3,853 research outputs found

    Hybrid behavioural-based multi-objective space trajectory optimization

    Get PDF
    In this chapter we present a hybridization of a stochastic based search approach for multi-objective optimization with a deterministic domain decomposition of the solution space. Prior to the presentation of the algorithm we introduce a general formulation of the optimization problem that is suitable to describe both single and multi-objective problems. The stochastic approach, based on behaviorism, combinedwith the decomposition of the solutions pace was tested on a set of standard multi-objective optimization problems and on a simple but representative case of space trajectory design

    Genetic programming hyper-heuristic with vehicle collaboration for uncertain capacitated arc routing problem

    Get PDF
    Due to its direct relevance to post-disaster operations, meter reading and civil refuse collection, the Uncertain Capacitated Arc Routing Problem (UCARP) is an important optimisation problem. Stochastic models are critical to study as they more accurately represent the real world than their deterministic counterparts. Although there have been extensive studies in solving routing problems under uncertainty, very few have considered UCARP, and none consider collaboration between vehicles to handle the negative effects of uncertainty. This article proposes a novel Solution Construction Procedure (SCP) that generates solutions to UCARP within a collaborative, multi-vehicle framework. It consists of two types of collaborative activities: one when a vehicle unexpectedly expends capacity (route failure), and the other during the refill process. Then, we propose a Genetic Programming Hyper-Heuristic (GPHH) algorithm to evolve the routing policy used within the collaborative framework. The experimental studies show that the new heuristic with vehicle collaboration and GP-evolved routing policy significantly outperforms the compared state-of-the-art algorithms on commonly studied test problems. This is shown to be especially true on instances with larger numbers of tasks and vehicles. This clearly shows the advantage of vehicle collaboration in handling the uncertain environment, and the effectiveness of the newly proposed algorithm

    A hybrid multiagent approach for global trajectory optimization

    Get PDF
    In this paper we consider a global optimization method for space trajectory design problems. The method, which actually aims at finding not only the global minimizer but a whole set of low-lying local minimizers(corresponding to a set of different design options), is based on a domain decomposition technique where each subdomain is evaluated through a procedure based on the evolution of a population of agents. The method is applied to two space trajectory design problems and compared with existing deterministic and stochastic global optimization methods

    Metaheuristic Design Patterns: New Perspectives for Larger-Scale Search Architectures

    Get PDF
    Design patterns capture the essentials of recurring best practice in an abstract form. Their merits are well established in domains as diverse as architecture and software development. They offer significant benefits, not least a common conceptual vocabulary for designers, enabling greater communication of high-level concerns and increased software reuse. Inspired by the success of software design patterns, this chapter seeks to promote the merits of a pattern-based method to the development of metaheuristic search software components. To achieve this, a catalog of patterns is presented, organized into the families of structural, behavioral, methodological and component-based patterns. As an alternative to the increasing specialization associated with individual metaheuristic search components, the authors encourage computer scientists to embrace the ‘cross cutting' benefits of a pattern-based perspective to optimization algorithms. Some ways in which the patterns might form the basis of further larger-scale metaheuristic component design automation are also discussed

    A risk-based approach applied to system engineering projects: a new learning based multi-criteria decision support tool based on an ant colony algorithm

    Get PDF
    This article proposes a multi-criteria decision support tool fully integrated within system engineering and project management processes that allows decision makers to select an optimal scenario of a project. A model based on an oriented graph includes all the alternative choices of a new system’s conception and realization. These choices take into account the risks inherent to perform project tasks in terms of cost and duration. The model of the graph is constructed by considering all the collaborative decisions of the different actors involved in the project. This decision support tool is based on an Ant Colony Algorithm (ACO) for its ability to provide optimal solutions in a reasonable amount of time. The model developed is a multi-objective new ant colony algorithm based on an innovative learning mechanism (named MONACO) that allows ants to learn from their previous choices in order to influence the future ones. The objectives to be minimized are the total cost of the project, its global duration and the risk associated with these criteria. The risk is modeled as an uncertainty related to the increase of the nominal values of cost and duration. The optimization tool is a part of an integrated and more global process, based on industrial standards (the System Engineering process and the Project Management one) that are widely known and used in companies

    An Empirical Study of Meta- and Hyper-Heuristic Search for Multi-Objective Release Planning

    Get PDF
    A variety of meta-heuristic search algorithms have been introduced for optimising software release planning. However, there has been no comprehensive empirical study of different search algorithms across multiple different real-world datasets. In this article, we present an empirical study of global, local, and hybrid meta- and hyper-heuristic search-based algorithms on 10 real-world datasets. We find that the hyper-heuristics are particularly effective. For example, the hyper-heuristic genetic algorithm significantly outperformed the other six approaches (and with high effect size) for solution quality 85% of the time, and was also faster than all others 70% of the time. Furthermore, correlation analysis reveals that it scales well as the number of requirements increases

    Hyperparameter Importance Across Datasets

    Full text link
    With the advent of automated machine learning, automated hyperparameter optimization methods are by now routinely used in data mining. However, this progress is not yet matched by equal progress on automatic analyses that yield information beyond performance-optimizing hyperparameter settings. In this work, we aim to answer the following two questions: Given an algorithm, what are generally its most important hyperparameters, and what are typically good values for these? We present methodology and a framework to answer these questions based on meta-learning across many datasets. We apply this methodology using the experimental meta-data available on OpenML to determine the most important hyperparameters of support vector machines, random forests and Adaboost, and to infer priors for all their hyperparameters. The results, obtained fully automatically, provide a quantitative basis to focus efforts in both manual algorithm design and in automated hyperparameter optimization. The conducted experiments confirm that the hyperparameters selected by the proposed method are indeed the most important ones and that the obtained priors also lead to statistically significant improvements in hyperparameter optimization.Comment: \c{opyright} 2018. Copyright is held by the owner/author(s). Publication rights licensed to ACM. This is the author's version of the work. It is posted here for your personal use, not for redistribution. The definitive Version of Record was published in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Minin

    Metaheuristics “In the Large”

    Get PDF
    Many people have generously given their time to the various activities of the MitL initiative. Particular gratitude is due to Adam Barwell, John A. Clark, Patrick De Causmaecker, Emma Hart, Zoltan A. Kocsis, Ben Kovitz, Krzysztof Krawiec, John McCall, Nelishia Pillay, Kevin Sim, Jim Smith, Thomas Stutzle, Eric Taillard and Stefan Wagner. J. Swan acknowledges the support of UK EPSRC grant EP/J017515/1 and the EU H2020 SAFIRE Factories project. P. GarciaSanchez and J. J. Merelo acknowledges the support of TIN201785727-C4-2-P by the Spanish Ministry of Economy and Competitiveness. M. Wagner acknowledges the support of the Australian Research Council grants DE160100850 and DP200102364.Following decades of sustained improvement, metaheuristics are one of the great success stories of opti- mization research. However, in order for research in metaheuristics to avoid fragmentation and a lack of reproducibility, there is a pressing need for stronger scientific and computational infrastructure to sup- port the development, analysis and comparison of new approaches. To this end, we present the vision and progress of the Metaheuristics “In the Large”project. The conceptual underpinnings of the project are: truly extensible algorithm templates that support reuse without modification, white box problem descriptions that provide generic support for the injection of domain specific knowledge, and remotely accessible frameworks, components and problems that will enhance reproducibility and accelerate the field’s progress. We argue that, via such principled choice of infrastructure support, the field can pur- sue a higher level of scientific enquiry. We describe our vision and report on progress, showing how the adoption of common protocols for all metaheuristics can help liberate the potential of the field, easing the exploration of the design space of metaheuristics.UK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC) EP/J017515/1EU H2020 SAFIRE Factories projectSpanish Ministry of Economy and Competitiveness TIN201785727-C4-2-PAustralian Research Council DE160100850 DP20010236
    corecore