10 research outputs found

    Harmonization Of Vocabularies For Water Data

    Full text link
    Observational data encodes values of properties associated with a feature of interest, estimated by a specified procedure. For water the properties are physical parameters like level, volume, flow and pressure, and concentrations and counts of chemicals, substances and organisms. Water property vocabularies have been assembled at project, agency and jurisdictional level. Organizations such as EPA, USGS, CEH, GA and BoM maintain vocabularies for internal use, and may make them available externally as text files. BODC and MMI have harvested many water vocabularies alongside others of interest in their domain, formalized the content using SKOS, and published them through web interfaces. Scope is highly variable both within and between vocabularies. Individual items may conflate multiple concerns (e.g. property, instrument, statistical procedure, units). There is significant duplication between vocabularies. Semantic web technologies provide the opportunity both to publish vocabularies more effectively, and achieve harmonization to support greater interoperability between datasets. - Models for vocabulary items (property, substance/taxon, process, unit-of-measure, etc) may be formalized OWL ontologies, supporting semantic relations between items in related vocabularies; - By specializing the ontology elements from SKOS concepts and properties, diverse vocabularies may be published through a common interface; - Properties from standard vocabularies (e.g. OWL, SKOS, PROV-O and VAEM) support mappings between vocabularies having a similar scope - Existing items from various sources may be assembled into new virtual vocabularies However, there are a number of challenges: - use of standard properties such as sameAs/exactMatch/equivalentClass require reasoning support; - items have been conceptualised as both classes and individuals, complicating the mapping mechanics; - re-use of items across vocabularies may conflict with expectations concerning URI patterns; - versioning complicates cross-references and re-use. This presentation will discuss ways to harness semantic web technologies to publish harmonized vocabularies, and will summarise how many of the challenges may be addressed

    GeoFault: A well-founded fault ontology for interoperability in geological modeling

    Full text link
    Geological modeling currently uses various computer-based applications. Data harmonization at the semantic level by means of ontologies is essential for making these applications interoperable. Since geo-modeling is currently part of multidisciplinary projects, semantic harmonization is required to model not only geological knowledge but also to integrate other domain knowledge at a general level. For this reason, the domain ontologies used for describing geological knowledge must be based on a sound ontology background to ensure the described geological knowledge is integratable. This paper presents a domain ontology: GeoFault, resting on the Basic Formal Ontology BFO (Arp et al., 2015) and the GeoCore ontology (Garcia et al., 2020). It models the knowledge related to geological faults. Faults are essential to various industries but are complex to model. They can be described as thin deformed rock volumes or as spatial arrangements resulting from the different displacements of geological blocks. At a broader scale, faults are currently described as mere surfaces, which are the components of complex fault arrays. The reference to the BFO and GeoCore package allows assigning these various fault elements to define ontology classes and their logical linkage within a consistent ontology framework. The GeoFault ontology covers the core knowledge of faults 'strico sensu,' excluding ductile shear deformations. This considered vocabulary is essentially descriptive and related to regional to outcrop scales, excluding microscopic, orogenic, and tectonic plate structures. The ontology is molded in OWL 2, validated by competency questions with two use cases, and tested using an in-house ontology-driven data entry application. The work of GeoFault provides a solid framework for disambiguating fault knowledge and a foundation of fault data integration for the applications and the users

    PaCTS 1.0: A Crowdsourced Reporting Standard for Paleoclimate Data

    Get PDF
    The progress of science is tied to the standardization of measurements, instruments, and data. This is especially true in the Big Data age, where analyzing large data volumes critically hinges on the data being standardized. Accordingly, the lack of community-sanctioned data standards in paleoclimatology has largely precluded the benefits of Big Data advances in the field. Building upon recent efforts to standardize the format and terminology of paleoclimate data, this article describes the Paleoclimate Community reporTing Standard (PaCTS), a crowdsourced reporting standard for such data. PaCTS captures which information should be included when reporting paleoclimate data, with the goal of maximizing the reuse value of paleoclimate data sets, particularly for synthesis work and comparison to climate model simulations. Initiated by the LinkedEarth project, the process to elicit a reporting standard involved an international workshop in 2016, various forms of digital community engagement over the next few years, and grassroots working groups. Participants in this process identified important properties across paleoclimate archives, in addition to the reporting of uncertainties and chronologies; they also identified archive-specific properties and distinguished reporting standards for new versus legacy data sets. This work shows that at least 135 respondents overwhelmingly support a drastic increase in the amount of metadata accompanying paleoclimate data sets. Since such goals are at odds with present practices, we discuss a transparent path toward implementing or revising these recommendations in the near future, using both bottom-up and top-down approaches

    PaCTS 1.0: A Crowdsourced Reporting Standard for Paleoclimate Data

    Get PDF
    The progress of science is tied to the standardization of measurements, instruments, and data. This is especially true in the Big Data age, where analyzing large data volumes critically hinges on the data being standardized. Accordingly, the lack of community-sanctioned data standards in paleoclimatology has largely precluded the benefits of Big Data advances in the field. Building upon recent efforts to standardize the format and terminology of paleoclimate data, this article describes the Paleoclimate Community reporTing Standard (PaCTS), a crowdsourced reporting standard for such data. PaCTS captures which information should be included when reporting paleoclimate data, with the goal of maximizing the reuse value of paleoclimate data sets, particularly for synthesis work and comparison to climate model simulations. Initiated by the LinkedEarth project, the process to elicit a reporting standard involved an international workshop in 2016, various forms of digital community engagement over the next few years, and grassroots working groups. Participants in this process identified important properties across paleoclimate archives, in addition to the reporting of uncertainties and chronologies; they also identified archive-specific properties and distinguished reporting standards for new versus legacy data sets. This work shows that at least 135 respondents overwhelmingly support a drastic increase in the amount of metadata accompanying paleoclimate data sets. Since such goals are at odds with present practices, we discuss a transparent path toward implementing or revising these recommendations in the near future, using both bottom-up and top-down approaches

    PaCTS 1.0: A Crowdsourced Reporting Standard for Paleoclimate Data

    Get PDF
    The progress of science is tied to the standardization of measurements, instruments, and data. This is especially true in the Big Data age, where analyzing large data volumes critically hinges on the data being standardized. Accordingly, the lack of community-sanctioned data standards in paleoclimatology has largely precluded the benefits of Big Data advances in the field. Building upon recent efforts to standardize the format and terminology of paleoclimate data, this article describes the Paleoclimate Community reporTing Standard (PaCTS), a crowdsourced reporting standard for such data. PaCTS captures which information should be included when reporting paleoclimate data, with the goal of maximizing the reuse value of paleoclimate data sets, particularly for synthesis work and comparison to climate model simulations. Initiated by the LinkedEarth project, the process to elicit a reporting standard involved an international workshop in 2016, various forms of digital community engagement over the next few years, and grassroots working groups. Participants in this process identified important properties across paleoclimate archives, in addition to the reporting of uncertainties and chronologies; they also identified archive-specific properties and distinguished reporting standards for new versus legacy data sets. This work shows that at least 135 respondents overwhelmingly support a drastic increase in the amount of metadata accompanying paleoclimate data sets. Since such goals are at odds with present practices, we discuss a transparent path toward implementing or revising these recommendations in the near future, using both bottom-up and top-down approaches

    PaCTS 1.0: a crowdsourced reporting standard for paleoclimate data

    Get PDF
    The progress of science is tied to the standardization of measurements, instruments, and data. This is especially true in the Big Data age, where analyzing large data volumes critically hinges on the data being standardized. Accordingly, the lack of community-sanctioned data standards in paleoclimatology has largely precluded the benefits of Big Data advances in the field. Building upon recent efforts to standardize the format and terminology of paleoclimate data, this article describes the Paleoclimate Community reporTing Standard (PaCTS), a crowdsourced reporting standard for such data. PaCTS captures which information should be included when reporting paleoclimate data, with the goal of maximizing the reuse value of paleoclimate datasets, particularly for synthesis work and comparison to climate model simulations. Initiated by the LinkedEarth project, the process to elicit a reporting standard involved an international workshop in 2016, various forms of digital community engagement over the next few years, and grassroots working groups. Participants in this process identified important properties across paleoclimate archives, in addition to the reporting of uncertainties and chronologies; they also identified archive-specific properties and distinguished reporting standards for new vs. legacy datasets. This work shows that at least 135 respondents overwhelmingly support a drastic increase in the amount of metadata accompanying paleoclimate datasets. Since such goals are at odds with present practices, we discuss a transparent path towards implementing or revising these recommendations in the near future, using both bottom-up and top-down approaches

    Handbook of Mathematical Geosciences

    Get PDF
    This Open Access handbook published at the IAMG's 50th anniversary, presents a compilation of invited path-breaking research contributions by award-winning geoscientists who have been instrumental in shaping the IAMG. It contains 45 chapters that are categorized broadly into five parts (i) theory, (ii) general applications, (iii) exploration and resource estimation, (iv) reviews, and (v) reminiscences covering related topics like mathematical geosciences, mathematical morphology, geostatistics, fractals and multifractals, spatial statistics, multipoint geostatistics, compositional data analysis, informatics, geocomputation, numerical methods, and chaos theory in the geosciences

    Visualización del contenido de grafos de conocimiento del patrimonio cultural

    Get PDF
    Esta tesis integra dos áreas científicas, la de las Ciencias Humanas y la de Ciencia y Tecnología. Dentro de las Ciencias Humanas está relacionada con la semantización y visualización de la información de datos del Patrimonio. En cuanto a la Ciencia y Tecnología, este trabajo está relacionado con grafos de conocimiento, diseño de ontologías y la visualización interactiva en tiempo real de datos en dos y tres dimensiones, mediante plataformas web. Tal y como se expone en esta tesis, en la última década ha crecido enormemente la digitalización de los objetos del patrimonio cultural. Este proceso, no se refiere únicamente a digitalizar mediante imágenes, reconocimiento de texto, o modelos 3D, de este tipo de objetos. También comprende el mantenimiento de toda la información posible relacionada con los objetos, su publicación y relación con otras entidades (personas, hechos, materiales, etc.) y la accesibilidad de los mismos a otras personas y/o sistemas informáticos. Por ello, muchos de los datos de objetos son soportados por grafos de conocimiento, que implementan modelos que representan este tipo de información. A pesar de que hay mucha información soportada en diferentes grafos de conocimiento, queda mucho que hacer en este proceso de digitalización del patrimonio. En la actualidad todavía existen grandes cantidades de objetos que aún no están digitalizados. Además, muchos de los datos informatizados no están disponibles públicamente, y usan medios propietarios para representar la información, lo que dificulta su acceso y tratamiento. Debido a que muchos trabajos de investigación se han desarrollado de forma paralela, y/o se han enfocado en las particularidades del mismo, se han digitalizado, y en ocasiones creado desde cero, todo tipo de vocabularios para manejar la información de tipologías, materiales, técnicas, épocas, ubicaciones, etc., relacionado con estos objetos, muchos de ellos con información duplicada. Además, el modelo más utilizado para representar este tipo de datos es el CIDOC-CRM, aún necesita mayor definición para representar algunos procesos importantes relacionados con estos objetos, y tiene una complejidad excesiva. Por estos motivos, existen otros modelos alternativos que también se están utilizando. Debido también a la rapidez de este proceso de digitalización, se ha manifestado en esta década la necesidad de visualizar grandes cantidades de información, mediante plataformas web, que permitan visualizar los datos y relaciones de estos objetos, así como su fluctuación a nivel temporal y espacial. Esta necesidad ha generado el desarrollo de varios proyectos, que generalmente la han resuelto de forma concreta, orientándose al contexto del proyecto. Además, los desarrollos de estos proyectos, no suelen ser abiertos, ni reutilizables por otros sistemas. En estos trabajos existen áreas de trabajo que han sido abordadas con poca profundidad, como la visualización de la fluctuación del tiempo de forma simultánea y la visualización de relaciones entre los objetos. Las dificultades relacionadas con el tiempo y el espacio se hacen mayores en los objetos del Patrimonio Cultural. Esto es debido a que en este campo es muy habitual que exista incerteza en la datación de los hechos relacionados con los datos (creación de los objetos, hechos históricos, etc.), al igual que con el lugar en que acontecieron. Es muy normal que existan objetos que se asocie su creación a diferentes regiones, incluso continentes, además de estar datados en diferentes momentos del tiempo, en ocasiones con varios siglos de diferencia. Tras descubrir la problemática existente, la presente tesis tiene como objetivo principal, la definición de un modelo de visualización de datos de patrimonio cultural que estén soportados por un grafo de conocimiento, y una ontología que lo represente, para diseñar y desarrollar un sistema de visualización interactivo web, basado en el contenido de esta ontología. Para alcanzar este objetivo se ha realizado una serie de tareas y obtenido algunos resultados fruto de éstas: - Revisión del estado del arte en varios campos relacionados con las áreas de investigación que se integran en este trabajo. Por una parte, la representación de datos de patrimonio cultural mediante grafos de conocimiento, por otra parte, analizar las técnicas de visualización de datos, especialmente en datos donde el espacio y el tiempo son variables clave. También se han analizado diferentes proyectos de visualización de datos de patrimonio cultural sobre plataformas web. Además, también se ha investigado la definición formal de la visualización de datos mediante ontologías. Por último, se han estudiado y expuesto en el trabajo diferentes herramientas para la gestión de grafos de conocimiento, así como de visualización de datos en dos y tres dimensiones en tiempo real sobre páginas web. - En base a los estudios realizados en el estado del arte, se han expuesto los aspectos necesarios para definir los conceptos de un modelo que defina la visualización de datos de objetos de patrimonio cultural soportados por grafos de conocimiento. - Se ha diseñado una ontología denominada STEVO para representar el modelo de visualización diseñado. Para el proceso de diseño se ha seguido la metodología METHONTOLOGY. - Se ha diseñado la arquitectura de un marco de trabajo capaz de procesar el contenido de la ontología STEVO y poder representar el contenido del dominio de datos, de acorde a lo especificado en STEVO. - Se ha desarrollado una propuesta de implementación del marco de trabajo, mediante tecnología JavaScript y Unity3D. La propuesta de implementación ha sido integrada en dos proyectos de investigación: SILKNOW y Arxiu Valencià del Dissseny, cuyos resultados se han expuesto de forma detallada en esta memoria. Finalmente, la implementación ha sido evaluada en el proyecto SILKNOW, primero mediante una evaluación de usabilidad, mediante la escala SUS, y también con diferentes pruebas de carga sobre los resultados del proyecto SILKNOW. Los resultados de dichas evaluaciones se han descrito detalladamente en esta investigación
    corecore