1,456 research outputs found

    An architecture for user preference-based IoT service selection in cloud computing using mobile devices for smart campus

    Get PDF
    The Internet of things refers to the set of objects that have identities and virtual personalities operating in smart spaces using intelligent interfaces to connect and communicate within social environments and user context. Interconnected devices communicating to each other or to other machines on the network have increased the number of services. The concepts of discovery, brokerage, selection and reliability are important in dynamic environments. These concepts have emerged as an important field distinguished from conventional distributed computing by its focus on large-scale resource sharing, delivery and innovative applications. The usage of Internet of Things technology across different service provisioning environments has increased the challenges associated with service selection and discovery. Although a set of terms can be used to express requirements for the desired service, a more detailed and specific user interface would make it easy for the users to express their requirements using high-level constructs. In order to address the challenge of service selection and discovery, we developed an architecture that enables a representation of user preferences and manipulates relevant descriptions of available services. To ensure that the key components of the architecture work, algorithms (content-based and collaborative filtering) derived from the architecture were proposed. The architecture was tested by selecting services using content-based as well as collaborative algorithms. The performances of the algorithms were evaluated using response time. Their effectiveness was evaluated using recall and precision. The results showed that the content-based recommender system is more effective than the collaborative filtering recommender system. Furthermore, the results showed that the content-based technique is more time-efficient than the collaborative filtering technique

    Advanced recommendations in a mobile tourist information system

    Get PDF
    An advanced tourist information provider system delivers information regarding sights and events on their users' travel route. In order to give sophisticated personalized information about tourist attractions to their users, the system is required to consider base data which are user preferences defined in their user profiles, user context, sights context, user travel history as well as their feedback given to the sighs they have visited. In addition to sights information, recommendation on sights to the user could also be provided. This project concentrates on combinations of knowledge on recommendation systems and base information given by the users to build a recommendation component in the Tourist Information Provider or TIP system. To accomplish our goal, we not only examine several tourist information systems but also conduct the investigation on recommendation systems. We propose a number of approaches for advanced recommendation models in a tourist information system and select a subset of these for implementation to prove the concept

    Personalization in cultural heritage: the road travelled and the one ahead

    Get PDF
    Over the last 20 years, cultural heritage has been a favored domain for personalization research. For years, researchers have experimented with the cutting edge technology of the day; now, with the convergence of internet and wireless technology, and the increasing adoption of the Web as a platform for the publication of information, the visitor is able to exploit cultural heritage material before, during and after the visit, having different goals and requirements in each phase. However, cultural heritage sites have a huge amount of information to present, which must be filtered and personalized in order to enable the individual user to easily access it. Personalization of cultural heritage information requires a system that is able to model the user (e.g., interest, knowledge and other personal characteristics), as well as contextual aspects, select the most appropriate content, and deliver it in the most suitable way. It should be noted that achieving this result is extremely challenging in the case of first-time users, such as tourists who visit a cultural heritage site for the first time (and maybe the only time in their life). In addition, as tourism is a social activity, adapting to the individual is not enough because groups and communities have to be modeled and supported as well, taking into account their mutual interests, previous mutual experience, and requirements. How to model and represent the user(s) and the context of the visit and how to reason with regard to the information that is available are the challenges faced by researchers in personalization of cultural heritage. Notwithstanding the effort invested so far, a definite solution is far from being reached, mainly because new technology and new aspects of personalization are constantly being introduced. This article surveys the research in this area. Starting from the earlier systems, which presented cultural heritage information in kiosks, it summarizes the evolution of personalization techniques in museum web sites, virtual collections and mobile guides, until recent extension of cultural heritage toward the semantic and social web. The paper concludes with current challenges and points out areas where future research is needed

    Progress in information technology and tourism management: 20 years on and 10 years after the Internet—The state of eTourism research

    Get PDF
    This paper reviews the published articles on eTourism in the past 20 years. Using a wide variety of sources, mainly in the tourism literature, this paper comprehensively reviews and analyzes prior studies in the context of Internet applications to Tourism. The paper also projects future developments in eTourism and demonstrates critical changes that will influence the tourism industry structure. A major contribution of this paper is its overview of the research and development efforts that have been endeavoured in the field, and the challenges that tourism researchers are, and will be, facing

    CHORUS Deliverable 3.3: Vision Document - Intermediate version

    Get PDF
    The goal of the CHORUS vision document is to create a high level vision on audio-visual search engines in order to give guidance to the future R&D work in this area (in line with the mandate of CHORUS as a Coordination Action). This current intermediate draft of the CHORUS vision document (D3.3) is based on the previous CHORUS vision documents D3.1 to D3.2 and on the results of the six CHORUS Think-Tank meetings held in March, September and November 2007 as well as in April, July and October 2008, and on the feedback from other CHORUS events. The outcome of the six Think-Thank meetings will not just be to the benefit of the participants which are stakeholders and experts from academia and industry – CHORUS, as a coordination action of the EC, will feed back the findings (see Summary) to the projects under its purview and, via its website, to the whole community working in the domain of AV content search. A few subjections of this deliverable are to be completed after the eights (and presumably last) Think-Tank meeting in spring 2009

    DESIGN AND EXPLORATION OF NEW MODELS FOR SECURITY AND PRIVACY-SENSITIVE COLLABORATION SYSTEMS

    Get PDF
    Collaboration has been an area of interest in many domains including education, research, healthcare supply chain, Internet of things, and music etc. It enhances problem solving through expertise sharing, ideas sharing, learning and resource sharing, and improved decision making. To address the limitations in the existing literature, this dissertation presents a design science artifact and a conceptual model for collaborative environment. The first artifact is a blockchain based collaborative information exchange system that utilizes blockchain technology and semi-automated ontology mappings to enable secure and interoperable health information exchange among different health care institutions. The conceptual model proposed in this dissertation explores the factors that influences professionals continued use of video- conferencing applications. The conceptual model investigates the role the perceived risks and benefits play in influencing professionals’ attitude towards VC apps and consequently its active and automatic use

    A multi-dimensional trust-model for dynamic, scalable and resources-efficient trust-management in social internet of things

    Get PDF
    L'internet des Objets (IoT) est un paradigme qui a rendu les objets du quotidien, intelligents en leur offrant la possibilitĂ© de se connecter Ă  Internet, de communiquer et d'interagir. L'intĂ©gration de la composante sociale dans l'IoT a donnĂ© naissance Ă  l'Internet des Objets Social (SIoT), qui a permis de surmonter diverse problĂ©matiques telles que l'interopĂ©rabilitĂ© et la dĂ©couverte de ressources. Dans ce type d'environnement, les participants rivalisent afin d'offrir une variĂ©tĂ© de services attrayants. Certains d'entre eux ont recours Ă  des comportements malveillants afin de propager des services de mauvaise qualitĂ©. Ils lancent des attaques, dites de confiance, et brisent les fonctionnalitĂ©s de base du systĂšme. Plusieurs travaux de la littĂ©rature ont abordĂ© ce problĂšme et ont proposĂ© diffĂ©rents modĂšles de confiance. La majoritĂ© d'entre eux ont tentĂ© de rĂ©appliquer des modĂšles de confiance conçus pour les rĂ©seaux sociaux ou les rĂ©seaux pair-Ă -pair. MalgrĂ© les similitudes entre ces types de rĂ©seaux, les rĂ©seaux SIoT prĂ©sentent des particularitĂ©s spĂ©cifiques. Dans les SIoT, nous avons diffĂ©rents types d'entitĂ©s qui collaborent, Ă  savoir des humains, des dispositifs et des services. Les dispositifs peuvent prĂ©senter des capacitĂ©s de calcul et de stockage trĂšs limitĂ©es et leur nombre peut atteindre des millions. Le rĂ©seau qui en rĂ©sulte est complexe et trĂšs dynamique et les rĂ©percussions des attaques de confiance peuvent ĂȘtre plus importantes. Nous proposons un nouveau modĂšle de confiance, multidimensionnel, dynamique et scalable, spĂ©cifiquement conçu pour les environnements SIoT. Nous proposons, en premier lieu, des facteurs permettant de dĂ©crire le comportement des trois types de nƓuds impliquĂ©s dans les rĂ©seaux SIoT et de quantifier le degrĂ© de confiance selon les trois dimensions de confiance rĂ©sultantes. Nous proposons, ensuite, une mĂ©thode d'agrĂ©gation basĂ©e sur l'apprentissage automatique et l'apprentissage profond qui permet d'une part d'agrĂ©ger les facteurs proposĂ©s pour obtenir un score de confiance permettant de classer les nƓuds, mais aussi de dĂ©tecter les types d'attaques de confiance et de les contrer. Nous proposons, ensuite, une mĂ©thode de propagation hybride qui permet de diffuser les valeurs de confiance dans le rĂ©seau, tout en remĂ©diant aux inconvĂ©nients des mĂ©thodes centralisĂ©e et distribuĂ©e. Cette mĂ©thode permet d'une part d'assurer la scalabilitĂ© et le dynamisme et d'autre part, de minimiser la consommation des ressources. Les expĂ©rimentations appliquĂ©es sur des de donnĂ©es synthĂ©tiques nous ont permis de valider le modĂšle proposĂ©.The Internet of Things (IoT) is a paradigm that has made everyday objects intelligent by giving them the ability to connect to the Internet, communicate and interact. The integration of the social component in the IoT has given rise to the Social Internet of Things (SIoT), which has overcome various issues such as interoperability, navigability and resource/service discovery. In this type of environment, participants compete to offer a variety of attractive services. Some of them resort to malicious behavior to propagate poor quality services. They launch so-called Trust-Attacks (TA) and break the basic functionality of the system. Several works in the literature have addressed this problem and have proposed different trust-models. Most of them have attempted to adapt and reapply trust models designed for traditional social networks or peer-to-peer networks. Despite the similarities between these types of networks, SIoT ones have specific particularities. In SIoT, there are different types of entities that collaborate: humans, devices, and services. Devices can have very limited computing and storage capacities, and their number can be as high as a few million. The resulting network is complex and highly dynamic, and the impact of Trust-Attacks can be more compromising. In this work, we propose a Multidimensional, Dynamic, Resources-efficient and Scalable trust-model that is specifically designed for SIoT environments. We, first, propose features to describe the behavior of the three types of nodes involved in SIoT networks and to quantify the degree of trust according to the three resulting Trust-Dimensions. We propose, secondly, an aggregation method based on Supervised Machine-Learning and Deep Learning that allows, on the one hand, to aggregate the proposed features to obtain a trust score allowing to rank the nodes, but also to detect the different types of Trust-Attacks and to counter them. We then propose a hybrid propagation method that allows spreading trust values in the network, while overcoming the drawbacks of centralized and distributed methods. The proposed method ensures scalability and dynamism on the one hand, and minimizes resource consumption (computing and storage), on the other. Experiments applied to synthetic data have enabled us to validate the resilience and performance of the proposed model

    Privacy, security, and trust issues in smart environments

    Get PDF
    Recent advances in networking, handheld computing and sensor technologies have driven forward research towards the realisation of Mark Weiser's dream of calm and ubiquitous computing (variously called pervasive computing, ambient computing, active spaces, the disappearing computer or context-aware computing). In turn, this has led to the emergence of smart environments as one significant facet of research in this domain. A smart environment, or space, is a region of the real world that is extensively equipped with sensors, actuators and computing components [1]. In effect the smart space becomes a part of a larger information system: with all actions within the space potentially affecting the underlying computer applications, which may themselves affect the space through the actuators. Such smart environments have tremendous potential within many application areas to improve the utility of a space. Consider the potential offered by a smart environment that prolongs the time an elderly or infirm person can live an independent life or the potential offered by a smart environment that supports vicarious learning

    Human and Artificial Intelligence

    Get PDF
    Although tremendous advances have been made in recent years, many real-world problems still cannot be solved by machines alone. Hence, the integration between Human Intelligence and Artificial Intelligence is needed. However, several challenges make this integration complex. The aim of this Special Issue was to provide a large and varied collection of high-level contributions presenting novel approaches and solutions to address the above issues. This Special Issue contains 14 papers (13 research papers and 1 review paper) that deal with various topics related to human–machine interactions and cooperation. Most of these works concern different aspects of recommender systems, which are among the most widespread decision support systems. The domains covered range from healthcare to movies and from biometrics to cultural heritage. However, there are also contributions on vocal assistants and smart interactive technologies. In summary, each paper included in this Special Issue represents a step towards a future with human–machine interactions and cooperation. We hope the readers enjoy reading these articles and may find inspiration for their research activities
    • 

    corecore