90 research outputs found

    Scheduling Jobs in Flowshops with the Introduction of Additional Machines in the Future

    Get PDF
    This is the author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Elsevier and can be found at: http://www.journals.elsevier.com/expert-systems-with-applications/.The problem of scheduling jobs to minimize total weighted tardiness in flowshops,\ud with the possibility of evolving into hybrid flowshops in the future, is investigated in\ud this paper. As this research is guided by a real problem in industry, the flowshop\ud considered has considerable flexibility, which stimulated the development of an\ud innovative methodology for this research. Each stage of the flowshop currently has\ud one or several identical machines. However, the manufacturing company is planning\ud to introduce additional machines with different capabilities in different stages in the\ud near future. Thus, the algorithm proposed and developed for the problem is not only\ud capable of solving the current flow line configuration but also the potential new\ud configurations that may result in the future. A meta-heuristic search algorithm based\ud on Tabu search is developed to solve this NP-hard, industry-guided problem. Six\ud different initial solution finding mechanisms are proposed. A carefully planned\ud nested split-plot design is performed to test the significance of different factors and\ud their impact on the performance of the different algorithms. To the best of our\ud knowledge, this research is the first of its kind that attempts to solve an industry-guided\ud problem with the concern for future developments

    An agent-based genetic algorithm for hybrid flowshops with sequence dependent setup times to minimise makespan

    Full text link
    This paper deals with a variant of flowshop scheduling, namely, the hybrid or flexible flowshop with sequence dependent setup times. This type of flowshop is frequently used in the batch production industry and helps reduce the gap between research and operational use. This scheduling problem is NP-hard and solutions for large problems are based on non-exact methods. An improved genetic algorithm (GA) based on software agent design to minimise the makespan is presented. The paper proposes using an inherent characteristic of software agents to create a new perspective in GA design. To verify the developed metaheuristic, computational experiments are conducted on a well-known benchmark problem dataset. The experimental results show that the proposed metaheuristic outperforms some of the well-known methods and the state-of-art algorithms on the same benchmark problem dataset.The translation of this paper was funded by Universidad Politecnica de Valencia, Spain.Gómez Gasquet, P.; Andrés Romano, C.; Lario Esteban, FC. (2012). An agent-based genetic algorithm for hybrid flowshops with sequence dependent setup times to minimise makespan. Expert Systems with Applications. 39(9):8095-8107. https://doi.org/10.1016/j.eswa.2012.01.158S8095810739

    Efficiency of the solution representations for the hybrid flow shop scheduling problem with makespan objective

    Get PDF
    In this paper we address the classical hybrid flow shop scheduling problem with makespan objective. As this problem is known to be NP-hard and a very common layout in real-life manufacturing scenarios, many studies have been proposed in the literature to solve it. These contributions use different solution representations of the feasible schedules, each one with its own advantages and disadvantages. Some of them do not guarantee that all feasible semiactive schedules are represented in the space of solutions –thus limiting in principle their effectiveness– but, on the other hand, these simpler solution representations possess clear advantages in terms of having consistent neighbourhoods with well-defined neighbourhood moves. Therefore, there is a trade-off between the solution space reduction and the ability to conduct an efficient search in this reduced solution space. This trade-off is determined by two aspects, i.e. the extent of the solution space reduction, and the quality of the schedules left aside by this solution space reduction. In this paper, we analyse the efficiency of the different solution representations employed in the literature for the problem. More specifically, we first establish the size of the space of semiactive schedules achieved by the different solution representations and, secondly, we address the issue of the quality of the schedules that can be achieved by these representations using the optimal solutions given by several MILP models and complete enumeration. The results obtained may contribute to design more efficient algorithms for the hybrid flow shop scheduling problem.Ministerio de Ciencia e Innovación DPI2016-80750-

    Extended classification for flowshops with resequencing

    Get PDF
    Este trabajo presenta una clasificación extendida de líneas de flujo no-permutación. Se consideran las múltiples opciones que se presentan al incluir la posibilidad de resecuenciar piezas en la línea. Se ha visto que en la literatura actual no se ha clasificado con profundidad este tipo de producción. Abstract This paper presents an extended cassification for non-permutation flowshops. The versatile options which occur with the possibility of resequencing jobs within the line are considered. The literature review shows that no classification exists which considers extensively this type of flowshop

    An estimation of distribution algorithm for lot-streaming flow shop problems with setup times

    Full text link
    Lot-streaming flow shops have important applications in different industries including textile, plastic, chemical, semiconductor and many others. This paper considers an n-job m-machine lot-streaming flow shop scheduling problem with sequence-dependent setup times under both the idling and noidling production cases. The objective is to minimize the maximum completion time or makespan. To solve this important practical problem, a novel estimation of distribution algorithm (EDA) is proposed with a job permutation based representation. In the proposed EDA, an efficient initialization scheme based on the NEH heuristic is presented to construct an initial population with a certain level of quality and diversity. An estimation of a probabilistic model is constructed to direct the algorithm search towards good solutions by taking into account both job permutation and similar blocks of jobs. A simple but effective local search is added to enhance the intensification capability. A diversity controlling mechanism is applied to maintain the diversity of the population. In addition, a speed-up method is presented to reduce the computational effort needed for the local search technique and the NEH-based heuristics. A comparative evaluation is carried out with the best performing algorithms from the literature. The results show that the proposed EDA is very effective in comparison after comprehensive computational and statistical analyses.This research is partially supported by the National Science Foundation of China (60874075, 70871065), and Science Foundation of Shandong Province in China under Grant BS2010DX005, and Postdoctoral Science Foundation of China under Grant 20100480897. Ruben Ruiz is partially funded by the Spanish Ministry of Science and Innovation, under the project "SMPA-Advanced Parallel Multiobjective Sequencing: Practical and Theoretical Advances" with reference DPI2008-03511/DPI and by the IMPIVA-Institute for the Small and Medium Valencian Enterprise, for the project OSC with references IMIDIC/2008/137, IMIDIC/2009/198 and IMIDIC/2010/175.Pan, Q.; Ruiz García, R. (2012). An estimation of distribution algorithm for lot-streaming flow shop problems with setup times. Omega. 40(2):166-180. https://doi.org/10.1016/j.omega.2011.05.002S16618040

    Deterministic Assembly Scheduling Problems: A Review and Classification of Concurrent-Type Scheduling Models and Solution Procedures

    Get PDF
    Many activities in industry and services require the scheduling of tasks that can be concurrently executed, the most clear example being perhaps the assembly of products carried out in manufacturing. Although numerous scientific contributions have been produced on this area over the last decades, the wide extension of the problems covered and the lack of a unified approach have lead to a situation where the state of the art in the field is unclear, which in turn hinders new research and makes translating the scientific knowledge into practice difficult. In this paper we propose a unified notation for assembly scheduling models that encompass all concurrent-type scheduling problems. Using this notation, the existing contributions are reviewed and classified into a single framework, so a comprehensive, unified picture of the field is obtained. In addition, a number of conclusions regarding the state of the art in the topic are presented, as well as some opportunities for future research.Ministerio de Ciencia e Innovación español DPI2016-80750-

    An Iterated Greedy Algorithm for Flexible Flow Lines with Sequence Dependent Setup Times to Minimize Total Weighted Completion Time

    Get PDF
    This paper explores the flexile flow lines where setup times are sequence- dependent. The optimization criterion is the minimization of total weighted completion time. We propose an iterated greedy algorithm (IGA) to tackle the problem. An experimental evaluation is conducted to evaluate the proposed algorithm and, then, the obtained results of IGA are compared against those of some other existing algorithms. The effectiveness of IGA is demonstrated through comparison
    • …
    corecore