → bi}, ∀ti ∈
T, ∀ci ∈ C, ∀bi ∈ B that minimizes the infinite-horizon LQR cost plus the amount of
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Fig. C.5: Mean value function estimation error over training episodes.
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bandwidth usage over the system trajectory, i.e.,

π∗ = arg min
π

 ∞∫
0

(XT QX + uT Ru)dt +
N∑

i=1

bi

bN

 ,

s.t. (D.1), (E.4). (C.12)

5.1 Solution Proposal
We can decompose the problem in (C.12) into sub-problems, where between two con-
secutive control transmissions [ti, ti+1),∀ti ∈ T , we select at ti a bandwidth bi ∈ B
based on the AoL and CQI state {∆AoL(ti), ci}. Receiving, as consequence, a one-stage
decision cost of: ∫ ti+1

ti

(XT QX + uT Ru)dt + bi

bN
, (C.13)

which depends only on the present state and the decision taken on that state. Such
decision-making model is a typical Markov Decision Proces (MDP) [16], where we can
optimally solve each sub-problem with actual state transitions and overlap those solu-
tions to build the overall optimal solution. In this context, we can define the following
MDP configuration:

State Space

Comprised of 20 AoL values, each representing regions of 5 ms from 0 to 100 ms. In
addition, 15 possible CQI values for each AoL, resulting in a total of 300 states.

Action Space

Represented by the bandwidth set with ten possible values: B = {100, 200, 300, . . . , 1000} kHz.

Reward

The immediate cost as defined in (F.18).

Scenario

We evaluate the proposed MDP considering the NCS model described in section 2.2,
assuming the following inverted pendulum configuration: mc = 1.0 kg, mp = 0.1 kg,
l = 0.5 m, g = 9.8 m/s2, control packet size of 1024 bits and ∆Tout = 1 ms. For each
run, the CQI is randomly chosen {1, 2, 3, . . . , 15}. The evaluation is also performed
under different sensor feedback ∆Tin = 1, 5, 10, 15 and 20 ms.
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To solve the proposed MDP, we advocate a RL methodology for two main reasons.
First, the MDP transitions probabilities are not easily tractable since the AoL variation
will simultaneously depend on the channel and resource allocation of both UL and DL
links. So, the UL behavior might be analytically unpredictable from the DL perspective
and vice-versa. Second, learning a value function from the AoL states means that we
have a prediction of system performance given the current AoL condition. In other
words, this methodology offers the possibility for the network to essentially learn the
control system behavior, where the bandwidth allocation policy is just one of multiple
network functions in which it can serve. We could easily extend the learned values to
find optimal polices, for example, in terms of packet length, power allocation, antenna
configuration and so on.

Hence, we solved the proposed MDP by applying a TD RL algorithm, based on
a ϵ-greedy decision making during training, with exponential learning and exploration
rate decay [16], as represented in Algorithm 3.

Algorithm 3 Algorithmic description for the RL methodology.
Initialize: Hyperparameters: α, γ, ϵ, Nepisodes

1: Set state-action value function Q(states, actions) to initial values.
2: for ∆Tin ∈ {1, 5, 10, 15, 20 ms} do
3: for e ∈ {1, . . . , Nepisodes} do
4: Initialize the CartPole Environment;
5: dlCQI = Random_Integer(1, 2, . . . , 15);
6: ulCQI = Random_Integer(1, 2, . . . , 15);
7: Set (∆Tin, dlCQI , ulCQI) to the Environment;
8: Get the initial state s from the Environment;
9: for each control packet transmission do

10: Select action A = Epsilon-greedy(s, ϵ) for bandwidth allocation;
11: Run System Dynamics and Control according to (D.1) and (E.4), respectively,

until end of transmission.
12: Observe the next state s′ and the corresponding reward R according to (F.18);

13: Update state-action value as following:
TD_error = R + γ ·max

a
[Q(s′, :)]−Q(s, A);

Q(s, A)← Q(s, A) + α · TD_error
14: s← s′

15: end for
16: end for
17: end for
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6 Results
We compare the proposed solution with a bandwidth allocation scheme based on pre-
defined delay requirements, which is the general solution currently used in industry.
In more details, given an arbitrary requirement of Tr ms for the control packet to be
delivered, we can directly calculate the minimum amount of bandwidth to achieve the
necessary requirement using the 3GPP 4-bit CQI Table 7.2.3-1 [12] and the total packet
size. These baseline approaches, as well as the RL scheme, were evaluated on the sce-
nario described in Section 5.

We analyze the results for three common network requirements, Tr = 1 ms, Tr = 5 ms
and Tr = 10 ms. In each case, we analyzed the total bandwidth usage and the total
LQR cost, which are respectively illustrated in Figure C.6 and Figure C.7.

Fig. C.6: Total amount of bandwidth usage for each method.

The immediate conclusion we can verify is that the RL scheme was capable to learn
the system delay requirement, such that we can relate the LQR cost in Figure C.7 with
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Fig. C.7: Total amount of LQR cost for each method.
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the result in Figure C.4 to show that it is operating around the LQR edge performance
(around -8) in order to save bandwidth. The second conclusion is that, as expected,
strict latency requirement (Tr = 1 ms) demands more bandwidth usage. Compared to
Tr = 10 ms, however, the RL scheme could still save 36% more bandwidth, which is an
indication that 10 ms is still a sub-optimal requirement, but we can learn it from the
RL algorithm.

7 Conclusions
In this work, we proposed a new metric to evaluate the age of an WNCS closed-loop,
and we applied this metric, the Age of Loop, to track the LQR performance of a inverted
pendulum control system. Furthermore, we also propose a bandwidth allocation policy
based on the age of loop and channel quality information, showing that we can learn
the system robustness in order to avoid over-provisioning of network resources on a
networked control system.

As future works, we intend to explore a joint DL and UL RL methodology where
both cooperate to optimize system performance and network resources.

References
[1] H. S. Witsenhausen, “A counterexample in stochastic optimum control,” SIAM

Journal on Control, 1968.

[2] P. M. de Sant Ana, N. Marchenko, P. Popovski, and B. Soret, “Wireless control of
autonomous guided vehicle using reinforcement learning,” in IEEE GLOBECOM,
2020.

[3] A. M. Bedewy, Y. Sun, and N. B. Shroff, “Minimizing the age of information
through queues,” IEEE Transactions on Information Theory, 2019.

[4] W. Liu, G. Nair, Y. Li, D. Nesic, B. Vucetic, and H. V. Poor, “On the latency, rate
and reliability tradeoff in wireless networked control systems for IIoT,” IEEE IoT
Journal, 2020.

[5] K. Gatsis, H. Hassani, and G. J. Pappas, “Latency-reliability tradeoffs for state
estimation,” IEEE Transactions on Automatic Control, 2020.

[6] Huang, Kang et al. , “Wireless feedback control with variable packet length for
industrial IoT,” IEEE Wireless Communications Letters, 2020.

[7] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive elements
that can solve difficult learning control problems,” IEEE Transactions on Systems,
Man, and Cybernetics, 1983.



84 References

[8] R. V. Florian, “Correct equations for the dynamics of the cart-pole system,” Center
for Cognitive and Neural Studies (Coneural), Romania, 2007.

[9] Z. M. Wang, D. F. Yang, K. Yang, L. Y. Guo, and J. M. Tan, Machine Tool
Technology, Mechatronics and Information Engineering. TransTech Publications
Ltd, 2014.

[10] F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal control. John Wiley & Sons,
2012.

[11] P. Park, S. C. Ergen, C. Fischione, C. Lu, and K. H. Johansson, “Wireless network
design for control systems: A survey,” IEEE Communications Surveys & Tutorials,
2017.

[12] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer pro-
cedures,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS)
36.213, 10 2014, version 12.3.0.

[13] R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and S. Ulukus, “Age
of information: An introduction and survey,” IEEE Journal on Selected Areas in
Communications, 2021.

[14] J. P. Champati, M. H. Mamduhi, K. H. Johansson, and J. Gross, “Performance
characterization using AoI in a single-loop networked control system,” in IEEE
Conference on Computer Communications Workshops, 2019.

[15] M. Klügel, M. H. Mamduhi, S. Hirche, and W. Kellerer, “AoI-penalty minimization
for networked control systems with packet loss,” in IEEE Conference on Computer
Communications Workshops, 2019.

[16] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.



Paper D

Control-Aware Scheduling Optimization of Industrial IoT

Pedro M. de Sant Ana, Nikolaj Marchenko, Beatriz Soret and Petar
Popovski

The paper has been published in the
IEEE 95th Vehicular Technology Conference 2022.



© 2022 IEEE
The layout has been revised.



1. Introduction 87

Abstract
In this paper, we elaborate on the frequency resource allocation problem of Wireless Net-
worked Control Systems (WNCS). We consider a multi user wireless environment (e.g.,
factory) where the users are remote industrial Internet of Things (IIoT) devices com-
peting for network resources and a centralized network base station needs to assign the
resources to each device accordingly in order to keep the overall control system stability.
We design a joint network and control scheduler solution, where we can estimate the
degradation of the control system for a given network state and use this information to
assign the frequency resource to each device. We show that the proposed solution outper-
forms traditional scheduling baselines, including genetic algorithms, assuming polyno-
mial complexity in worst case scenario and generalizing for different control and network
configurations.

1 Introduction
Wireless networked control systems (WNCS) are an essential part of cyber-physical
applications, such as factory automation, logistics or transportation, enabling mobile
control operation in scenarios where high flexibility is required. Nevertheless, due to
the nature of the wireless medium, reliability of WNCS remains an open research chal-
lenge, especially considering that many WNCS use cases involve large scale setting in
scenarios where the network resources are limited. As consequence, multiple control
system devices may be required to simultaneously share the wireless medium, where we
can often encounter scenarios where the amount of devices sharing the communication
resources is higher than the channel capacity.

For this reason, recent works [1–4] have been exploring the issue of allocating com-
munication resources in WNCS, traditionally referred as scheduling problem. We can
basically visualize this problem into two approaches. The first is the most common in
industry and consists of defining a set of network requirements, for example based on
the standards of the 3rd Generation Partnership Project (3GPP), that are established
according to the specifications of the control system. Such conventional approach com-
pletely decouples the control and communication entities, such that, as demonstrated
in [5], might lead to high over-provisioning of network resources. The second approach
consists of a joint network and control design, where the scheduling solutions take into
consideration details of the control application. For example, the authors in [1] propose
a new method to find periodic scheduling policies under the assumptions of global sys-
tem stability. In [3], authors propose a joint network and control optimization, targeting
to design a network resource allocation policy that optimizes the control performance
using the least amount of network resources. Likewise, the authors in [4] elaborate on a
similar idea of [3] but also considering fading channels. All the results obtained in [1–4]
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clearly provide an indication that, considering details of the control application while
designing the scheduler, can considerably improve both the network and the control
efficacy.

One fundamental assumption, however, that we find in the literature of network/control
scheduler design [1–4], is the resource allocation without considering the time and fre-
quency dynamics of a real network scheduler. Essentially, from a practical perspective,
the 3GPP standardizes and defines the MAC scheduling scheme based on the definition
of a frame structure over time transmission intervals (TTI) [6]. Not considering such
dynamics can be relatively critical, since the frequency allocation is constrained by the
maximum amount of frequency resources we can allocate per TTI, which represents a
direct impact at the strict timing requirements of WNCS. Therefore, aiming to elaborate
on such constraint, we propose, in this work, the following contributions:

• We introduce a novel control-aware scheduler mechanism, where we estimate the
control performance of each IIoT device based on its current network conditions.
To achieve that, we formulate the problem as a Markov Decision Process (MDP),
such that we use the obtained value function to provide a network resource allo-
cation policy according to the the 3GPP MAC scheduling scheme in [6].

• We show that the proposed solution generalizes for any new IIoT device entering
the network, as long as the control information does not change, thus considerably
reducing the overall system complexity to obtain an optimal scheduler, especially
in highly dense scenarios.

The rest of this paper is organized as following: in the next two sections, we introduce
the details about the control systems and WNCS model. In section 3 we formulate the
problem and propose a solution in section 4. Finally, in section 5, we provide the details
of the numerical analysis and the results.

2 System Model
We consider the classical inverted pendulum system model, a widely used benchmark
problem in control theory domain. As illustrated in Figure D.1, a pole is attached
by a joint to a cart, which can be moving along a frictionless track. The pendulum
starts upright at a random initial angle θ0 ∈ (θ0,min, θ0,max), and the goal is to prevent
it from falling over by applying a force to the cart. While conceptually simple, the
system dynamics are highly unstable and continuously requires fast control cycles to
keep stability. When, in turn, being controlled over a wireless channel, the problem
becomes an illustrative model of strict timing requirement, capturing the important
tradeoffs.
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Fig. D.1: Inverted pendulum system model.

2.1 Control System Model
The system dynamics can be represented by the differential equations [7]:

θ̈ =
g · sin(θ) + cos(θ)

(
−F −mplθ̇2sin(θ)

mc+mp

)
l( 4

3 −
mpcos2(θ)

mc+mp
)

,

ẍ = F + mpl(θ̇2sin(θ)− θ̈cos(θ))
mc + mp

,

(D.1)

where x and θ are, respectively, the cart position coordinates and the pole angle from
vertical reference. The mass of the cart is mc, and the mass of the pendulum is mp,
while l is the length of the pendulum, and F is the force applied to the cart under
gravity g. We use the Newton’s notation (□̇, □̈) to represent derivatives w.r.t time.

By defining a state space vector X = [x, ẋ, θ, θ̇], we can design a standard optimal
controller in two steps. First, computing the Jacobian of (D.1) around the operating
point X = [0, 0, 0, 0] to linearize the plant, so that the system dynamic takes the linear
time invariant form: {

Ẋ = AX + Bu + w,

u = −KX,
(D.2)

where u ∈ R is the linear state feedback control policy of gain K, w is a process
disturbance modeled as a zero-mean and covariance W ∈ R4, A and B are the system
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transition matrix, respectively calculated as [8]:

A =


0 1 0 0
0 0 −12mpg

13mc+mp
0

0 0 0 1
0 0 12(mpg+mcg)

l(13mc+mp) 0

 , B =


0
13

13mc+mp

0
−12

l(13mc+mp)

 . (D.3)

The second step consists of finding the optimal control policy, u∗, subject to (D.2)
that minimizes the cost function,

J(X, u) =
∫ ∞

0

(
XT QX + uT Ru

)
dt, (D.4)

where R and Q are arbitrary positive defined matrices in which we can assign weights
to state space variables and control signal. In control theory this kind of problem
formulation is known as Linear-Quadratic-Regulator (LQR) [8].

The optimal control policy can then be defined by solving the Algebraic Riccati
Equation as [8]:

AT P + PA− PBR−1BT P + Q = 0,

K∗ = R−1BT P,

u∗ = K∗X.

(D.5)

For (A, B) controllable, the infinite horizon LQR with Q, R > 0 gives a convergent
closed-loop system [8], where the stability can be easily guaranteed.

2.2 Wireless Networked Control Model
As defined in [9], we adopt a similar WNCS model to define the system behavior over
the wireless medium operating in Frequency Division Duplexing (FDD) mode with sep-
arated frequency bands for the uplink (UL) and downlink (DL) directions, which makes
the medium access for UL and DL independent from each other in the time domain.
Figure D.2 illustrates the proposed model, showing the details of the interaction between
the communication and application control loop.

First, the sensor readings of the application describe the system states, Xi, with D
bytes of sensor data stored in the transmission buffer and communicated to the controller
over the uplink channel.

The readings and transmissions of sensor values are done strictly periodically with
the cycle time ∆Tin, as it is commonly done across various control systems [10].

At the controller, the received sensor values are also stored into the memory. The
control application gets the recent values, and produces a control signal ui according
to (E.4). Immediately after producing a control command, the controller sends it over
a downlink channel to the controlled system. After finishing the current transmission,
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Fig. D.2: WNCS Model.

the controller keeps waiting for the next state update from the controlled device, and
starts the procedure once again.

At the controlled system side, we assume the well known zero-order hold (ZOH)
strategy, where the received command ui is stored in the memory. The output applica-
tion for actuators control (e.g., motor drives) calls the most recently stored command
values from the memory and applies them to the application drives, producing the
system dynamics of (D.1).

2.3 Wireless channel model
In most WNCS applications, it has been observed that control data has relatively much
smaller size compared to the sensor data, thus bringing a strong imbalance between
downlink and uplink data traffic [11]. For example, while some WNCS might be required
to send image or video data, LiDAR cloud points, AR/VR information and so on, control
packets are always based on sending simple control direction, such as acceleration, force
or vehicle heading angle that can be either based on an optimal control algorithm as in
(E.4) or an human control (e.g., haptic or AR/VR use cases). It is, therefore, plausible
to assume that radio resource management (RRM) is not the primarily problem for such
downlink communication.

For this reason, in this work, we plausibly design a wireless communication model
where we can manage network resources at the uplink, while we do not have control
over the downlink delay itself, but we might have some statistical inference about its
behavior and use that information to potentially enhance the uplink resource allocation.
Hence, the model details are defined as following:
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Uplink

We evaluate the uplink behavior considering the 3GPP 4-bit CQI Table 7.2.3-1 [6],
where, for each TTI, the amount of data delivered depends on both the current channel
quality indicator (CQI) and the total bandwidth allocated to the transmission. So, the
more Resource Blocks (RBs) the scheduler assign to the plant in a given TTI, faster
the sensor information can be delivered. This approach has been traditionally used for
benchmark purposes [12], including the Nokia Open source project in [13].

Downlink

As widely adopted in the literature [14], random and variable delays of communication
systems, such as Wi-Fi and LTE, present an uni-modal and asymmetric distribution with
long tail to the right in which can be characterized by a Gamma probability density
function f , as

f(x; k, θ) = xk−1e−x/θ

θkΓ(k) , (D.6)

where Γ(·), k and θ are, respectively, the gamma function, the shape and the scale
parameter. So, each time a new control command is generated, we randomly select x
from f(x; k, θ) to characterize the downlink latency duration.

2.4 System Level Considerations
It is important to emphasize that (F.7) is guaranteed to be bounded according to the
Riccati-equation [8]. However, the combination of two main factors might affect the
system LQR performance. The first is the uplink effect, which represents the level of
knowledge the controller has about the plant, meaning that, if the uplink takes overly
long to deliver sensor data, the controller will compute the control signal using old state
feedback, causing the control command to be ineffective or even harmful for the plant.
The second is the downlink effect, or simply the overall delay to deliver the control
signal. This is important because if the plant applies outdated control commands for
too long, the stability of the controlled system might also be compromised.

Each of these factors might affect the plant in different ways and cannot be indepen-
dently decoupled, which means that a delay in the UL will impact the DL transmission,
provoking cumulative effects at the plant and at the network resources.

3 Problem Description
Consider the system model described in section 2, where a set of K ∈ N+ inverted
pendulum plants are constantly updating its system states to be delivered to a remote
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centralized controller. Each plant might have specific control parameters, channel qual-
ity or sensor data size. As described by Fig. D.3, for Nf the number of uplink frequency
resources, e.g. Resource Blocks (RBs), the network, for each time transmission interval
(TTI), must allocate the frequency resources to each plant. This recreates a well-known
case of OFDM resource allocation, where a MAC scheduler assigns RBs to control sys-
tem devices under different radio conditions.

Fig. D.3: The main steps of the resource allocation process.

We can formalize the uplink resource allocation problem by first defining, for each
plant k ∈ K, Sk(t) = [Dk(t), Ck(t), Ak(t)] a state space at TTI t, where Dk is the current
amount of bits at the uplink transmission buffer, Ck is the corresponding channel quality
indicator and Ak the current uplink age of information (AoI). Hence, the scheduler, for
every TTI t, must define a frequency allocation policy π : [S1(t), S2(t), . . . , SK(t)]→ R,
that maps the state space of all K plants to a vector R ∈ NK , representing the amount
of resource blocks assigned to each user k ∈ K, such that

∑K
k=1 rk = Nf , ∀rk ∈ R.

To define the objective function, we must first emphasize that, in control problems,
we are mostly interested in defining a feasibility region in which each plant must correctly
operate. It basically means that, to guarantee safety, the physical state of every plant
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must not achieve predefined regions. More formally, consider X̃ = [x, ẋ, θ, θ̇] a plant
physical state space where |x| ≥ K1 and |θ| ≥ K2 for any K1, K2 ∈ R+. So, for Xk(t)
the current physical state of plant k at TTI t, we define:

⊮X̃(k, t) =
{

1 Xk(t) ∈ X̃,

0 Xk(t) /∈ X̃,
(D.7)

a function indicating whether the given plant k has achieved the undesirable physical
state X̃ at TTI t. So, the overall scheduler goal is to find the optimal policy π∗, such
that:

π∗ = arg min
π

∞∑
t=0

K∑
k=1

⊮X̃(k, t)

s.t. (D.2), (E.4).
(D.8)

We can observe that (D.8) represents an example of application oriented communication,
where the main goal is to keep the values of the system states of all plants within the
desired feasibility region by controlling the network allocation policy.

4 Solution Proposal
Consider the system dynamics (D.2) defined for any plant k ∈ K, where we can introduce
Pk(t) the state covariance matrix at the current TTI t, such that, as in [15], we can
describe it as a function of the current AoI value Ak(t), as:

Pk(t) △= E[XT
k (t)Xk(t)] = Hk(Ak(t)) △=

Ak(t)−1∑
i=0

At
kWk(Ai

k)T ,

for (·)T the matrix transpose operation.
For a given control system k, we can measure its performance with the quadratic

cost of the physical states [], as:

Jk = lim
T →∞

T∑
t=1

E[XT
k (t)QkXk(t)] = lim

T →∞

T∑
t=1

Tr(QkPk(t)), (D.9)

for Tr(·) the matrix trace operation. We can observe that (D.9) represents a degradation
metric for the control performance that we can map as a function of the current AoI
value and the system parameters. Minimizing (D.9) guarantees that system states Xk(t)
are bounded when t→∞ [8], such that we can potentially apply (D.9) to observe how
far or close the control system is from the feasibility region defined in (D.7).

Hence, the main idea is that, by observing the state Sk, we can evaluate, for each
plant k ∈ K, the expected control performance Jk according to (D.9) and use this
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information to prioritize the plant resource allocation accordingly. More formally, we
can model such estimation of performance for a given state space by applying the value
function definition [8, 16], where, for any TTI t, we define:

Vk(Sk) = Eπ̃

[ ∞∑
τ=0

γτ Tr(QkPk(t + τ + 1))
∣∣Sk(t) = Sk

]
, (D.10)

where we can also extend to a state-action value function [16]:

Qk(Sk, r) = Eπ̃

[ ∞∑
τ=0

γτ Tr(QkPk(t + τ + 1))
∣∣Sk(t) = Sk, rk(t) = r

]
, (D.11)

∀r ∈ [0; Nf ] where rk(t) is the number of resources blocks allocated for user k at TTI
t, such that

∑K
k=1 rk(t) = Nf , ∀t, γ ∈ [0, 1] is called discount factor and determines the

long-term impact of future costs, and π̃ is the probability function Pr{rk(t) = r |Sk(t) =
Sk} of selecting r for a given state Sk.

To obtain the state value function in (D.10), as well as the state-action value function
in (D.11) for a plant k, we formulate the problem as a Markov Decision Process (MDP)
[8], defined as:

• The state space is describe by Sk = [Dk, Ck, Ak], where, for every TTI t, the state
transition is given by:Dk(t + 1)

Ck(t + 1)
Ak(t + 1)

 =

min{0, Dk(t)− g(Ck(t), rk(t))}
h(Ck(t))
Ak(t) + 1

 , (D.12)

where g is a function that describe the amount of bits transmitted for a given CQI
Ck(t) and the number of resource blocks allocated rk(t) according to the 3GPP
table [6], while h is a function to map the CQI variation over t. The terminal
state is given ∀Sk where Dk = 0.

• The action space is simply the amount of resource blocks allocated to user k ∈ K
at TTI t given by rk(t).

• The one stage cost is designed for two conditions: A) For each non-terminal state
transition (i.e., Dk(t + 1) > 0), we calculate the control cost in (D.9) incurred
from the current AoI value Ak(t):

Ck(t) = Tr(QkHk(Ak(t))). (D.13)

For a terminal state transition (i.e., D(t + 1) = 0), we account to the control cost
in (D.9) plus the downlink delay effect with its corresponding probability density
function:

Ck(t) =
∞∑

l=1
f(l; k, θ)Tr(QkHk(Ak(t) + l)) (D.14)
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Algorithm 4 Evaluation of the Bellman Equation.
Initialize: γ, Dmax, Cmax, Nf , Amax, Niterations, π̃

1: V = array of zeros with size (Dmax, Cmax, Amax)
2: Q = array of zeros with size (Dmax, Cmax, Amax, Nf )
3: for n ∈ [1, Niterations] do
4: for each d ∈ [1, Dmax], c ∈ [1, Cmax], a ∈ [1, Amax] do
5: for each r ∈ [0, Nf ] do
6: d′ = min{0, d− g(c, r)}; a′ = a + 1; c′ = h(c)
7: if d′ == 0 then
8: Calculate C as in (D.14).
9: Q[d, c, a, r]← C // Terminal State

10: else
11: Calculate C as in (D.13).
12: Q[d, c, a, r]← C + γV[d′, c′, a′]
13: end if
14: end for
15: V[d, c, a]← Eπ̃

[
Q[d, c, a, :]

]
16: end for
17: end for

We can note that the proposed MDP is fully observable and we can analytically track, by
the one-stage cost, the random effects from the downlink delay f and the control process
disturbance w for each plant. Hence, we can optimally obtain (D.11) and (D.10) using
the Bellman equation [16], in which the steps can be described according to Algorithm
4.By obtaining (D.11), we can now establish the resource allocation as a function of the
expected control performance for any given state. We design, therefore, the resource
block assignment as described in Algorithm 5, to generate the policy π for solving (D.8).

The primarily idea of Algorithm 5 is to prioritize the plants with the highest current
Q value, considering the corresponding amount of RBs already assigned. It is important
to emphasize that, as long as the control dynamics of the IoT device does not change,
which is broadly the case, the network only needs to evaluate the Bellman equation
once, requiring polynomial complexity O(n3) [16] in the worst case scenario for n the
number of states. Similarly, adding new IoT devices to the network will only demand
the the step from Algorithm 4 if the control dynamics are not previously known by the
network. So, in case of multiple similar IoT devices entering the network, which involves,
for example, typical use cases regarding factory automation, the step of Algorithm 4 is
performed only once and generalize for all other devices, thus considerably reducing the
overall system complexity to obtain the optimal scheduler, especially in highly dense
scenarios.



5. Numerical Analysis 97

Algorithm 5 Proposed RB assignment policy.
Initialize: K, Nf and Qk for each k ∈ K

1: R = array of zeros with size K
2: for each TTI t do
3: Observe the states Sk(t) = [Dk(t), Ck(t), Ak(t)],∀k
4: repeat
5: i = arg mink∈K Qk(Dk(t), Ck(t), Ak(t),R[k])
6: R[i]← R[i] + 1
7: until All RBs assigned.
8: end for

Output: R

5 Numerical Analysis
To evaluate the proposed solution, we consider a simulation scenario as summarized in
Table D.1, where we can further emphasize the following points:

• At the beginning of every simulation episode, each plant uniformly random selects
a sensor data size, CQI and pole length among the provided options. The higher
the data size and the lower the CQI, more resource blocks are needed to deliver
the sensor data to the controller.

• A pole length of 0.25 and 0.75 provide system dynamics with maximum absolute
eigenvalues of, respectively, 5.61 and 3.24. This means that the control require-
ments are also different, such that the plants with the highest eigenvalues are more
unstable, i.e. the cost in (D.9) grows faster, and thus demand faster control cycles.

• For evaluating the Bellman equation in Algorithm 4, we assume π̃ with equal
probability for every action, i.e. Pr{rk(t) = r |Sk(t) = Sk} = 1/Nf , ∀r, ∀Sk. For
the evaluation of the cost in (D.14), we bound l up to three standard deviations.

5.1 Baselines
We compare the results with two sets of baselines. The first set encompass the most
traditional scheduling algorithms, where the allocation of RBs is intuitively clear, such
as Round Robin (RR), Maximum CQI (MaxCQI), Minimum CQI (MinCQI) and Age-
based scheduler (Age). The RR equally distribute the RBs to each plant following a
rational order. The MaxCQI prioritize the users with highest CQI and represents a
direct maximization of the network throughput and spectral efficiency. The MinCQI,
on the other hand, prioritize the users with the lowest CQI, thus maximizing the fairness
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Table D.1: System Parameters

Bandwidth, B 10 MHz
Number of Physical Resource Blocks, Nf 50
Sensor Data sizes, D [512, 768, 1024] bits
CQI [1,2,3,4,5]
Carrier frequency 2.4 GHz
DL latency pdf shape k and scale θ [2.0; 3.5]
mc, mp, g 1.0 kg, 0.1 kg, 9.8 m/s2

Pole Length, l [0.25, 0.75] m
Control matrices, R and Q (0.1) and I4x4
Stability threshold K1 and K2 from (D.7) 2 m and 20o

Sensor cycle time, ∆Tin 5 ms

regarding the resource distribution among the users. Finally, the Age scheduler prioritize
resources for the users with the current highest age of information.

The second set consists of state-of-the-art genetic algorithms that implement a pa-
rameter search at the state space and return weights that are optimally assigned to
the elements of the state space based on a black-box optimization. This methodol-
ogy was recently applied at a similar problem in [12], where the proposed solution
using Co-variance matrix adaptation evolution strategy (CMA-ES) outperformed RL
approaches. We compare our proposed solution against CMA-ES and another evolu-
tionary strategy based on finite differences, named Policy Gradients with Parameter
Exploration (PGPE) [17]. The implementation of both strategies were strictly attained
based on the Pybrain public library [17].

5.2 Evaluation
From a control design perspective, we are mostly interested in analyzing the stability
level of the overall system over time. More formally, consider a stability target given
by:

Pr{
∞∑

t=0

K∑
k=1

⊮X̃(k, t) ≥ 1} < 0.01, (D.15)

which essentially describes that all control system must not violate the stability con-
dition and, in an infinity-horizon perspective, the probability of this violation should
not surpass 1%. This measure can afterwards be used as a basis to evaluate metrics
commonly used in industry, such as mean time to failure (MTTF), Mean time between
failures (MTBF), etc.
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5.3 Results
The Fig. D.4 shows the maximum amount of plants the network can tolerate while
respecting the stability target defined in (D.15). The Age scheduler performing surpris-
ingly good is an interesting evidence of how much the timing requirements can affect
real-time control applications. The RR as the worst performer only evidence that the
intuitive idea of equally dividing the resources can provide harmful results, while the
proposed scheduler solution achieved the highest amount of users for the same 10 MHz
bandwidth. In Fig. D.5, we check the 99th percentile of the LQR performance according
to (F.7), for a fixed number of K = 30 plants. The proposed solution, as we expect,
achieved a resource allocation policy that prioritize the plants with the highest expected
LQR, thus reducing the probability of stability violation in (D.15).

Fig. D.4: Number of plants supported for the stability target in (D.15).

6 Conclusions
In this work, we elaborated on an uplink resource allocation problem, where a set of
control systems with distinct control and network requirements must share frequency
resources to transmit their sensor data to a centralized edge controller. The goal is
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Fig. D.5: 99th percentile of the LQR performance according to (F.7).

to design a resource allocation policy that can achieve the long-term stability of the
overall system. We have proposed a resource allocation scheme based on the estimation
of the value function of each control device. The proposed approach generalizes for
multiple control dynamics and can be solved in polynomial time, while also minimizing
the overall control cost and increasing the system capacity compared to traditional
scheduler baselines and evolutionary approaches.
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Abstract
This letter considers a remote control Autonomous Guided Vehicle (AGV), where packets
carrying sensory data and control information are sent through a time-correlated wireless
fading channel. We illustrate there is an inherent dependency between the data rate and
the resulting control accuracy for such a system. We propose a goal-oriented wireless
solution, in which data transmission rate is continuously adapted according to Age-of-
Loop metric to achieve precise remote trajectory control of an AGV. The numerical
analysis shows that the proposed solution provides higher control accuracy at the AGV
trajectory compared to straightforward fixed-rate transmission policies, and to a reference
solution based on Age-of-Information metric, more commonly used in research of wireless
networked control systems.

1 Introduction
Precise remote trajectory tracking control [1] of Autonomous Guided Vehicles (AGV)
over time-varying wireless channel dynamic factory environments is a challenging prob-
lem. Age-of-Information (AoI) was introduced as a helpful metric indicating the fresh-
ness of transmitted data, which is used for goal-oriented optimization of such Wireless
Networked Control Systems (WNCS) [2, 3]. However, with AoI the analysis and op-
timization are constrained to a single communication link, either downlink (DL) or
uplink (UL). In [4], we showed that such optimization can lead to sub-optimal behavior
for close-loop control problems, and introduced the Age-of-Loop (AoL) metric to ac-
count for both DL and UL effects, as well as their interplay. In addition, most related
control solutions are made with simplified assumption of the strong channel stationar-
ity [5, 6]. In contrast, in [7] we showed that correlated fading plays a significant role in
remote path tracking and needs to be considered.

Building on our previous works [4] and [7], the contributions of this letter are the
following:

• We analytically show how a physical AGV process can vary as a function of the
AoL, providing an important theoretical insight about the relationship between
the control planning and the radio resource allocation. Such analysis handles a
joint network-control design within the context of the goal-oriented communication
paradigm [8], where the contextual value of the information is taken into account
to leverage the synergy between a control system application and the wireless
medium.

• We propose a model of a remote AGV control that can dynamically adapt the
transmission data rate, aiming to optimize the AGV trajectory. To find the op-
timal transmission policy, the problem is formulated as a semi-Markov Decision
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Process where the channel correlation is evaluated over time to address the fading
issue.

• We show that with the proposed approach we can outperform fixed-data rate
policies, as well as state-of-the-art solutions that are purely based on AoI, thus
achieving the goal of higher system trajectory accuracy, a result that so far has
not been obtained in current literature.

2 AGV System Model

2.1 AGV Model
We define the vehicle state vector X ∈ R4 and control vector U ∈ R2 over time t as
in [1], where:

X(t) = [x(t), y(t), v(t), θ(t)], U = [a(t), δ(t)]. (E.1)

Here, x, y are the 2D coordinates, v is the velocity, and θ is the heading orientation
angle of the vehicle, respectively. The control is based on manipulating the vehicle
acceleration a and its front wheel angle δ in order to manage its trajectory along a
desired path. Implementation details of the control system model, design and structure
can be found in [7].

The control system dynamics are defined according to the kinematic vehicle model
[1], such that ẋ(t) = v(t) cos θ(t), ẏ(t) = v(t) sin θ(t), v̇(t) = a(t) and θ̇(t) = v(t) tan δ(t)/L,
for the vehicle inter-axle distance L. The notation □̇ corresponds to derivatives w.r.t
time. The kinematic vehicle model is linearized by dynamically applying the first-order
Taylor expansion around the current vehicle position as operational point [1], generating
the ordinary differential equation:

Ẋ(t) = f(X(t), U(t)) = A(t)X(t) + B(t)U(t) (E.2)

where the transition matrices A(t) and B(t) are given as [1]:

A(t) =


0 0 cos θ(t) −v(t) sin θ(t)
0 0 sin θ(t) v(t) cos θ(t)
0 0 0 0
0 0 tan δ(t)

L 0

 B(t) =


0 0
0 0
1 0
0 v(t)

L cos2 δ(t)


2.2 AGV Control and Performance
To control the AGV, consider a trajectory planner that arranges a sequence of desired
states X∗ that the AGV has to follow. To achieve that, the controller must provide the
corresponding control commands u according to which the vehicle adjusts its position
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and minimizes the error Xe(t) = X(t)−X∗(t) between the current state X and the
desired state X∗ at each time instant t along the path. More formally, we can define a
cost function whose goal is to minimize Xe(t) as

J(Xe(t), U(t)) =
∫ ∞

0

[
Xe(t)T QXe(t) + U(t)T RU(t)

]
dt, (E.3)

subject to the system dynamics in (F.5), where R and Q are arbitrary positive defined
matrices in which we can specify weights among the different components of the state
space and the control signal. In control theory, such design formulation is known as
Linear-Quadratic-Regulator (LQR) and the optimization to find the optimal control
command U∗(t) = [a∗(t), δ∗(t)] is done in an online fashion each time a new control
command is generated, by solving the Algebraic Riccati Equation [1]:

AT (t)P + PA(t)−PB(t)R−1BT (t)P + Q = 0,

K∗ = R−1BT (t)P,

U∗(t) = K∗X(t).
(E.4)

For A(t) and B(t) controllable, the infinite time horizon LQR with Q, R > 0 gives a
convergent closed-loop system [1], where the stability can be guaranteed.

To evaluate the AGV control performance, we analyze the cross track error (XTE),
a commonly used metric that measures the distance deviation from the planned path.
We can derive the XTE as in [1], where we first obtain the error state vector Xe(t) for
a desired state X∗(t) = [x∗(t), y∗(t), v∗(t), θ∗(t)], as

xe(t)
ye(t)
ve(t)
θe(t)

 =


cosθ∗(t) sinθ∗(t) 0
−sinθ∗(t) cosθ∗(t) 0

0 0 1
0 0 1

 ·


x(t)− x∗(t)
y(t)− y∗(t)
v(t)− v∗(t)
θ(t)− θ∗(t)

 ,

and use the kinematic model to calculate its derivatives:
θ̇e(t) = θ̇(t)− θ̇∗(t) = w(t)− w∗(t),
v̇e(t) = v̇(t)− v̇∗(t) = a(t)− a∗(t),
ẋe(t) = ye(t)w(t) + v∗(t)− v(t)cosθe(t),
ẏe(t) = −xe(t)w∗(t) + v(t)sinθe(t).

(E.5)

The XTE is given by the lateral distance ye between the selected tracing point and the
point of the path that is closest to it. Hence, we are interested at the car position as its
projection on the path. More formally:[

ye(t)
θe(t)

]
=

[
−sinθ∗(t) cosθ∗(t) 0

0 0 1

]
·

x(t)− x∗(t)
y(t)− y∗(t)
θ(t)− θ∗(t)

 , (E.6)
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and the corresponding error derivatives:

ẏe(t) = v(t) sinθe(t),
θ̇e(t) = w(t)− w∗(t).

(E.7)

It follows from (E.6) and (E.7) that the XTE increases over time as a function of the
current vehicle speed, the error between the current vehicle orientation, and the corre-
sponding angle at the desired path. By properly designing the optimal LQR control in
(F.7), the XTE is minimized along the path [1]. On the other hand, if the communica-
tion between the plant and the controller (or vice-versa) fails to deliver the information,
we expect to see some impact at the XTE even with the optimal control policy. We
elaborate on these effects in next sections.

3 Wireless communication model
We consider the two directions of the communication model: the sensor-control com-
munication, here referred to as the uplink direction, and the control-actuator commu-
nication, which is the downlink. In most control applications, including the AGV, it
has been observed that control data has relatively small size as compared to the sensor
data [9], thus bringing a strong imbalance between downlink and uplink data traffic.
Thus, AGVs are often required to send large image or video data, for example light de-
tection and ranging (LiDAR) cloud points and augmented or virtual reality (AR/VR)
information. However, the control packets in the opposite direction are based on send-
ing simple control direction, such as acceleration or vehicle heading angle that can be
either based on a control algorithm as in (E.4) or human control as in haptic or AR/VR
use cases. In this context, we design a communication model where the uplink network
resources, being the bottleneck, are dynamically adapted, but considering not only the
uplink itself but also statistical inferences about the downlink behavior. The next two
sub-sections provide more details about each model.

3.1 Uplink Model
We model the uplink communication as a first-order Markov process [10], also known
as Gilbert-Elliot channel. The time-correlation property is represented by two states:
the good state G if the packet can be successfully received; and the bad state B, other-
wise. The corresponding transition probability matrix is defined by a stationary Markov
distribution:

M =
[

Pgg 1− Pgg

1− Pbb Pbb

]
. (E.8)

where Pgg is the probability that the current transmission is successful, given that the
previous transmission was successful. Same logic applies for Pbb but for unsuccessful
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transmissions. Given the matrix M , the channel properties are completely characterized
[10]. In particular, the marginal probability of a packet error, εp, is then given by:

εp = 1− 1− Pbb

2− (Pbb + Pgg) (E.9)

For Rayleigh fading, εp = 1−eγth , where γth is the minimum threshold SNR required to
successfully decode the received signal. We can evaluate γth as a function of the utilized
data rate R, bandwidth B and the average SNR γ, as:

γth = 2R/B − 1
γ

, (E.10)

We define the Jakes’s channel correlation coefficient to be ρ = J0(2πfdTs), where J0()
is the zero-order Bessel function of the first kind, fd is the Doppler frequency shift and
Ts is the sampling time. The error probability of a single back to back failure, Pbb, is
then written as [10]

Pbb = 1− Q(θ, ρθ)−Q(ρθ, θ)
eγth − 1 , (E.11)

where Q(., .) is the Marcum Q function and θ =
√

2γth

1−ρ2 .
For any number of bits D to be transmitted, we have a total data transmission

delay calculated as D/R, being a direct function of the selected data rate R. If the
transmission fails, we assume a re-transmission will occur immediately. A retransmission
automatically increases the resulting latency of the data, or data delivery time. By
increasing R, one reduces the single-packet transmission delay but increases the packet
error probability according to (F.9)-(F.12). This demonstrates the dependency between
the data rate R and the control accuracy (i.e., XTE) in Section 6.

3.2 Downlink Model
Due to the potential imbalance between DL and UL data traffic discussed along this sec-
tion, we assume that transmission rate adaptation is not meaningful in the DL commu-
nication. However, DL packet delays can also happen due to other factors not necessary
related to communications, such as the processing time of the control application [9].
For the sake of generality, we consider a general probability distribution G(x), where
l ∼ G(x) is the DL packet delivery time. In the evaluation of Section 6, we take two
exemplary distributions to illustrate the impact of the DL latency in the global results:
(1) fixed time intervals representing the simplest model; (2) a Gamma distribution,
considered in previous literature [11] to represent a heavy-tailed distribution of the DL
packets delay.

In summary, we consider the following assumptions in the proposed model: 1) the
DL behavior is given by a random latency selected from a probability distribution, while
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the UL is modeled as a first-order Markov process under Rayleigh fading. 2) the AGV
is given according to the kinematic vehicle model under optimal LQR control. More
details are described in Table E.1, in which summarizes the main system parameters
used in the numerical evaluation presented in Section 6.

4 AGV behavior under imperfect communication
The sensor generation process is assumed to be periodic at the AGV. However, a new
data transmission can start only when the previous is complete. By adopting the wireless
channel model of Section 5, the wireless communication becomes non-deterministic and
leads to delays and packet losses, which has an impact on the control behavior. Fig.
F.4 shows a demonstrative data flow diagram for the AGV control.

The AoI is defined as the time that has elapsed since the latest information update
at the destination. It captures not only the communication delays but also the impact
of the packet generation [2]. However, AoI considers only one transmission direction.
Therefore, for the closed-loop control of the AGV, instead of AoI, we use the Age of
Loop, ∆L(t), a continuous and bounded timing metric first proposed in [4], to capture
the overall aging from the sensor to actuator, (or from actuator to sensor), including
the effect of packet losses. As illustrated in Fig. F.4, the AoL grows linearly over time
and drops at the time instances where the control loop is closed, (tc1, tc2, . . . ), to the
corresponding timestamp in which the state feedback that spawned a new control signal
was generated, i.e. ∆L(t) = t− tsi,∀i ∈ {1, 2, 3, . . . }.

We can now model the dynamics in (F.5) using AoL and the stochastic system
approach [12]:

Ẋ = AX + BU(t−∆L(t)). (E.12)

With communication delay and packet losses (i.e., ∆L(t) > 0), we are especially inter-
ested in the asymptotic behavior of the vehicle tracking error:

Proposition 1: The tracking error (E.7) is asymptotically non-negative w.r.t ∆L(t).
Proof: Consider the system dynamics in (F.13), where (F.5) becomes a special

condition of ∆L(t) = 0, ∀t. Assuming that the AGV is moving (i.e., v(t) > 0), we
show in (E.7) that its tracking error ye will increase over time for any sin θe(t) > 0. For
U = [a, δ] where a ∈ [0, amax] and δ ∈ [−δmax, +δmax], ∀δmax, amax ∈ R the set of all
possible control actions in which the AGV can take, applying the optimal control policy
in (E.4), will provide:

U∗(t) = argmin
U(t)∈U

∫ ∞

0

(
Xe(t)T QXe(t) + U(t)T RU(t)

)
dt,

such that, for (A, B) controllable, there exists a unique solution, P, in the class of
positive semi-definite matrices, to the algebraic Riccati equation [1]. Hence, there will
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Fig. E.1: Timing diagram of signals transmitted with corresponding AoL.

be a unique solution δ∗(t) ∈ U∗(t) that applied to θ̇(t) = v(t)
L tan δ∗(t) will minimize the

difference θe(t) = θ(t)−θ∗(t) over time. As a consequence, the only possible way for any
∆L(t) > 0 to not affect ye(t) is i.f.f. δ∗(t) = δ∗(t−∆L(t)), which in turn requires that the
desired path does not change within the given ∆L(t) interval, i.e., θ∗(t) = θ∗(t−∆L(t)).

Remark 1: The AGV tracking error will not necessarily increase when ∆L(t) > 0,
which directly depends on how much the planned path varies compared to the current
path within ∆L(t) interval. One could potentially exploit such behavior while designing
the AGV wireless controller, where regions of the planned path may be considered for
specifying the network resource allocation.

5 AGV Control with variable data rate

5.1 Problem Formulation
Let R = {r1, r2, . . . , ri, . . . , rN}, ri+1 > ri be the set of available rates. For each trans-
mission, the AGV needs to pick a a certain data rate r ∈ R to transmit D bits
with sensory data. Fundamentally, depending on the selected r, the transmission
duration D/r can be larger or smaller in exchange for, respectively, lower or higher
packet error probability, which also depends on the current channel correlation state
(G or B). Hence, the fundamental problem is to select a transmission rate that min-
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imizes the resulting packet latency, and, correspondingly, to minimize the XTE. Let
T = {t1, t2, . . . , ti, . . . tN}, ti+1 > ti be the time instances in which the AGV starts trans-
mitting packets, and {[∆L(t1), c(t1)], [∆L(t2), c(t2)], . . . , [∆L(tN ), c(tN )]} the sequence
of measured age of loop and channel correlation states c ∈ {G, B} at the corresponding
transmission time, the goal is to find a rate selection policy π : [∆L(ti), c(ti)]→ ri, ∀ti ∈
T, ∀c ∈ {G, B}, ∀ri ∈ R that minimizes the infinite-horizon track-error:

π∗ = arg min
π

∫ ∞

0
ye(t)dt

s.t. (F.13), (E.4).
(E.13)

5.2 Solution Proposal
The problem in (F.17) can be decomposed into sub-problems, such that between two
consecutive AGV transmissions [ti, ti+1),∀ti ∈ T , the data rate ri ∈ R at ti is selected
based on the corresponding AoL and channel states {∆L(ti), c(ti)}, using a policy π. If
l is the downlink delay randomly selected from the selected distribution for G(x) and
D/r the total duration to transmit the uplink data, the one-stage decision cost C for
selecting r at AoL state ∆L(ti) is:

C(∆L(ti), r) =
∫ ∆L(ti)+D/r+l

∆L(ti)
ye(t)dt, (E.14)

which depends only on the current ∆L and the decision r taken on that state. The overall
goal is to find an update rule for the AGV transmission data rate that minimizes the
track error cost of its short and long-term rate decisions along the path. Such decision-
making process occurring in continuous and irregular times represents a typical Semi
Markov Decision Process (semi-MDP) [13], where we can model as:

State space

The state is composed by the current AoL value at the beginning of each transmission
and the corresponding channel correlation state {∆L(ti), c(ti)}, ∀ti ∈ T , where the state
transition and the corresponding probabilities depend on the downlink latency distri-
bution f and the packet error probabilities (F.9), according to (E.15). We can extend
the state space by including SNR values for addressing the cases where instantaneous
SNRs are given instead of the average.

P (∆L(ti+1), c(ti+1) | c(ti) = G, ri) ={
(1− Pgg)f(l), ∆L(ti+1) = ∆L(ti) + D

ri
+ l, c(ti+1) = B

Pggf(l), ∆L(ti+1) = D
ri

+ l, c(ti+1) = G
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P (∆L(ti+1), c(ti+1) | c(ti) = B, ri) ={
Pbbf(l), ∆L(ti+1) = ∆L(ti) + D

ri
+ l, c(ti+1) = B

(1− Pbb)f(l), ∆L(ti+1) = D
ri

+ l, c(ti+1) = G

(E.15)

Action

The action decision is the corresponding data rate ri ∈ R selected at the beginning of
each transmission ti.

Reward

The immediate reward is given by the one-stage cost in (F.18), where we can evaluate
over l ∼ f(k, θ), as:

C(∆L(ti), r) = Ef

[ ∫ ∆L(ti)+D/r+l

∆L(ti)
ye(t)dt

]
. (E.16)

Solution

We have solved the proposed semi-MDP to obtain the optimal policy π∗ using a classical
dynamic programming strategy, named value iteration. This method is guaranteed
to provide an optimal solution by iteratively solving the Bellman equation combining
sweeps of policy evaluation and policy improvement [13].

Proposition 2: Using a wireless transmission rate policy π, the total track error
in (F.17) is bounded and the convergence rate is a function of Pbb for a given downlink
latency l ∼ f(k, θ).

Proof: Consider S the overall set of possible AoL values where ∆L ∈ S and a fixed
rate transmission policy π : [∆L, c] → r where r is selected ∀c ∈ {G, B}. As in [2], we
can define the overall cost in (F.17) as a function of the intermediate costs (F.18):∑

∆L∈S, c∈{G,B}

C(∆L, π(∆L.c))Φπ(∆L, c), (E.17)

with Φπ(∆L, c) denoting the stationary probability of AoL state [∆L, c] using the policy
π. Since the rate is fixed by r, we will have S ∈ {i · D/r + l} ∀i ∈ N+, l ∼ (f(k, θ)),
where i · D/r is achieved after a sequence of c = {B, B, . . . , B︸ ︷︷ ︸

i−1

, G}, thus obtaining Φπ

as:

Φπ(∆L, c) =
i· D

r <∆L∑
i=1

f(∆L − i ·D/r)(1− Pbb)P i−1
bb , (E.18)
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Table E.1: System Parameters

Carrier frequency 2.4 GHz
Bandwidth, B 1 MHz
Mean SNR, γ 1 dB
Data message size, D 1 KByte
DL latency Gamma pdf shape k and scale θ (2.0; 3.5) [11]
DL latency fixed time intervals 5 ms
AGV velocity, v 10 km/h
Doppler frequency, fD 22.16 Hz
Inter-axle distance, L 0.5 m
Control matrices R and Q I2x2, I4x4
Maximum Steering angle, δ 45o

Path Planner Cubic spline [14]

From (E.7), we can verify that the track error grows as a function of v(t)sin θe(t). By
plausibly assuming the worst case scenario where sin θe(t) = 1 under a maximum speed
v(t) = Vmax starting at ye(t0) = 0, the one-stage cost C(∆L, r) becomes the integral
over a right trapezoid, where:

C(∆L, r) = 1
2(D

r
+ l)(Vmax)(2∆L + D

r
+ l).

So, as ∆L →∞ for any given downlink latency l, we have:
∞∑

∆L=1

C(∆L, r)Φπ(∆L, c) =

∞∑
∆L=1

Vmax(D/r + l)(2∆L + D/r + l)
2P

l/D/r
bb

f(l)(1− Pbb)P ∆L/D/r
bb ,

since |Pbb| < 1, both infinity series
∑∞

∆L=1 P
∆L/D/r
bb and

∑∞
∆L=1 ∆LP

∆L/D/r
bb are con-

vergent. For a variable transmission rate policy, where r is optimally selected along
different states, we can refer to [2] to demonstrate that the sufficiency of current proof
is enough since the optimal variable rate policy results in an average cost no higher than
that of a fixed rate policy, thus finishing the proof of Proposition 2.

6 Numerical Results
Table E.1 summarized the main system parameters from the proposed model used for
the numerical evaluation of XTE.
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Fig. E.2 represents the policy derived by the proposed solution. There is a different
optimal rate selection depending on the channel correlation state. When the channel is
in a good state, the policy chooses the maximum rate, i.e., to deliver the information
as fast as possible. However, in a bad state, the transmission rate is gradually lowered.
This increases the packet transmission delay while increasing the chances to bring the
communication to a good state again. As a result, this reduces the overall data latency
and increases the control accuracy. The figure also shows when the AoL is low, even
though in the bad state, the policy chooses a higher transmission rate despite the higher
risk for failure. Here, it makes sense to take more risk of transmission failure, but on
high AoL levels, risking failure is not the best option.

Fig. E.3 provides a performance comparison between the obtained policy, fixed trans-
mission data rate policies and the solution in [2] as baseline. We observe the maximum
AGV track error captured along the path for different simulation rounds, as steep path
deviations are centrally critical for the AGV operation. Essentially, we can observe that
the optimal fixed data rate performance is approaching the proposed solution, which, in
turn, offers the best track error result, especially for the Gamma latency. The baseline
relies uniquely on the use of AoI, causing the optimization to be inherently limited to a
single communication link and, thus, sub-optimal. Our proposed method tackles such
limitation by using AoL to consistently improve the AGV performance, a gain that can
be relatively meaningful, especially for critical control applications, such as AGV control
within factory halls.

7 Conclusions
In this letter we have proposed a model of a remote AGV control that dynamically adapts
the wireless transmission rate aiming to optimize the AGV trajectory. We account both
effects of DL and UL using the age of loop concept, as well as the channel correlated
fading effect. Our numerical results have endorsed the importance of the proposed
solution for goal-oriented AGV applications. As future work, we plan to tackle more
complex factory scenarios by including AGV path control planning at the proposed
semi-MDP problem.
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Abstract
Traditionally, transmission of wireless data targets rate and reliability as generic re-
quirements. The new paradigm of goal-oriented wireless communication focuses on the
effectiveness: the impact the received bits have on the actual goal of the application
that relies on wireless connectivity. Recently, we have introduced the Age-of-Loop (AoL)
metric for goal-oriented wireless optimization in Wireless Networked Control Systems
(WNCS). AoL is an an alternative to the well-known Age-of-information (AoI) that
is suited for networked control and is simpler to measure in practical systems as com-
pared to AoI. We have set up a measurement campaign within a factory environment to
collect and analyze AoL data and experimentally verify its significance for WCNS prob-
lems. We propose a numerical model to characterize the AoL behavior in this scenario
and utilize it to address the problem of wirelessly controlled Autonomous Guide Vehicle
(AGV). We formulate this problem as a semi-Markov-Decision Process (MDP) where
the AGV trajectory is optimized by controlling network model parameters. The obtained
optimized policy using AoL provides a better performance for the AGV as compared to
the solutions that rely on AoI.

1 Introduction
Goal-oriented wireless communication is a new design paradigm and it is seen among the
key 6G enablers of critical and massive machine-type communications [1] [2]. The idea
is to establish new communication principles, which are no longer ruled by traditional
radio link performance indicators, but rather by the ultimate application goal. More
precisely, the usefulness of the information with respect to the goal of the data exchange
is considered, seeking the effectiveness of the communication [1]. Although being a
recent research topic, this approach has demonstrated numerous advantages [3–5], and
its potential for the joint design of network and control systems is to be unleashed.

Understanding the application effectiveness from a network design perspective can
be a puzzling problem, especially if we aim at a high granularity level. The questions of
defining and quantifying the attributes of effectiveness are still open in current literature.
Age of Information (AoI), a metric that quantifies information freshness, has been seen
as a generic attribute that represents the relevance of information [5]. In fact, the AoI
has been explored in recent literature as a potential metric for analyzing and optimizing
wireless networked controlled systems (WNCS) [6–10]. The main shortcoming of such
approaches, however, is that designing AoI-based methodologies requires the solutions to
be constrained to a single communication link, such that all the optimizations separately
occur either in the downlink (DL) or the uplink (UL) direction.

In [11], we demonstrated that such constraint can lead to sub-optimal behavior for
closed-loop control problems, and introduced the Age-of-Loop (AoL) as an alternative
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to AoI. The AoL metric is defined to account for both DL and UL effects, as well as
their interplay, which enabled us to fundamentally learn the network requirements of
a closed-loop control system and use this information to optimally allocate network
resources.

In this paper, we build on [11] and demonstrate the practical application of AoL
in closed-loop control systems with wireless links. Specifically, the paper contributions
are: (a) We set up a measurement campaign using a 5G standalone network to mea-
sure and analyze the AoL behavior within a Bosch factory environment in Stuttgart-
Feuerbach [12], showing its practical edge over AoI, since no time synchronization is
needed for the end-to-end evaluation; (b) By analysing the AoL data, we design a
Gilbert-Elliot communication model to numerically characterize the obtained AoL be-
havior in the factory, where we further validate the proposed model using the empirical
AoL data; (c) We use the obtained AoL model to build on a wireless controlled AGV
application, where we can statistically verify the network impact over the AGV track-
error performance; and (d) We formulate a problem of AGV trajectory optimization
by controlling the network model parameters as Semi-Markov Decision Process, where
the obtained optimized policy using AoL provide better AGV performance than AoI
baseline solutions.

The rest of the paper is organized as follows. In Section 2, we elaborate on wire-
less networked control systems and introduce the problem of wireless AGV control. In
Section 3, we present details about AoL, explaining the main definitions and related con-
straints compared to AoI. In Sections 4 and 5, we define a model for the AGV control
and for the wireless communication, respectively, and study the impact of the wireless
channel on the AGV performance. We validate the proposed model with AoL measure-
ments obtained in a factory setting using a 5G-SA network, where the measurement
scenario is described in Section 6 and its corresponding analysis and methodology in
Section 7. Finally, in Section 8, we formulate a problem of AGV trajectory optimization,
where we design a semi-MDP to establish a goal-oriented wireless transmission policy.
We evaluate the proposed approach, comparing with baseline methodologies that relies
on the use of AoI. Concluding remarks are given in Section 9.

2 Wireless Networked Control Systems
WCNS represents a dynamic unstable plant (e.g., AGV, robotic arm, drone) where the
control loop is closed through a wireless network, as illustrated in Fig. F.1. There are
many advantages of WNCS deployment in comparison with traditional control systems
in terms of flexibility, maintainability, and lower costs. In this context, WNCS is con-
sidered an essential enabler for future industrial, logistics, and transport applications,
where a high level of flexibility, data fusion, resource sharing, and cost reduction are
desired [13].
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Fig. F.1: General WNCS model example.

Nevertheless, the dynamic nature of wireless networks introduces a series of chal-
lenges not present in wired control loops, which can affect the behavior of the WNCS by
degrading its performance or causing instability. For example, data transmissions from
the sensor to the controller or from the controller to the actuator are subject to commu-
nication constraints (e.g., limited bandwidth or power, interference), causing variable
delays and packet dropouts. The current literature on WNCS can be classified into two
main categories [13]:

1. Control of network [14–16]: considers the problem of communication network
only, such as radio resource management, routing or congestion protocols, network
topology, etc. The focus is essentially achieving network configurations that attain
the quality-of-service (QoS) constraints in WNCSs.

2. Control over network [17–19]: focuses on the design of control systems by assuming
predictable constraints about the network behavior. Here the focus is on the
optimization of the quality-of-control (QoC) in stochastic environment caused by
the network behavior.

In both categories there is a clear separation between the control and the network
entities, which are separately optimized. This leads to proposed solutions that rely on
(strong) assumptions about the behavior of either the network or the control. Such
decoupling in systems with low-latency and high reliability leads to over-provisioning of
the communication resources [11]. Furthermore, actions taken at a control system level
can have a direct impact on the communication system and vice-versa, as formulated by
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Witsenhausen as counterexample for distributed control problem in [20] and exemplified
for an autonomous guided vehicle (AGV) use case in [21]. For this reason, in this paper,
we focus on a third category, which is the control-oriented network, where the decisions
taken by the network do not rely only on network QoS KPIs, but actually on the
application goal itself. We illustrate the proposed approach through the use-case of a
wireless controlled AGV, as elaborated next.

2.1 Wireless AGV Tracking Problem
Among different WNCS applications, the real-time wireless control of autonomous ve-
hicles is seen as an essential enabler for future industrial and logistics operation [21]. It
is an attractive solution for reducing hardware costs and providing higher transporta-
tion flexibility and coordination. As illustrated in Fig. F.2, the idea is to deploy an
edge cloud infrastructure that constantly receives sensor updates from a remote located
AGV, followed by control input commands to the AGV actuators. The main goal is to
make the AGV to follow a desired path by minimizing the track-error, which is the dif-
ference between the current path and the desired path. However, both communication
directions (i.e., sensor to controller and controller to actuator) are subject to wireless
impairments, such as network-induced delays and packet dropouts. Such uncertainty
caused by the network can potentially harm the control system performance, thus di-
rectly impacting the AGV trajectory, which is risky in time-critical applications, such
as manufacturing. This leads to the broader problem of: considering all the communi-
cations constrains, how to adapt the network parameters in order to minimize the AGV
trajectory error? As suggested in [9], the answer for this question is not so obvious,
even leading to counter-intuitive examples, such as system improved stabilization un-
der higher latency scenarios. We elaborated further on this problem in [21], where we
demonstrated that the AGV track-error is primarily impacted by two main factors: 1)
the status of the AGV physical states, such as its velocity, and 2) the potential burst of
communication errors. Furthermore, in [22] we introduced a new metric, Age-of-Loop
(AoL), showing that the can use machine learning to grasp the control system behavior
and subsequently use the obtained information to take optimal decisions for both the
network and the control system. In this paper, we build on the concepts proposed in
both works. Specifically, we address the optimization of the AGV track-error based on
AoL and validate the approach with experimental data.

3 Age of Information and Age of Loop
The AoI is defined as the time elapsed since the last information update at the desti-
nation. It represents a metric that quantifies the freshness of the knowledge we have
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Fig. F.2: Wireless AGV control problem.

about the status of a remote system. Mathematically [23],

∆(t) = t− U(t), (F.1)

where U(t) is the timestamp of the most recent data received (i.e., with the largest
generation time) and ∆(t) represents the AoI process at time t. The functions of AoI to
acquire alternative target metrics have been examined in several publications [6, 7, 23].
Other work used AoI as a state information metric for control optimization [8–10].

However, there is a limitation of AoI as a metric, as it is originally suited for one-way
communication. For this reason, previous work that has addressed WNCS-related issues
using AoI has been limited to specific analysis for UL [6–8] or DL [9, 10] transmissions
only. However, wirelessly networked control systems inherently rely on both DL and
UL because it is a closed-loop control problem where UL communications can affect DL
and vice versa, affecting system performance and network resource utilisation. Consider
the following for illustration: A high AoI in the UL (sensor-control) implies that the
controller knows less about the status of the system, which requires more urgency to
transmit the control signal and consequently consumes more network resources in the
DL (control-sensor).

A possible alternative that can be used in a closed-loop WNCS is the Age-of-Loop
(AoL) [11], defined as a metric that captures the elapsed time of the entire loop process
and considers both UL and DL links. This is clarified through the WNCS example on
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Fig. F.3. Consider the closed-loop control system where an AGV sends its states update
and expect a feedback control command from an edge controller. In this context, denote
S = {ts1 , ts2 , . . . , tsi , . . . }, tsi+1 ≥ tsi , a sequence of time instances where data packets
at the AGV are generated and subsequently sent to the edge controller, while C =
{tc1 , tc2 , . . . , tci

, . . . }, tci+1 ≥ tci
, the time instances where the corresponding feedback

control command is received by the AGV from the controller, satisfying an arbitrary
arrival process where tci > tsi . Additionally, we can define δi = tci − tsi the total time
encompassing the packet generation until the control loop is closed, which can include
the time spent for transmissions (DL and UL), queuing and control computation. For
a given timestamp t, the latest control loop cycle was initiated at the timestamp:

s(t) = sup{tsi
∈ S : tsi

+ δi ≤ t}, (F.2)

such that we can define the Age of Loop as:

∆L(t) := t− s(t). (F.3)

Remark: The AoI is defined for two independent links, requiring instantaneous and
perfect feedback channel for the sender to know the age at the receiver. This is a practical
limitation often neglected in the literature. In contrast, AoL can be easily implemented
and exploited in a real network, as it captures the behavior of both UL/SL directions
into a single metric that can be easily measured at either of the end points.

4 AGV Control System Model
To model the AGV, we define the vehicle state vector X ∈ R4 and control vector U ∈ R2

over time t as in [24]:

X(t) = [x(t), y(t), v(t), θ(t)], U(t) = [a(t), δ(t)]. (F.4)

where x, y are the 2D coordinates, v is the velocity, and θ is the heading orientation angle
of the vehicle. The control is based on manipulating the vehicle acceleration a and front
wheel angle δ to control the trajectory of the vehicle along a desired path. Details of the
model implementation, design, and structure of the control system can be found in [21].
The dynamics of the control system is defined according to the kinematic model [24],
such that ẋ(t) = v(t) cos θ(t), ẏ(t) = v(t) sin θ(t), v̇(t) = a(t) and θ̇(t) = v(t) tan δ(t)/L,
for the vehicle inter-axle distance L. The notation □̇ corresponds to the derivatives w.r.t
time. The kinematic vehicle model is linearized by dynamically applying the first-order
Taylor expansion around the current vehicle position as the operating point [24], leading
to the ordinary differential equation:

Ẋ(t) = f(X(t), U(t)) = A(t)X(t) + B(t)U(t) (F.5)
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Fig. F.3: WNCS time diagram.

where the transition matrices A(t) and B(t) are given as [24]:

A(t) =


0 0 cos θ(t) −v(t) sin θ(t)
0 0 sin θ(t) v(t) cos θ(t)
0 0 0 0
0 0 tan δ(t)

L 0

 B(t) =


0 0
0 0
1 0
0 v(t)

L cos2 δ(t)


4.1 AGV Control and Performance
To control the AGV, consider a trajectory planner that specifies a sequence of desired
states X∗(t) that the AGV must follow. So, we must adjust the vehicle position by
minimizing the error state vector, Xe = X(t) −X∗(t), between the current state X(t)
and the desired state X∗(t) along the planned path, as given by [25]:

Xe(t) =


cosθ∗(t) sinθ∗(t) 0
−sinθ∗(t) cosθ∗(t) 0

0 0 1
0 0 1

 ·


x(t)− x∗(t)
y(t)− y∗(t)
v(t)− v∗(t)
θ(t)− θ∗(t)

 , (F.6)
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To achieve this, we can formally define a cost function J whose objective is to minimize
Xe(t) by applying the control commands U(t) subject to the system dynamics in (F.5).
In control theory, this type of control design is known as Linear-Quadratic-Regulator
(LQR) [26], formulated as

J(Xe(t), U(t)) =
∫ ∞

0

[
Xe(t)T QXe(t) + U(t)T RU(t)

]
dt, (F.7)

where the arbitrary positive defined matrices Q and R serve to weight the impact of
the state space and the control signal, respectively. For (A, B) controllable, we can
find the optimal control command U∗(t) = [a∗(t), δ∗(t)] that minimizes (F.7) by solving
the Algebraic Riccati Equation [26]. This solution for the LQR problem provides a
convergent closed-loop system, where the control-system stability can be guaranteed
[26].

The performance of the AGV control is evaluated according to the cross track error
(XTE), a commonly used metric that measures the distance the AGV has deviated from
the planned path. More formally, the XTE is given by the lateral distance between the
selected tracing point and the point of the path that is closest to it. Hence, we can
derive the XTE from the error state vector in (F.6), where we are interested in the
distance ye between the virtual car position as its projection on the path:

ye(t) = −sinθ∗(t)[x(t)− x∗(t)] + cosθ∗(t)[y(t)− y∗(t)] (F.8)

By properly designing the optimal LQR control in (F.7), the XTE is minimized along
the path [27]. If the communication between the plant and the controller (or vice-versa)
cannot provide the information, we expect some impact on the XTE performance even
with an optimal control policy. We discuss this impact in more detail in next section.

5 Wireless communication model

5.1 Uplink and Downlink Transmissions
We consider the two directions of the communication model: the uplink (UL) for com-
munication between sensor and controller, and the downlink (DL), for communication
between controller and actuator. In most control applications, including AGVs, it has
been found that control data is relatively small compared to sensor data [28], resulting
in a strong imbalance between DL and UL data traffic. Consequently, AGVs often need
to send large image or video data, such as light detection and ranging (LiDAR) cloud
points and augmented or virtual reality (AR/VR) information. However, the control
packets in the opposite direction are based on sending a short control command, such as
acceleration or vehicle heading angle, which can either be based on a control algorithm
or on human control as in haptic or AR/VR use cases. In this context, we design a
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communication model in which the UL network resources, representing the bottleneck,
are dynamically adjusted. We consider not only the UL, but also statistical inferences
about the behavior of DL.

We model UL communication as a first-order Markov process [29], also known as
the Gilbert-Elliot channel. The time-correlation property is represented by two states:
the good state G if the packet can be successfully received; and the bad state B, other-
wise. The corresponding transition probability matrix is defined by a stationary Markov
distribution:

M =
[
Pgg 1− Pgg

1− Pbb Pbb

]
. (F.9)

where Pgg is the probability that the current transmission is successful, if the previous
transmission was successful. The same logic applies to Pbb, but for unsuccessful trans-
missions. Given the matrix M , the channel properties are fully characterized [29]. In
particular, the marginal probability of a packet error, Pε, is then given by:

Pε = 1− 1− Pbb

2− (Pbb + Pgg) (F.10)

For Rayleigh fading, Pε = 1− eγth , where γth is the minimum threshold SNR required
to successfully decode the received signal. We can evaluate γth as a function of the
utilized data rate R, bandwidth B and the average SNR γ, as:

γth = 2R/B − 1
γ

, (F.11)

We define the Jakes’s channel correlation coefficient to be ρ = J0(2πfdTs), where J0()
is the zero-order Bessel function of the first kind, fd is the Doppler frequency shift and
Ts is the sampling time. The error probability of a single back to back failure, Pbb, is
then written as [29]

Pbb = 1− Q(θ, ρθ)−Q(ρθ, θ)
eγth − 1 , (F.12)

where Q(., .) is the Marcum Q function and θ =
√

2γth

1−ρ2 .
The transmission latency for sending D bits at a data rate of R is D/R. If the

transmission fails, we assume that a retransmission occurs immediately. Retransmission
automatically increases the resulting data latency or data delivery time. Increasing R
decreases the latency for the transmission of a single packet, but increases the error
probability of the packet according to (F.9)-(F.12). This illustrates the dependence
between the data rate R and the control accuracy (i.e., XTE) in the Section 8.

Given the potential imbalance described in this section between DL and UL traffic,
we assume that transmission rate adjustment is not useful in DL communications. How-
ever, DL packet delays can be caused by factors unrelated to communication, such as the
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control application’s processing time [28]. We consider a probability distribution fτ (x)
for generality, where l ∼ fτ (x) is the DL packet delivery time. Based on experimental
data from a factory environment, we derive a model for fτ (x) in section 6.

5.2 Wireless Channel impact over AGV Control
When using the proposed wireless channel model, communication becomes non-deterministic,
with delays and packet losses. This has an impact on the behavior of the control system
in the equation (F.5). Fig. F.4 shows a timing diagram of the signal transmissions at the
remotely controlled AGV. The corresponding wireless transmissions are independent of
the periodic sampling Ts, so that a new transmission starts immediately after the pre-
vious one, allowing the possibility of multiple transmissions within the sampling time
window. Such a model describes the operation of many industrial use cases where the
communication system is completely decoupled from the application, so that learning
its behavior becomes part of the network adaptation problem.

For this scenario, we can model the system dynamics in (F.5) using the well-known
stochastic system approach [13], in which we can consider as a function of AoL the delay
from sensor to actuator, from actuator to sensor, and the effect of packet loss, so that

Ẋ(t) = AX(t) + B(t−∆L(t)). (F.13)

In an ideal communication scenario, we would have ∆L(t)→ 0, ∀t, such that (F.13)
would be equivalent to (F.5) and the sufficient condition for minimizing the track error
is given by the control optimization. More formally, we can refer to [30] (Proposition 1)
to verify that the AGV tracking error has an asymptotically non-negative w.r.t ∆L(t).
Hence, from a control perspective, we must ideally close the system loop as fast as
possible to guarantee an optimal XTE performance.

According to Section 5, the total transmission time in the UL for sensory data of
size D is D/R, where the probability of packet loss is defined by (F.9). The latency for
the DL must necessarily follow a probability density function. In this case, we have the
option of transmitting at a high UL data rate in order to quickly minimize AoL, but at
the risk of a high packet loss probability. Alternatively, we can transmit at a lower data
rate, which reduces the possibility of error but increases the time required to complete
the sensory data transmission. In other words, increasing the data rate decreases the
delay in transmitting a single packet while increasing the likelihood of transmission error
and the need for re-transmissions. This also increases data latency, which is similar to
the well-known trade-off issue observed in [31].

6 AGV Measurements in Factory Environment
In this Section, we provide details of a measurement campaign of a private 5G NR
Stand-Alone (SA) network deployed in a Bosch factory. Using the collected data we
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Fig. F.4: Timing diagram of signals transmitted.

later derive corresponding AoL values and emulate the resulting performance of the the
AGV control application.

6.1 Private 5G Network Setup
Fig. F.5 shows schematically the main physical and some functional components of the
network installed in the plant. This includes the following equipment:

• 8xAirScaIe Pico Remote Radio Heads (pRRHs) for 5G NR SA operation in band
n78 according to 3GPP Release 15 specification [32].

• Edge server aiming at the offload of designated UE tasks, such as image processing
and control.

• 5G BBU: 5G Baseband unit, for radio baseband signal processing.

• One Wireless Device (UE).

• Router: For Traffic Routing to Intranet and Internet, as well as the 5G Network
Core.

The network operates 100 MHz of bandwidth in band n78 (Time Division Duplex-
ing), on the 3.7 GHz carrier frequency. It supports maximum 256QAM modulation and
uses 4x4 MIMO in Uplink and Downling. The RF Output is from 50 mW to 250 mW
per TX path. The DL to UL ratio is configured as 7/3.
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Fig. F.5: Main network components.

Fig. G.2 shows the shopfloor map, where the private 5G NR SA network has been
deployed. The eight purple dots mark the locations across the production hall, where the
pRRHs were mounted close to the ceiling. The pRRHs serve as smarter antennas served
by the singly BBU unit. In the current setup, all antennas send the same information
in DL and can receive the same information in UL from UEs. The BBU takes care
of properly decoding the strongest signals. In this way, it is possible to configure all
eight pRRHs in the factory in one 5G cell, providing the following benefits for this
architecture:

• The whole 100 MHz bandwidth available everywhere where the radio coverage is
available.

• No handover events.

• Lower costs for the pRRHs and BBUs.

As a UE device for the measurement over the 5G network we used a Quectel RM500Q
M2 module (based on the Qualcomm Snapdragon X55 5G modem) with a Quectel
development board connected via USB to a Linux mini-PC, which is then placed on the
AGV (see Fig. G.2). Essentially, the mini-PC serves as actuator/sensor according to
the model shown in Fig. F.1. A powerful Linux-based edge server is Ethernet-connected
to the 5G network servers, and takes the role of a controller.
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Fig. F.6: AGV drive test across factory hall.

6.2 AGV Drive Test
Bosch Rexroth ActiveShuttle is a commercial AGV used for transporting parts and
goods in the production. In our setup, an ActiveShuttle is assigned three pick-up/drop-
off jobs in such an order that it has to go through all corridors in the 5G test area. The
ActiveShuttle is equipped with LiDAR sensor which is used to obtain its current location
on the shopfloop. Fig. F.7 shows a trace of the AGV drive around the production hall.
Numbers marked yellow show the time and the location the AGV was at after the start.
The maximum speed of the AGV is set to 1 m/s due to safety requirements.

The ping command is executed at the UE-side to trigger a ping response from the
destination edge server, emulating periodic status update of the control loop cycle rep-
resented in Fig. F.4. The ping request interval time is set to 10 ms. In addition, to log
all traffic going through 5G network interfaces, Wireshark was running at the mini-PC
and at the edge server. This enabled logging of the exact time each ping packet enters
and leaves network interfaces on the client and server side.

7 Evaluation of AoL
Using the measurements of the AGV drive test, we empirically evaluated the AoL under
the proposed drive test scenario. The Fig. F.8 illustrates the AoL measured during the
AGV drive test at the first 500 ms. From the AoL definition, the bottom peaks corre-
spond equivalently to the round-trip time (RTT). The top peaks represent the maximum
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Fig. F.7: Factory shopfloor plan, deployment of the 5G RRHs, and an AGV route across the factory
hall.

amount of time where the control loop remains opened. As elaborated on [21], such peak
values can be used to evaluate the performance degradation of the control system, as
well as its stability. Fig. G.3 illustrates an histogram of the AoL behavior along the
test, where we can observe an average of around 20 ms and a standard deviation of
approximately 7.5 ms. Nevertheless, besides the low frequency of occurrence, we can
also identify tail values that can achieve more than 120 ms. From a practical perspec-
tive, such tail values are essentially critical, especially when it comes offloading highly
unstable control applications in the edge cloud. For instance, the inverted pendulum
control example explored by the authors in [21] demonstrates that the control stability
is compromised after the AoL surpass values of 40 ms.
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Fig. F.8: Age of Loop over time.

7.1 Probability Density Estimation
Using once again the measurements performed during the AGV drive test, we estimate
the probability density function from the empirical AoL data. We start with a paramet-
ric estimation approach [33], where we calculate the Residual Sum of Squares (RSS) [33]
of multiple theoretical distributions, as well as its corresponding parameters, in order to
find the best fitted distribution. More formally, consider F = {f1(z|w1), f2(z|w2), . . . , fi(z|wi), . . . , fn(z|wn)}
a finite set of n ∈ N+ different probability distributions (e.g., Gaussian, Gamma, uni-
form, etc) over the explanatory variable z, where wi ∈ Rpi ,∀i ∈ {1, . . . , n} is a vector
that characterizes the corresponding parameter space of the distribution fi, containing
a fixed number of parameters pi ∈ N+. So, the goal is to find the optimal distribution
f∗ and the corresponding parameters w∗ that minimizes the RSS, as:

f∗(z|w∗) = arg min
∀i ∈ {1,2,...,n}

∀θi ∈ Rpi


N∑

j=1

(
yj − fi(xj |wi)

)2
 , (F.14)

for N the total number of empirical samples, yj the j-th value of the variable to be
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Fig. F.9: Empirical Age of Loop distribution during the AGV drive test.

predicted and fi(zj |wi) the predicted value of yj using the distribution i with parameters
wi.

In general terms, the RSS is a widely used statistical method that measures the
amount of variance of a given data set that is not explained by a regression model.
More specifically, since we are summing the square values of the residuals (i.e., the
deviation between the predicted and empirical values), we are basically evaluating the
dispersion of the data points in comparison to each proposed distribution model. Small
RSS values represent a strong indication that the proposed model correctly fits the
empirical data points. Fig. F.10 illustrates the minimum RSS value obtained according
to each probability distribution model.

As we can note, the Gamma distribution provided the best fit for the AoL data
values. To emphasize the comparison between the empirical and theoretical models, the
Fig. F.11 illustrates the Cumulative Distribution Function (CDF) of both distributions.
An interesting conclusion about the obtained result is its direct relation with the related
literature [34–36], where the authors analyze RTT measurements of LTE and Wi-Fi,
showing that a Gamma distribution also represents a good fit for the RTT estimation
and design.
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Fig. F.10: RSS comparison

7.2 AoL Configuration
Using the logs collected from incoming and outgoing traffic of both the AGV and the
edge, we investigate four different effects that mainly contribute to the AoL: the ping
sampling process, the edge computation delay and the communication latency in DL
and UL. More formally, for every packet k ∈ N+, consider {s1

1, s1
2, . . . , s1

k, . . . }, s1
k ≥ s1

k−1
the time instances of outgoing packets at the AGV and {s2

1, s2
2, . . . , s2

k, . . . }, s2
k ≥ s2

k−1
the time instances of outgoing packets at the edge. Likewise, we can separately de-
fine the time instances of incoming packets as {d1

1, d1
2, . . . , d1

k, . . . }, d1
k ≥ d1

k−1 and
{d2

1, s2
2, . . . , d2

k, . . . }, d2
k ≥ d2

k−1 for, respectively, the AGV and the edge.
By considering the proposed formulation, the ping sampling process is simply eval-

uated as s1
k+1 − s1

k and the edge latency as s2
k − d2

k, ∀k ∈ N+, which can be directly
measured using the corresponding local traces of each communication module. For the
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Fig. F.11: CDF comparison

evaluation of the latency, we can define τ1
k = d1

k − s1
k as the latency for the UL di-

rection and τ2
k = d2

k − s2
k as the latency for the DL direction. The problem, however,

is that, since we lack precise timing synchronization between both communication en-
tities, we cannot directly evaluate τ1

k and τ2
k by simply subtracting the incoming and

outgoing time of a given packet k. So, we propose a recursive strategy to evaluate the
latency, which can provide a satisfying approximation while totally preserving the main
statistical properties of the latency probability distribution. To achieve that, consider
∆1

k = τ1
k+1 − τ1

k and ∆2
k = τ2

k+1 − τ2
k as the increment of latency between each packet

transmission, where we can re-arrange the equations as following:

∆1
k = τ1

k+1 − τ1
k = (d1

k+1 − d1
k)− (s1

k+1 − s1
k),

∆2
k = τ2

k+1 − τ2
k = (d2

k+1 − d2
k)− (s2

k+1 − s2
k),
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such that τ1
k and τ2

k then can be rewritten as:

τ1
k+1 = ∆1

k + τ1
k ,

τ2
k+1 = ∆2

k + τ2
k .

Note that ∆1
k and ∆2

k can be evaluated using the time differences of incoming and out-
going packets between each communication module without the need of timing synchro-
nization. Hence, we can recursively calculate the latency values, considering, however,
a first guess for the initial values τ1

1 and τ2
1 , in which we assume as half of the first RTT

measurement:
τ1

1 = τ2
1 = d1

1 − s1
1

2 .

We summarize the obtained results of each effect contributing to the AoL according
to Fig.s F.12 and F.13, such that we can fundamentally emphasize three main conclu-
sions. First, besides the ping triggering process being configured to exactly every 10 ms,
we can still encounter a random behavior at the sampling process, which is possibly due
to internal hardware interrupts at the NUC CPU. Second, the edge latency, as expected,
is quite negligible (< 0.1 ms), also showing less variance at the generation of ping replies
compared to the NUC, which is likely expected since the hardware capability at the edge
exceed the one at the NUC. This result, however, could definitely worsen given a more
complex task to be performed at the edge (e.g., AGV path planning or path tracking
control), so it is still important to monitor and track the edge behavior. Finally, we
can observe a more interesting conclusion regarding the DL and UL latency results.
In general (up to the 99-th percentile), the DL latency is slightly better than the UL,
which is somehow expected given that the network capabilities between both entities are
different. The problem, however, is that we can also observe very high latency values
(> 100 ms) at the DL direction that comes with very low probability (after the 99.99-th
percentile), a behavior that is not observed at the UL, which has in turn its highest
value at around 30 ms. As a consequence from this observation, we can potentially
infer that the tail values observed for the AoL in Fig. G.3 arise as a direct effect of the
latency behavior in DL communication.

7.3 Empirical Downlink Model
As discussed in Section 5, we did not consider transmission rate adaptation at the DL
communication, as DL data packets have considerably smaller size compared to the UL.
However, DL packet delays can also unavoidably happen, as we could grasp from the
obtained measurement results in Fig.s F.13 and F.12.

In this context, aiming at designing a general and realistic model for the DL behavior,
we propose an approach as elaborated in sub-section 7.1. Using the empirical data
obtained from the DL latency variable τ2

k , we estimate its probability density function
by finding the distribution model and the corresponding parameters that minimizes
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Fig. F.12: CDF comparison of each effect contributing to the total AoL.

the RSS according to (F.14). Assuming that fτ (z|w) is the optimal PDF model and
corresponding parameters describing the distribution of τ2

k , the DL latency will follow
a beta distribution, which is described by two parameters, w = [w1, w2], and formally
defined as:

fτ (z, w1, w2) = Γ(w1 + w2)xw1−1(1− z)w2−1

Γ(w1)Γ(w2) , (F.15)

where we provide w1 and w2 as a function of the shift, µ, and scale, φ, variables over
(F.15). More specifically, consider fτ (z, w1, w2, µ, φ) an equivalent form to fτ (y, w1, w2)/φ,
with y = (z − µ)/φ, so the obtained optimal values are: w1 = 2.319, w2 = 2335.509,
µ = 2.259 and φ = 2355.869. The Fig. F.14 illustrates the CDF and PDF comparison
between the empirical data and the theoretical beta distribution.

7.4 Simulation of AoL behavior
Considering the wireless communication model described in last subsections, we aim
finding the model parameters that provide an approximate AoL behavior according
to the empirical results illustrated in Fig. G.3. Since we assume an unavoidable DL
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Fig. F.13: Comparison of each effect contributing to the total AoL.

latency modeled according to the empirical measurements, the goal then is to find the
corresponding parameters of the first-order Markov process at the UL that, in addition
to the DL behavior and sampling process, can statistically provide a simulated AoL
behavior that fits the empirical AoL results.

This problem represents a typical hyperparameter searching, where we approach
a solution by using a grid search methodology, based on numerically evaluating the
Kolmogorov-Smirnov (KS) test between the empirical AoL data and the generated AoL
data from the model as a criteria to select the optimal UL parameters. The algorithmic
description 6 provides more details about the proposed methodology, where we must
emphasize three main aspects. First, we fix parameters that are usually not manageable
by the network, such as the AGV velocity, sampling time and sensor data size, as well as
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Fig. F.14: Probability density estimation for modeling the DL latency.

the carrier frequency. Consequently, the search space is basically only composed by the
bandwidth allocation and the SNR, thus justifying the use of grid search instead of more
complex methodologies such as evolutionary or gradient-based optimization. Second,
per each bandwidth and SNR search points, we evaluate the generated AoL data for
a range of different UL data rate values. This generalization of the AoL behavior will
play an important role to the problem of data rate adaptation that will be introduced in
the next section. Finally, we apply the KS test as a measure to quantify the statistical
distance between the simulated and empirical AoL data values, where we can accept or
reject the hypothesis that the generated data is from the specified empirical distribution
at certain level of significance. The KS test has shown to provide superior estimates of
error in curve fitting models [37].

We summarize the network and control parameters according to Table F.1. The
Fig. F.15 illustrates the CDF and PDF comparison between the simulated AoL results
and the empirical data, showing that the proposed communication model can provide a
good approximation to the real measurements, more specifically at the 0.05 significance
level.
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Algorithm 6 Hyperparameter searching for the UL communication model.
Initialize: Velocity v, carrier frequency fc, sensor data size D, sensor sampling Tsensor,

and empirical AoL data ∆L.
1: Define search space for bandwidth allocation BW, the signal-to-noise ratio γ and

range of data rates R.
2: for each i ∈ BW do
3: for each j ∈ γ do
4: Init empty array of simulated AoL values ∆̃L = [ ]
5: for each k ∈ R do
6: Evaluate the Distribution in (F.9).
7: for t ∈ [0, . . . , Niterations] do
8: Generate new sensor data every Tsensor seconds.
9: UL communication with latency D/k and packet error probability accord-

ing to (F.9).
10: DL communication latency according to (F.15)
11: Collect AoL measurements and append to ∆̃L.
12: end for
13: end for
14: Evaluate the Kolmogorov-Smirnov statistic distance dKS between ∆̃L and ∆L.

15: Save parameters space [i, j] for minimum dKS .
16: end for
17: end for

Table F.1: Network Parameters

Carrier frequency, fc 3.5 GHz
Sensor sampling time, Tsensor 10 ms
Sensor data size, D 1 KByte
AGV velocity, v 7 km/h
Doppler frequency, fD 22.68 Hz
Bandwidth, B 1.3 MHz
SNR 10 dB
Data rates, R [0.2, 0.4, 0.6, . . . , 5.0] Mbps
Inter-axle distance, L 0.5 m
Control matrices R and Q I2x2, I4x4
Maximum Steering angle, δ 45o

Path Planner, Cubic spline [38]
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Fig. F.15: Comparison between the simulated and empirical AoL data after tuning the communication
model.

P (∆L(ti+1), c(ti+1) | c(ti) = G, ri) ={
(1− Pgg)fτ (l), ∆L(ti+1) = ∆L(ti) + (ti mod Ts) + D

ri
+ l, c(ti+1) = B

Pggfτ (l), ∆L(ti+1) = D
ri

+ (ti mod Ts) + l, c(ti+1) = G

P (∆L(ti+1), c(ti+1) | c(ti) = B, ri) ={
Pbbfτ (l), ∆L(ti+1) = ∆L(ti) + (ti mod Ts) + D

ri
+ l, c(ti+1) = B

(1− Pbb)fτ (l), ∆L(ti+1) = D
ri

+ (ti mod Ts) + l, c(ti+1) = G

(F.16)

8 AGV Control with variable data rate

8.1 Problem Formulation and Solution
Using the experimental model obtained in the last section, where the behavior of DL is
given by the PDF in (F.15) corresponding to the network parameters obtained in Table
F.1, we formulate the following problem. Let R = {r1, r2, . . . , ri, . . . , rN}, ri+1 > ri be
the set of available rates. For each transmission, the AGV must choose a specific data
rate r ∈ R to transmit D bits of sensor data. In principle, the transmission duration D/r
can be larger or smaller depending on the chosen r, in exchange for a lower or higher
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packet error probability, respectively, which also depends on the current state of the
channel correlation (G or B). Thus, the fundamental problem is to choose a transmission
rate that minimizes the resulting packet latency, and accordingly minimize the XTE. Let
T = {t1, t2, . . . , ti, . . . tN}, ti+1 > ti be the time instances in which the AGV starts trans-
mitting packets, and {[∆L(t1), c(t1)], [∆L(t2), c(t2)], . . . , [∆L(tN ), c(tN )]} the sequence
of measured age of loop and channel correlation states c ∈ {G, B} at the corresponding
transmission time, the goal is to establish a rate selection policy π : [∆L(ti), c(ti)] →
ri, ∀ti ∈ T, ∀c ∈ {G, B}, ∀ri ∈ R that minimizes the infinite-horizon tracking error:

π∗ = arg min
π

∫ ∞

0
ye(t)dt

s.t. (F.13).
(F.17)

The problem in (F.17) can be decomposed into sub-problems, such that between two
consecutive AGV transmissions [ti, ti+1),∀ti ∈ T , the data rate ri ∈ R at ti is selected
based on the corresponding AoL and channel states {∆L(ti), c(ti)}, using a policy π. If
l is the downlink delay randomly selected from the selected distribution for fτ (x) and
D/r the total duration to transmit the uplink data, the one-stage decision cost C for
selecting r at AoL state ∆L(ti) is:

C(∆L(ti), r) =
∆L(ti)+(ti mod Ts)+ D

r +l∫
∆L(ti)

ye(t)dt, (F.18)

which depends only on the current ∆L and the decision r made in that state. The overall
goal is to find an update rule for the AGV transmission data rate that minimizes cost
of tracing errors of its short- and long-term rate decisions along the path. Such decision
process, which runs at continuous and irregular times, represents a typical Semi Markov
Decision Process (semi-MDP) [39], which we can model as follows:

State space

The state is composed by the current AoL value at the beginning of each transmission
and the corresponding channel correlation state {∆L(ti), c(ti)}, ∀ti ∈ T , where the state
transition and the corresponding probabilities depend on the downlink latency distri-
bution fτ and the packet error probabilities (F.9), according to (F.16). We can extend
the state space by including SNR values for addressing the cases where instantaneous
SNRs are given instead of the average.

Action

The action decision is the corresponding data rate ri ∈ R selected at the beginning of
each transmission ti.
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Reward

The immediate reward is given by the one-stage cost in (F.18).

Solution

We have solved the proposed semi-MDP to obtain the optimal policy π∗ using a classical
dynamic programming strategy, named value iteration. This method is guaranteed
to provide an optimal solution by iteratively solving the Bellman equation combining
sweeps of policy evaluation and policy improvement [39].

8.2 Results
The strategy derived from the proposed solution is depicted in Fig. F.16. There is a
different optimal rate selection depending on the state of the channel correlation. When
the channel is in good condition, the policy selects the maximum rate, which means that
the information is transmitted as quickly as possible. In a bad state, however, the trans-
mission rate gradually decreases. This increases the delay in packet transmission while
increasing the chances of restoring communication. This reduces the overall latency of
the data and improves control accuracy. The Figure also shows that when the AoL is
low, the policy chooses a higher transmission rate undeterred by the increased risk of
failure, despite the fact that the state is bad. Here, taking a higher risk of transmission
failure makes sense, but at high AoL values, risking failure is not the best option.

Figure F.17 compares the performance of the obtained strategy, fixed transmission
rate strategies, and the solution in [9] as a baseline. Because steep path deviations
are crucial for AGV operation, we observe the maximum AGV tracking error recorded
along the path for different simulation rounds. In essence, we can draw two major
conclusions: 1) We can see the dependency: at low fixed data rates, we see negative
effects on the XTE because the latency (D/R) is high, as expected. Similarly, a high
data rate has an impact on XTE performance due to the increased likelihood of packet
loss. 2) Essentially, the optimal fixed data rate performance approaches the proposed
solution, which provides the best track error result in turn. Because the baseline is solely
based on the use of AoI, the optimization is inherently limited to a single communication
link and thus sub-optimal. Our proposed method overcomes this limitation by using
AoL to consistently improve AGV performance, a gain that can be relatively significant,
particularly for critical control applications like AGV control within factory halls.

9 Conclusions
In this paper, we performed an experimental setup to model and analyze the wireless
channel behavior of an AGV in a Bosch factory environment in Stuttgart-Feuerbach. In
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Fig. F.16: Policy behavior for data rate selection according to each state.

this context, we proposed a model for a remote AGV control system that dynamically
adjusts the wireless transmission rate to optimize the trajectory of the AGV. We consider
both the effects of DL and UL using the concept of loop age and the channel-dependent
fading effect. We numerically analyze the targeted methodology for AGV applications
and validate the proposed solution using experimental data collected in a 5G standalone
network in a factory environment. The obtained results have supported the importance
of the proposed solution for AGV applications, especially in factory floors. In the future,
we plan to tackle more complex factory scenarios by incorporating AGV path control
scheduling into the proposed semi-MDP problem.
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Abstract
Goal-oriented communication is a novel communication paradigm where application end-
goals, often time-constrained, serve as the optimization basis of the communication pro-
cess across all layers. This requires timely data transmission, usually expressed through
the Age-of-information (AoI). Yet, in practice it is difficult to measure AoI due to syn-
chronization requirements. We present Age-of-Loop (AoL) as a metric that is suitable for
goal-oriented communication in Wireless Networked Control Systems (WNCS) that rely
on sensing and control. We showcase an application of remote controlled Autonomous
Guided Vehicle (AGV), where AoL is the key metric used to optimize the AGV trajec-
tory. We apply Reinforcement Learning (RL) to capture the contextual value of the in-
formation through AoL, enabling solutions that optimize the overal sense-connect-control
cycle.

1 Introduction
Goal-oriented communication represents a paradigm in which communication is not
regarded only as a way to reproduce information correctly at a distance, but rather as
a means of achieving a certain goal. Today’s wireless systems are fundamentally built
upon principles of reliable communications over noisy channels, where the main goal
is to optimize traditional network performance indicators, such as throughput, latency,
packet loss, etc. Such approaches have been demonstrated to have some critical flaws,
especially in the context of Wireless Networked Control Systems (WNCS), which can
lead to extreme cases of over-provisioning of network resources [1], [2].

To go beyond content-agnostic wireless connectivity, a number of recent works have
turned towards the principle to tie the communication with the usefulness of the received
bits for the application goal itself. This is challenging, since it may require a high
granularity level of understanding the application effectiveness. Fundamental questions,
such as how to define and how to quantify effectiveness attributes from a network
perspective, are still open in the current literature.

In this context, many authors have been investigating the Age of Information (AoI)
as a representative attribute that quantifies the information freshness, classified by the
authors in [2] within a level of mesoscopic semantic scale. AoI has also been explored
as a potential metric for analyzing and optimizing WNCS related problems [3–7]. Their
main limitation, however, is that with AoI the proposed solutions are constrained to a
single communication link, either downlink (DL) or uplink (UL). We have shown in [1]
that such approach can lead to sub-optimal behavior for closed-loop control problems,
and introduced the Age-of-Loop (AoL) as a metric that accounts for both DL and UL,
as well as their interplay.

In this paper we provide a brief tutorial of AoL and demonstrate its practical ap-
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plication in closed-loop control systems with wireless links. Specifically, we consider an
experimental setup with a private 5G-NR network within a factory environment, used
for remote control of AGVs. We use the measurements from this setup to analyze the
AoL behavior and show its practical edge over AoI, since no time synchronization is
needed for the end-to-end evaluation (Section 3). Furthermore, we showcase the use
of AoL as key metric to optimize the performance of a remote controlled AGV, where
the contextual value of AoL information is learned through a reinforcement learning
(RL) methodology. Finally, we investigate the proposed approach from two different
perspectives. First, in the context of a control application, the AGV must learn how
to adjust its speed in a scenario of random and uncontrollable network behavior (Sec-
tion 5). Second, in the context of a communication system, we design a scheduler to
manage the bandwidth resource allocation that fundamentally targets AGV application
goals (Section 6).

2 Measuring Age in Communications
Age of information is defined as the time that has elapsed since the latest information
update at the destination. It represents a metric that quantifies the freshness of the
knowledge we have about the status of a remote system. We can refer to its formal
definition as in [8], where, at time t, if the newest data (i.e., with the largest generation
time) received at the destination was generated at time U(t), the AoI ∆(t) is defined
as ∆(t) = t − U(t). For this reason, AoI is inherited to a single communication link.
Prior works that have explored WNCS-related problems using AoI are limited to specific
analysis over only the UL [3–5] or DL [6, 7] transmissions. However, wireless networked
control systems relies intrinsically on both DL and UL as a closed-loop control prob-
lem, where the UL communication can affect the DL and vice-versa, impacting system
performance and the use of network resources. An intuitive example to illustrate this
idea is that a higher AoI value of sensor-to-control communication implies less accu-
rate knowledge that the controller has about the plant. This demands more urgency to
deliver the control signal and, as a consequence, more network resources usage by the
control-sensor network link.

To address this implications, one possible alternative to evaluate the overall age of
a WNCS closed-loop is the Age-of-Loop. The AoL, as defined in [1], is used as a metric
that captures the time elapsed of the whole loop process, thus considering both links (UL
and DL). We clarify the proposed idea with a remote AGV control example, as illustrated
in Figure G.1. The AGV is sending its sensor information to a remote located controller
through a wireless channel, receiving a control action as feedback. In this scenario, the
AoL grows linearly over time and drops at the time instances where the control loop is
closed, (tc1, tc2, . . . ), to the corresponding timestamp in which the state feedback that
spawned a new control signal was generated, i.e. ∆L(t) = t− tsi,∀i ∈ {1, 2, 3, . . . }.

The moment of generating data is a key factor that differentiates AoL from Round
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Trip Time (RTT). While RTT measures the end-to-end delay between sender and re-
ceiver, AoL measures the time it takes for a packet to complete a loop in the network,
including the time it takes for the packet to be generated and transmitted. In this sense,
AoL is to RTT what AoI is to latency, since both AoL and AoI take into account the
moment when data is generated, while RTT and latency are measures of the time it
takes for data to travel through the network. One of main advantages of AoL is that
it encompasses the behavior of two separated and locally measured entities (DL and
UL) into a single instance. In contrast, for the case of two independent AoI links, we
inherently need an instantaneous and perfect feedback channel to the source to know
the instantaneous age at the destination, thus making complex and potentially impre-
cise the union of two AoI directions. In the next two sections, we show how we can
potentially utilize AoL as a metric for optimizing, respectively, control decisions and
network resource allocation.

3 AoL measurement in factory setting
In this section we provide an example of AoL calculation and behavior based on mea-
surements in a private 5G NR SA network deployed in a factory production hall. This
setting is illustrated in Figure G.2, as well as the AGV route across the factory hall.
The network operates in band n72 (TDD) on 3.7 GHz carrier frequency, and 100 MHz
bandwidth. Eight Remote Radio Heads (RRHs) (purple dots) were deployed across the
production hall. The RRHs build a single cell and share radio resources so that there is
no inter-cell handover required in such a deployment. RRHs are connected to a single
baseband unit, a resource scheduler and a 5G core, which are deployed on the network
edge servers.

As a UE device we used a Quectel RM500Q M2 module with a Quectel development
board connected via USB to a Linux mini-PC, which is attached to the mobile AGV
under test. Essentially, the mini-PC serves as actuator/sensor according to the model
shown in Figure G.1. A powerful Linux-based edge server is Ethernet-connected to the
5G network servers, and takes the role of a controller. In addition to the ping and RF
measurements, the location of the AGV was recorded.

A common way to practically measure latency in a communication system is to
perform ping tests to a server. In our case we generate a new ping request from a
mini-PC to the edge server every 10 ms. Based on the timestamps of the ping replies,
we measure the AoL by verifying the corresponding timestamp in which the received
packet at the client was generated. As we use round-trip time measurement, there is
no need for high precision client-server time synchronization to evaluate the AoL. In
contrast, at least millisecond-level precision would be required to measure the one-way
communication delay for AoI.
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Fig. G.1: Timing diagram of signals transmitted with corresponding AoL from the AGV.
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Fig. G.2: AGV drive test across factory hall.
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3.1 AoL Evaluation and Estimation
Using the measurements of the AGV drive test, we experimentally evaluated the AoL
under the proposed drive test scenario. The Figure G.3 illustrates the AoL empirical
behavior along the test, where we can observe an average of around 20 ms and a standard
deviation of approximately 7.5 ms. Nevertheless, we can also identify tail values that
can achieve more than 60 ms, which essentially represent the maximum amount of time
where the control loop remains opened. From a practical perspective, this result can
be critical, especially when it comes offloading highly unstable control applications in
the edge cloud. For instance, the inverted pendulum control example explored by the
authors in [9] demonstrates that the control stability is compromised after the AoL
surpass values of 40 ms.

We also estimate the probability density function from the empirical AoL data.
We approach that with a parametric estimation, where we calculate the Residual Sum
of Squares (RSS) of multiple theoretical distributions (e.g, gaussian, gamma, pareto,
dweibull, beta, etc.), as well as its corresponding parameters around a level of signifi-
cance of 0.01, in order to find the best fitted distribution. Essentially, we are basically
evaluating the dispersion of the data points in comparison to each proposed distribution
model by summing the square values of the residuals, i.e. the deviation between the
predicted and empirical values. Using this methodology, we have obtained, as illustrated
in Figure G.3, a three parameter Gamma distribution [10] as the best fit for the AoL
data values, where a is the shape parameter, while loc and scale respectively represent
the shift and scale of the Gamma distribution. An interesting conclusion about the
obtained result is its direct relation with the related literature [10], where the authors
analyze RTT measurements of LTE and Wi-Fi, showing that a Gamma function also
represents a good fit for the RTT estimation. In the next section, we will use the ob-
tained model from the experiments to further evaluate the AGV control performance
under the proposed AoL behavior.

4 Modeling a Remotely Controlled AGV
We define a vehicle control model as illustrated in Figure G.1, where the controller
is remote located through a wireless communication channel. As in [11], the vehicle
states are defined by the 2D coordinates x and y, the velocity v and the heading angle
orientation θ. Those states are periodically collected by the sensors and sent to the
controller through the wireless channel. The controller, in turn, after receiving the
AGV state information, provides a control command based on manipulating the vehicle
acceleration a and its front wheel angle δ in order to manage its trajectory along a
reference path. Both sensor sampling and control actuation are not affected by the
wireless channel behavior. Implementation details of the control system model, design
and structure can be found in [9].
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Fig. G.3: Distribution of AoL empirical data and its probability density approximation using a Gamma
function.
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The control system dynamics are defined according to the kinematic vehicle model
[12], such that ẋ = v cos θ, ẏ = v sin θ, v̇ = a and θ̇ = v tan δ/L, for the vehicle inter-axle
distance L. The notation □̇ corresponds to derivatives w.r.t time. To evaluate the AGV
control performance, we analyze the cross track error (XTE) [12], a commonly used
metric that measures the distance which the AGV has deviated from the planned path.
As illustrated in Figure G.1, the XTE is given by the lateral distance between the vehicle
position point and the point of the path that is closest to it. Hence, we are interested at
the car position as its projection on the path. if the communication between the AGV
and the controller (or vice-versa) fails to deliver the information, the controller will take
decisions based on delayed sensor information in addition to incorrect actuation control
commands, potentially harming the XTE performance.

To analyze this behavior, we investigate the AGV track error together with its cor-
responding mission time, which is the total duration taken by the AGV to complete its
trajectory. The wireless channel will behave as a random process, where the time to
complete the control loop is selected from the Gamma pdf in Figure G.3. We expect
that the faster the AGV tries to complete the path, the higher the path deviation can
be due to the increased speed and erroneous transmissions over the wireless channel.
As an example, we evaluated the maximum AGV track error captured along the path
for different simulation rounds, as steep path deviations are centrally critical for the
AGV operation, comparing the XTE performance and its corresponding mission time
over the proposed wireless channel using two different baseline controllers, the LQR [12]
and Stanley [11]. The results are illustrated in Figure G.4, where we can note the 99th
percentile of the XTE exponentially declining as we loose the mission time requirement.

5 Controlling the AGV speed using AoL
We can observe from Figure G.4 that for a given wireless channel (and AoL) distribution
the XTE is directly impacted by the mission time requirement, and, correspondingly, to
the speed of the AGV. More precisely, there is a time constraint in which the AGV must
complete its path, where the controller, on the other hand, is subject to a completely
unknown behavior for the uplink and downlink transmissions. Hence, the main question
is how can we control the AGV speed such that, for a given mission time constraint, we
can minimize its trajectory error.

By analyzing the AoL from the control perspective, we can intuitively measure how
old the control loop is and use this information to accelerate or decelerate the vehi-
cle speed accordingly. Since the dynamics are unknown to the controller, we propose
a learning methodology to empirically evaluate the control decision according to the
current AoL state, by modeling the problem as a Markov Decision Process [1] as:
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Fig. G.4: Trade-off between track-error and mission time of a wireless controlled AGV application.
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State Space

The current Age of Loop value measured at the controller.

Action Space

Composed by two possible actions, increasing or decreasing the target vehicle speed by
0.5 m/s, which is taken immediately after receiving sensory data information.

Reward

For every step of the MDP while the goal is not reached the reward is 0.0. We consider,
however, three special conditions: 1) if the mission time constraint Tmax is achieved
(i.e., the AGV violates the time budget), we penalize with a fixed value and the episode
is ended. 2) If AGV reaches the goal within the time constraint, we penalize by the
maximum track error measured along the path. 3) If the AGV track error achieves
a maximum predefined threshold ϵmax value along the path, the episode is ended and
penalized with its corresponding value. This is a typical case in RL of delayed rewards
approach, where specific events (e.g, time or XTE constraint violation) mostly determine
the agent reward.

Solution

We solve the proposed MDP using Q-Learning [1]. As widely studied in current litera-
ture, the main idea is to provide a policy matrix Q indicating, for each AoL state, the
decision of increasing or decreasing the vehicle speed based on the expected track-error
along the path. Parameters, such as the learning rate and the discount factor, were
empirically tuned during training.

5.1 Results
We analyzed the proposed solution with two arbitrary mission time requirements of
15 s and 25 s, which is the time budget for the AGV to complete the path, comparing
the 99th percentile of the XTE against the controller baselines in Figure G.4. The
main difference of proposed solution lies in the control decisions which are based on
the current AoL status instead of the physical AGV states, as strictly assumed in the
baselines. The obtained results are illustrated in Figure G.5, where we can observe that
the RL solution, for the 15 s mission time requirement, provides a track-error reduction
of 47% compared to the LQR and 27% compared to the Stanley controller. Likewise,
for the 25 s mission time, the XTE reduction for the RL solution lies around 30.3%
compared to the LQR and 27.6% compared to the Stanley controller. These results
essentially show that we can derive a learning-based control policy in which exclusively
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take control decisions based on AoL and can notably provide a better performance than
traditional control baselines.

Fig. G.5: Performance comparison of controllers under different mission time target and similar
communication AoL.

6 Controlling AGV bandwidth usage using AoL
As another example of AoL purpose, we show an application of network resource alloca-
tion for the same AGV model described in Section 4. To model the network behavior,
we consider the work in [13], where we can observe a considerable traffic imbalance
between DL and UL in WNCS problems. For example, some AGVs might be required
to send image or video data, LiDAR cloud points, AR/VR information and so on, while
the control packets are always based on sending simple control direction, such as ac-
celeration, force or vehicle heading angle. For this reason, we can plausibly design a
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wireless communication model where we can manage network resources at the uplink,
while we do not have control over the downlink delay itself, but we might have some
statistical inference about its behavior and use that information to potentially enhance
the uplink resource allocation. Hence, the model details are defined as following:

• For the sensor-control (uplink) communication, we consider the 3GPP 4-bit CQI
Table 7.2.3-1 [14], where, for each TTI, the amount of data delivered depends
on both the current channel quality indicator (CQI) and the total bandwidth
allocated to the transmission. So, the more Resource Blocks (RBs) the scheduler
assign to the plant in a given TTI, faster the sensor information can be delivered.
This approach has been traditionally used for benchmark purposes, including the
Nokia Open source project [15].

• For the control-actuator (downlink) communication, we assume random and vari-
able delays, defined by a Gamma distribution as defined by the literature in [10]
and [13]. So, each time a new control command is generated, we randomly select
a sample from the distribution to characterize the downlink latency duration.

In such scenario, by analyzing the AoL from the AGV perspective, we aim to provide
the minimum amount of RBs capable to make the AGV system complete the path for a
given track-error constraint. More concretely, we wish to minimize the total bandwidth
utilized by the AGV considering that the track-error does not surpass a certain threshold
value along the path. To achieve that, we design a RL problem where we analyze the
RL agent performance not only from the control perspective by using the track-error,
but also from the communication perspective by the total bandwidth consumption. So,
different from the RL solution in Section 5, the agent decisions now can directly impact
and control the AoL behavior. In this context, we formulate again the problem as a
Markov Decision Process, defined as:

State Space

The current Age-of-Loop value measured at the plant.

Action Space

The amount of resource block utilized in each transmission. In this case, from 1 to 100,
which is the maximum amount of RBs for 20 MHz total bandwidth according to the
3GPP specification in [14].

Reward

We divide the reward into two parts: First, for every transmission, we penalize the AGV
proportionally to the bandwidth consumption as a function of the maximum amount
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of RBs available. For example, if current transmission utilizes b from a total of bmax
RBs, the agent receives b/bmax. Second, we penalize the agent and finish the episode
whenever the AGV surpass a given predefined track-error threshold of ϵmax = 10 cm
along the path.

Solution

We solve the proposed MDP again using a temporal difference learning methodology.
The idea is that at the end we will have a matrix Q indicating, for each AoL state, what
is the expected long-term reward in terms of track-error and bandwidth consumption
that the assignment of each number of RBs can cause.

6.1 Results
We compare the proposed solution with a bandwidth allocation scheme based on pre-
defined delay requirements, which is the general solution currently used in industry.
In more details, given an arbitrary requirement of Tr ms for the sensor packet to be
delivered, we can directly calculate the minimum amount of bandwidth to achieve the
necessary requirement using the 3GPP 4-bit CQI Table 7.2.3-1 [14] and the total sensor
data size.

We analyze the results for three common network requirements, Tr = 1 ms, Tr = 5 ms
and Tr = 10 ms. In each case, we analyzed again the 99th percentile of the track-error,
the average bandwidth usage and the average AoL observed, which are respectively
illustrated in Table G.1.

Table G.1: Performance comparison of different networking solutions.

Avg Bandwidth Usage 99th-Track-error Avg AoL
Tr = 1 ms 46.70 MHz 4.41 cm 11.02 ms
Tr = 5 ms 9.34 MHz 8.23 cm 16.10 ms

Tr = 10 ms 4.67 MHz 12.15 cm 23.47 ms
RL Solution 4.72 MHz 9.97 cm 20.61 ms

The immediate conclusion we can verify from Table G.1 is that the RL scheme was
capable to learn the system track-error requirement (ϵmax = 10 cm), providing a worse
case performance exactly on the limit of the track error budget, while simultaneously
providing the lowest bandwidth consumption. Comparing extreme cases, at the 1 ms
requirement, we have the lowest track error result, which, however, comes at the cost
of 10 times higher bandwidth consumption. At 10 ms requirement, we have similar
bandwidth consumption, but a track-error 20% above the limit. In conclusion, the RL
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scheme learned a bandwidth allocation policy that is focused on the physical process
of the control system, exploiting the application requirements to save more network
resources. It is interesting to highlight that, recently, 3GPP has defined in its Release 17
the concept of survival time as part of the service requirements for industrial 5G systems,
which represents a maximum duration of the communication link outage which a given
application can handle without any failure. In this context, we can infer two feasible
interpretations from the proposed RL scheme: 1) We can essentially learn the survival
time of the application. 2) We can understand the dynamics that leads to the application
survivability. More concretely, when the behavior of the control dynamics is clearly
defined, such as the inverted pendulum in [1], we can essentially learn granularity levels
of AoL states that can cause the system to lose stability. In this case, the AoL value itself
becomes a representation of the survival time concept established by 3GPP. However,
with the RL scheme we can actually go beyond such strict requirement definition. The
key factor for the decision making is not the current age itself, but a sequence of steps
that lead to this current age. That is exactly the reason why the RL scheme and
the fixed 10 ms timing requirement, besides having the same bandwidth consumption,
provided different results. The decisions learned by the policy are not strictly based
on the current AoL itself, but the sequence of steps (state-transitions) that lead to this
AoL value. Such concept goes beyond the traditional timing requirements definition we
usually find in the standards, where the main question for the network decision-maker
is not only about the immediate information state, but actually the dynamics of the
information.

7 Conclusions
In this work, we elaborated on Age of Loop, a recent proposed metric that targets
wireless control systems problems by jointly accounting effects of donwlink and uplink
data. We have set up a measurement campaign using a 5G-SA network to empirically
evaluate the AoL behavior within a factory environment. Using the obtained measures,
we have developed a model to analyze and optimize the trajectory of an AGV using
AoL, where two solutions were proposed: 1) an AGV speed controller, and 2) a network
radio resource (bandwidth) scheduler. The obtained results provide an indication that
using AoL we can approach goal-oriented solutions that can be managed by either the
application or the network.
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