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Hybrid Behavioral-Based Multiobjective Space
Trajectory Optimization

Massimiliano Vasile

Department of Aerospace Engineering, University of Glasgow, James Watt South Building,
G12 8QQ, Glasgow, UK
m.vasile@aero.gla.ac.uk

In this chapter we present a hybridization of a stochastic based search approach for
multi-objective optimization with a deterministic domain decomposition of the solu-
tion space. Prior to the presentation of the algorithm we introduce a general formulation
of the optimization problem that is suitable to describe both single and multi-objective
problems. The stochastic approach, based on behaviorism, combined with the decompo-
sition of the solutions pace was tested on a set of standard multi-objective optimization
problems and on a simple but representative case of space trajectory design.

1 Introduction

The design of a space mission steps through different phases of increasing complexity;
generally, the first step is a mission feasibility study. In order to be successful, the feasi-
bility study phase has to analyze, in a reasonably short time, a large number of different
mission options. Each mission option requires the design of one or more trajectories
that have to be optimal with respect to one or more criteria. In mathematical terms, the
problem can be formulated as a search for multiple local minima, or as a multi-objective
optimization problem.

In both cases, it is desirable to have a collection of several optimal solutions. Nor-
mally in literature, single objective and multi-objective optimization are treated as two
distinct problems with different algorithms developed to address one or the other (see
[1, 3, 4, 5, 6, 7, 8] for some examples of algorithms for global single objective optimiza-
tion and [9, 10, 11, 12] for some examples of algorithms for multi-objective optimiza-
tion). In most of the cases Evolutionary Algorithms seem to be the preferred method and
many examples exist of their use to address both single objective and multi-objective
problems in space trajectory design: Gage et al. has shown the effectiveness of genetic
algorithms with niching technique compared to a simple grid search for the optimization
of bi-impulsive transfers [13], Coverstone et al. used genetic algorithms for low-thrust
trajectory design [15, 16], Gurfil et al. used niching genetic algorithms for the char-
acterization of geocentric orbits [14], Vasile proposed a hybridization of evolutionary
algorithms with SQP methods for the design of weak stability transfers [17] and an hy-
bridisation with branch and bound for low-thrust trajectory design [18], and Dachwald
et al. proposed the combination of a neurocontroller and of Evolutionary Algorithms for
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the design of low-thrust trajectories[19]. More recently, an comparison of several global
optimization methods applied to the optimization fo space trajectories showed that Dif-
ferential Evolution outperforms GAs on some trajectory design problems [20, 21].

In general, all evolutionary-based approaches for global optimization implement
some heuristic derived from nature. From the very basic evolutionary paradigms to
the more complex behaviors of ant colonies or bird flocks, each one of these heuristics
can be interpreted as basic behaviors (like reproduction, feeding or trail following) as-
sociated to individual agents. This chapter presents a generalization of this concept: a
population of agents is endowed with a set of individualistic and social behaviors, in
order to explore a virtual environment composed of the solution space. The combina-
tion of individualistic and social behaviors aims at an optimal balance between global
search and local convergence (or exploration versus exploitation).

Furthermore, a unified formulation is proposed that can be applied to the solution
of both multi-objective and single objective problems in which the aim is to find a set
of optimal solutions, rather than a single one. In order to improve the exploration of
the search space and to collect as many local minima as possible, the proposed meta-
heuristic was hybridized with a domain decomposition technique.

2 General Problem Formulation

The general problem both for single and multi-objective optimization is to find a set X ,
contained in a given domain D, of solutions x such that the property P(x) is true for all
x ∈ X ⊆ D,

X = {x ∈ D | P(x)} (1)

where the domain D is a hyper-rectangle defined by the upper and lower bounds on the
components of the vector x,

D =
{

xi | xi ∈ [bl
i bu

i ] ⊆ ℜ, i = 1, ...,n
}

(2)

All the solutions satisfying property P are here defined to be optimal with respect to
P, or P-optimal, and X can be said to be a P-optimal set. Now, the property P might not
identify a unique set, for example if P is Pareto optimality, X can collect all the points
belonging to a local Pareto front. Therefore we can define a global optimal set Xopt such
that all the elements of Xopt dominate the elements of any other X ,

Xopt =
{

x∗ ∈ D | P(x∗)∧∀x ∈ X ⇒ x∗ ≺ x
}

(3)

where x∗ ≺ x represents the dominance of the x∗ solution over the x solution.
If we are looking for local minima, the property P is to be a local minimiser or a

solution x∗ can be said to dominate solution x if the associated value of the objective
function f (x∗) < f (x). In this case Xopt would contain the global optimum or a set of
global optima all with the same value of f .

In the case of multiple objective problems, given a set of solution vectors we can
associate to each one of them a scalar dominance index Id such that:

Id(x j) = |{i | i∧ j ∈ Np ∧xi ≺ x j}| (4)
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where the symbol |.| is used to denote the cardinality of a set and Np is the set of the
indices of all the given solution vectors. Here and in the following, a solution vector
xi is said to be dominating a solution vector x j if the values of all the components
of the objective vector f(xi) are lower than or equal to the values of all the components
of the objective vector f(x j) and at least one component is strictly lower. In this case,
for the j− th solution, P(x j) simply defines the property of being not-dominated by any
other solution in the set Np, thus:

X = {x j ∈ D | Id(x j) = 0} (5)

For constrained problems, the property P is to be optimal, either locally or Pareto,
and feasible at the same time. The property P can be expressed through a single scalar
value or through a set of values and relationships. It can be a bolean value, a real number
or a fuzzy expression (e.g. bad, average, good).

3 A Behavioral Prospective

The search for a set of solutions can be broken down to a three steps process: collecting
information, making decision, taking action. For a black-box problem the collection
of information is generally performed by sampling the solution space. The aim in this
respect is to minimize the number of samples required to find the desired solution or
set of solutions. The decision making process consists of deciding what action to take
at every step of the search, selecting who does what in the case of multiple entities
and deciding when to stop the search. The action step consists of implementing the
selected actions by the selected entity. The three steps are required to be automatic with
minimum human intervention, which means that the decision to orient the search in
one or another direction should not require the human judgment (e.g. restrict the search
space, increase the number of samples in a specific region).

Let us assume that a virtual agent is endowed with the ability of collecting pieces of
information, making decisions and implementing actions. The decision making process
could involve a long term planning of actions a closed-loop control mechanism or some
sort of action-selection process in response to stimuli. For example in particle swarm
optimization (PSO)[6] the velocity of each particle i is computed with a close-loop
control mechanism:

vi+1 = wvi + ui (6)

where w is a weight and given the random numbers r1,r2 and the weights a1 and a2 the
control ui has the form:

ui = a1r1(xi − xgi)+ a2r2(xi − xgo) (7)

The search is continued till the decision to stop is taken. The control function requires a
piece of information collected by the particle xgi and one collected by another particle
xgo. In this case, the decision making process includes the selection of the particle
in xgo.

Let us assume that the virtual agent is equipped with a set of actions and an action-
selection process. If more than one agent exists then some of the actions can be regarded
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Fig. 1. Example of action selection mechanism

as individualistic, since involve only one agent at time, while others as social since re-
quire interaction among multiple agents. A collection of actions and the action selection
process define a behavior. When at step k an agent xk implements an action, it produces
an outcome xke according to:

xke = xk + β (xk,xk−1,Πk,Al) (8)

where β is a function of the current state of the agent xk, the current state of the popu-
lation Πk, the past state of the agent xk−1 and the information about the past state of the
population stored in an archive Al . Note that β is not analytical but is an algorithm that
selects an action, assigns a value and return a variation Δxk.

For example, for individualistic behaviors (see Fig. 1 and the next section), each
agent can perform three types of actions, A, B and C. This general scheme accommo-
dates two types of heuristics: Action A generates always the same outcome every time
is performed once a solution vector x is given (e.g. inertia in PSO), while Actions B and
C generate different values for the same x every time they are performed (e.g. mutation
in EA[1]). These last two actions are repeated until an improvement is registered or a
maximum number of attempts is reached. The index ke is increased by one every time
an action is performed, and every action makes use of the agent status x, the status of
other agents and of the outcome of the proceeding actions.

4 MultiAgent Collaborative Search

A population of virtual agents (i.e., points within H)is deployed in the search space:

H = [a1,b1]×·· ·× [an,bn]

Each agent is associated to a solution vector x and endowed with a set of basic actions
forming a behavior. The entire population evolves, through a number of steps, toward
the set X . At each step, the agents collect clues about the environment and implement
actions according to an action selection mechanism. Some of the actions are devoted to
acquiring new information (sampling the solution space), others to displacing agents,
other actions are instead to exchange information among the agents. We implement a set
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of actions, derived from PSO, EA and Differential Evolution (DE)[4] and very simple,
basic action selection mechanisms. The general scheme both for a single agent and for
a group is: select actions, implement actions, evaluate actions, make decision.

Given an agent x ∈ H, a hyperrectangle

Sx = Sx
1 ×·· ·Sx

n

is associated to it, where each Sx
i is an interval centered at the corresponding component

x[i] of the agent. The size of Sx is specified by the value ρ(x): the i-th edge of Sx has
length

2ρ(x)max{bi − x[i],x[i]− ai).

As we will see, the ρ value associated to an agent is updated at each iteration according
to some rule (see Section 4.2.1). The intersection Sx ∩ H basically represents the local
region around agent x which we want to explore. We also associate an effort value
s(x) to each agent x, which specifies the amount of computational effort we want to
dedicate to the exploration of Sx. This value is updated at each iteration (see, again,
Section 4.2.1).

The subdomain H is explored locally by acquiring information about the landscape
within each region Sx and explored globally by evolving a population of agents which
are also allowed to collaborate with each other. Moreover, an archive Al of solutions
over the domain H is maintained during the search. The archive is maintained in order
to have a set of solutions for the problem at hand (see the discussion in the Introduction).
The proposed approach, called Multiagent Collaborative Search (MACS), is outlined in
the following, while the details will be specified in the following subsections.

Multiagent Collaborative Search
Step 0. Initialization. Generate an initial population of agents Π0 within H through

a Latin Hypercube (i.e., a non-collapsing design where points/agents are evenly
spread even when projected along a single parameter axis; for a more detailed de-
scription and a justification of the use of Latin Hypercubes we refer, e.g., to [22]). A

hyperrectangle Sx0
j is associated to the j-th agent x0

j ∈ Π0. The initial size ρ(x0
j) of

each region Sx0
j is fixed to 1 (i.e., the initial local region of each agent corresponds

to the whole set H). The effort s(x0
j) dedicated to agent x0

j ∈ Π0 is fixed to the same
value smax (equal to n in the computations) for all agents in Π0. Set k = 0.

Step 1. Social Behavior. A set of social actions, specified by a social behavior are ap-
plied to the population Πk. In particular two sets of social actions are implemented:
• Collaboration. The agents exchange information with each other. Each set of

communication actions gives rise to new sampled points. Some of them identify
the new location of a subset of the collaborating agents. See Section 4.1.1.

• Repulsion. If two or more agents are too crowded one or more are reallocated
in the search space. See Section 4.1.2.

Step 2. Filtering. A filter partitions population Πk into two subsets Π in
k , the population

within the filter, and Π out
k , the population outside the filter. See Section 4.3.

Step 3. Individualistic Behavior. A set of individualistic actions, specified by an indi-
vidualistic behavior, are applied to each agent x ∈ Πk.
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• Local Exploration. These set of actions allows local exploration (within Sx) of
the region around the agent. They are repeatedly applied until either an im-
provement is observed or the number s(x) of actions is reached. If an agent
x generates an improvement, population Πk is updated by replacing x with its
improvement. See Section 4.2.

• Hyperrectangle and effort update. The size parameter ρ and the effort parameter
s associated to each agent within the filter are updated according to some rule.
See Section 4.2.1.

Step 4. Archive update. Apply filtering and update archive Al (see Section 4.4).
Step 5. Stopping rule. A stopping rule is checked (see Section 4.5). If it is not sat-

isfied, then set k = k + 1 and go back to Step 1. If it is satisfied, then update the
archive Al by adding the current population, i.e., set Al = Al ∪Pk.

4.1 Social Behavior

Social behavior is defined through a set of communication actions (collaboration), a de-
cision making process to select the outcome of the communication actions, a repulsion
mechanism to limit crowding and increase diversity and a shared memory mechanism
to exploit the social knowledge acquired during the search.

4.1.1 Collaboration
Collaboration defines operations through which information is exchanged between pairs
of agents. Given a pair of agents x1 and x2, with x1 considered to be the better one
according to property P, three different actions are defined. Two of them are defined by
adding to x1 a step Δξ defined as follows

Δξ = α2rt(x2 − x1)+ α1(x2 − x1),

and correspond to: extrapolation on the side of x1 (α1 = 0, α2 = −1, t = 1), with
the further constraint that the result must belong to the domain H (i.e., if the step Δξ
leads out of H, its size is reduced until we get back to H); interpolation (α1 = 0,α2 =
1), where a random point between x1 and x2 is sampled. In the latter case, the shape
parameter t is defined as follows:

t = 0.75
s(x1)− s(x2)

smax
+ 1.25

The rationale behind this definition is that we are favoring moves which are closer to
the agent with a higher fitness value if the two agents have the same s value, while in
the case where the agent with highest fitness value has a s value much lower than that
of the other agent, we try to move away from it because a small s value indicates that
improvements close to the agent are difficult to detect.

The third operation is the recombination operator, a single-point crossover, where,
given the two agents: we randomly select a component i; split the two agents into two
parts, one from component 1 to component i and the other from component i + 1 to
component n; and then we combine the two parts of each of the agents in order to
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generate two new solutions. Note that the three operations give rise to four new samples,
denoted by y1, y2, y3, y4.

The first of the two parent agents is selected at random in the worst half of the
current population (from the point of view of the property P), while the second parent
is selected at random from the whole population. Selecting the first parent from the
best half generally reduces the diversity of the population and may cause premature
convergence.

Note that here all the communication actions are selected and implemented sequen-
tially. However, according to the general scheme mentioned above, a different action
selection mechanism can adaptively choose the most appropriate subset of actions at
every step. The decision making process is used to select which of the four samples
will be used. Each pair of parent agents x1 and x2 generates four samples y1, y2, y3 and
y4. Then, a tournament, based on the property P, is started between the worst of the two
parents and the best of the four samples. The winner of the tournament will be the new
location in the solution space of the worst parent agent. When an agent is displaced no
update of ρ and s is performed.

4.1.2 Repulsion
When the distance between two agents drops below a given threshold, a repulsion action
is applied to the one with the worst P. More precisely, consider agent x j and let

Mj = {i : Sx j ∩Sxi �= /0}

be the set of agents whose box has a nonempty intersection with the one of x j. Let nc( j)
denote the cardinality of Mj. Then, for each i ∈ Mj we check the following condition

wcnc( j)ρ(x j) > ρi j,

where ρi j denotes the normalized distance1 between xi and x j and wc is a small positive
parameter called crowding factor. If the condition is satisfied, then the worse between
agents xi and x j is repelled (note that wc = 0 corresponds to no repulsion). Repulsion
is basically an interpolation between the agent to be repelled and one vertex of the
current domain chosen at random. The idea behind repulsion is to avoid convergence of
different agents to the same subregion with a consequent waste of computational effort.

4.1.3 Shared Memory
The archive Al is used to direct the movements of those agents for which P is false.
For all agents for which the property P is not true at step k the inertia component is
recomputed as:

Δξ = r(xAl − xk) (9)

where xAl is an element taken from the archive. The elements in the archive are ranked
according to their relative distance or crowding factor. Then, every agent for which P is
false picks the least crowded element xAl not already picked by any other agent.

1 By normalized distance we mean the distance between the two agents once H has been trans-
formed into the unit hypercube through the appropriate affine transformation.
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4.2 Individualistic Behavior

The individualistic behavior is defined through a set of local exploration actions, an
action selection mechanism, a decision making process to select the outcome of the
exploration and an adaptive update of the resources and of the regions Sx.

At every generation, a behavior β is used to generate the set of exploration actions.
In particular, given agent j at generation k, denoted by xk

j , a behavior is a collection of
displacement vectors Δξ generated by some function zβ :

β = {Δξ | xk
j + Δξ ∈ H and Δξ = zβ (xk

j,x
k−1
j ,w,r,Πk)} (10)

where zβ is a function of the current and past state xk
j and xk−1

j of agent j, of a set of
weights w, of a set of random numbers r and of the current population Pk. Every point
xk

j + Δξ is called a child of agent j. In what follows we describe the different kinds of
actions employed in this chapter.

Inertia. This action is performed at most once at each generation. If agent j has im-
proved from generation k − 1 to generation k, then we follow the direction of the
improvement (possibly until we reach the border of the hyperrectangle associated
to the agent), i.e., we perform the following step:

Δξ = λ̄ (xk
j − xk−1

j ) (11)

where
λ̄ = min{1,max{λ : xk

j + λ (xk
j − xk−1

j ) ∈ Sx j }}.

Follow-the-trail. This step is inspired by Differential Evolution (see, e.g., [8, 4]). It is
defined as follows: let xk

i1
,xk

i2
,xk

i3
be three randomly selected agents; then

Δξ = xk
j − (xk

i1 +(xk
i3 − xk

i2)) (12)

(if the step leads out of Sx j , then its length is reduced until we reach the border of
Sx j ).

Random-Walk. Given the agent x and its associated hyperrectangle Sx, four different
kinds of mutation actions are performed all arising from the following displacement
of a component i of the agent:

Δξi = w1rt(�i − xi)+ (1 − w1)rt (ui − xi) (13)

where �i and ui are respectively the lower and upper limits of xi within Sx ∩H, r is a
uniform random number in [0,1], w1 = 1 with some probability pi and w1 = 0 with
probability 1 − pi, and t ≥ 0 is a shape parameter (t = 1 corresponds to uniform
sampling, while t > 1 favors more local moves). The four mutation actions are the
following:
• all components i are perturbed according to (13) with t = 1 and pi = 0.5;
• a component i is selected at random and perturbed according to (13) with t = 1

and pi = 0.5;
• a component i is selected at random and perturbed according to (13) with t = 0.5

and pi = 0.5;
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• a component i is selected at random and randomly fixed either at its lower limit
or its upper limit in the region Sx ∩H, i.e., t = 0 and pi = 0.5.

Linear blending. Once a mutation action on agent x has been performed, its result,
denoted by y, is further refined through blending procedures. Linear blending cor-
responds to the following displacement:

Δξ = α2rt(y− x)+ α1(y− x). (14)

where α1,α2 ∈ {−1,0,1}, r ∈ [0,1] is a random number, and t a shaping parameter
which controls the magnitude of the displacement. Here we use the parameter val-
ues α1 = 0, α2 = −1, t = 1, which corresponds to extrapolation on the side of x,
and α1 = α2 = 1, t = 1, which corresponds to extrapolation on the side of y. If the
displacement defined by an extrapolation action is too large, i.e., the resulting point
is outside the hyperrectangle associated with the current agent, then it is reduced
until the resulting point is within the hyperrectangle.

Quadratic blending. The outcome of the linear blending can be used to construct a
second order local model of the fitness function. We can define a second order
blending operator that generates a displacement using the agent x, the perturbation
y obtained by mutation, and the new point z generated by the linear blending oper-
ator. A second order one-dimensional model of the fitness function along the line
with direction x − z is obtained by fitting the fitness values in the three points x,
y and z. Then, the new point is the minimum of the second-order model along the
intersection of the line with the hyperrectangle associated with the agent.

As already pointed out, the inertia action is performed at most once. All the other actions
are cyclically performed until either an improvement is observed or the number s(xk

j)
of actions is reached. Note that in each cycle only one of the four mutation actions is
performed in turn.

4.2.1 Size and Effort Update

Given an agent xk
j ∈ Π in

k , its size parameter ρ(xk
j), defining the hyperrectangle Sxk

j cen-

tered at xk
j, and its effort parameter s(xk

j), giving the maximum number of actions ap-
plied to it, are updated at each generation. Both are reduced or enlarged depending on
whether an improvement has been observed or not in the previous generation.

If xk+1
j �= xk

j , i.e., an improvement has been observed for agent j at iteration k, then
the effort is updated according to the following formula:

s(xk+1
j ) = max{s(xk

j)+ 1,smax},

i.e., it is increased by 1, unless the maximum allowed number of actions has been al-
ready reached (recall that in the computations smax has been fixed to the dimension n of
the problem). Basically, we are increasing the effort if the agent is able to improve. In
the same case the size is increased by the following formula:

ρ(xk+1
j ) = max{ρ(xk

j) ln(e + rank(xk+1
j )),1}
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where rank(xk+1
j ) is the ranking of the agent xk+1

j within the population Πk (the best
individual has rank equal to 1, the second best equal to 2, and so on). Basically, the
worse the ranking of an individual, the greater the possible increase of the radius will
be. The increase is limited from above by 1 (when ρ = 1 the local region around the
agent to be explored is equal to the whole domain H). The idea is that for low ranked
individuals it makes sense to look for larger improvements and then to try to find a
better point in larger regions making the search more global.

If no improvement is observed, then the effort is updated according to the following
formula:

s(xk+1
j ) = max{s(xk

j)− 1,1},

i.e., it is decreased by 1, unless the minimum allowed number of actions has been al-
ready reached.

In the same case the size is reduced according to the following rule. Let ρmin(xk
j) be

the smallest possible reduction of the size parameter such that the child y∗ of xk
j with

best fitness value is still contained in the hyperrectangle. Then:

ρ(xk+1
j ) =

{
ρmin(xk

j) if ρmin(xk
j) ≥ 0.5ρ(xk

j)
0.5ρ(xk

j) otherwise

i.e., the size parameter is reduced to ρmin(xk
j) unless this is smaller than 0.5ρ(xk

j), in
which case we only halve the size parameter.

4.3 Filtering

Given a population Πk, a filter simply subdivides the population into two parts, Π in
k

and Π out
k . Π in

k contains the best members of the population Πk, i.e., those with the best
fitness values, while Π out

k contains all the other individuals in Πk. The main difference
between agents inside and outside the filter is that on agents outside the filter, only mu-
tation actions (see equation (13) below) over the whole subdomain H are performed
(for each agent outside the filter the number of these mutation actions is a random
one between 1 and the size of Π out

k ), while also other actions, allowing a deeper local
exploration, are performed on agents inside the filter (see the following Section 4.2).
Moreover, values ρ and s are only updated for agents in Π in

k (see the following
Section 4.2.1). In the case an agent outside the filter at iteration k enters the filter at
iteration k + 1, its ρ and s values are initialized as specified in Step 0.

4.4 Archive Update

Let ρtol be a small threshold value, xi be an agent whose size parameter is below the
threshold value, i.e., ρ(xi) < ρtol and Li be the set of agents whose normalized distance
from xi is below the threshold ρtol (including xi itself). If agent xi is the best one in
Li (from the point of view of P), then all agents in Li are randomly regenerated within
the current domain H and xi is inserted in archive Al , while if it is not, only agent xi is
randomly regenerated within H. At termination of the MACS algorithm we insert the
whole final population into the archive.
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4.5 Stopping Rule

The stopping rule is quite simple: the search within a subdomain is stopped when a
prefixed number Ne of function evaluations is reached.

4.6 Definition of P for Multiobjective Optimization

Although the problem formulation through the definition of P is general and applica-
ble to both single objective and multiple objective optimization problems, either con-
strained or not, the actual property is substantially different depending on the type of
problem.

For box constrained multi-objective problems the property P can be defined by the
value of the scalar dominance index Id , thus:

Id(x) > Id(xke)+ ε ⇒ P(xke) = true (15)

where ε is now the minimum expected improvement in the computation of the domi-
nance. Note that this easily accommodates the concept of ε dominance.

Now, when multiple outcomes with the same dominance index are generated by
either social or individualistic actions, the one that corresponds to the longest vector
difference in the criteria space with respect to x is considered. Note that in many sit-
uations the action selection scheme in Fig. 1 generates a number of solutions that are
dominated by the agent x. Many of them can have the same dominance value; therefore
in order to rank them, we use the modified dominance index:

Id(x) =
∣∣
∣
{

j | f j(xke) = f j(x)
}∣∣
∣κ +

∣∣
∣
{

j | f j(xke) > f j(x)
}∣∣
∣ (16)

where κ is equal to one if there is at least one component of f(x)=[ f1, f2, ..., fNf ]
T which

is better than the corresponding component of f(xke), and is equal to zero otherwise.
Now, if for the ke

th outcome, the dominance index in Eq.16 is not zero but is lower
than the number of components of the objective vector, then the agent x is only partially
dominating the ke

th outcome. Among all the partially dominated outcome with the same
dominance index we chose the one that satisfies the condition:

min
ke

〈(
f(x)− f(xke)

)
,e

〉
(17)

where e is the unit vector of dimension Nf , e = [1,1,1,...,1]T√
Nf

, and Nf is the number of

objective functions.
Since the partially dominated outcomes of one agent could dominate other agents

or the outcomes of other agents at the end of every evolution cycle all the outcomes
are added to the archive. Then, the dominance index in Eq.4 is computed for all the
elements in Al and only the non-dominated ones are preserved.

4.7 Hybridization with Domain Decomposition

The Multiagent Collaborative Search described in the previous section is a stochastic
process. In order to improve its robustness (repeatability of the result) and increase the
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exhaustiveness of the search, MACS is combined with a deterministic domain decom-
position technique. The search space D, is a hyperrectangle and the subdomains into
which it is subdivided are also hyperrectangles. The stochastic algorithm searches on
the subdomains in order to evaluate them. In this section we will give the details of the
deterministic method.

Below we give the description of a generic branching procedure for GO problems.

BRANCHING PROCEDURE
Step 0. Initialization Let F = {D}.
Step 1. Node selection Let θ be a function which associates a value to each node H ∈

F . Then, select a node H ∈ F such that

H ∈ arg min
H∈F

θ (H), (18)

Step 2. Evaluation Evaluate the selected node H through some procedure.
Step 3. Node branching Subdivide H into η nodes Hi, i = 1, . . . ,η , for some integer

η ≥ 2, and update F as follows:

F = (F \ {H})∪{H1, . . . ,Hη}.

Step 4. Node deletion Delete nodes from F according to some rule.
Step 5. Stopping rule If F = /0, then STOP. Otherwise, go back to Step 1.

Note that in the scheme above each node corresponds to a subdomain, and in what
follows the two terms will be used as synonymous. Such scheme is quite typical for
branch-and-bound methods. For these methods θ delivers a lower bound for each sub-
domain; each node is evaluated by evaluating feasible points within the corresponding
subdomain (if any) and possibly updating the upper bound; node branching can be
performed in several ways; node deletion is done through standard fathoming rules.
However, what is missing in our context is an easy way to obtain bounds. Therefore,
while we retain the branching structure, we need some other ways to define a function
θ and to evaluate, branch and delete nodes. All this will be specified in the following
subsections.

4.7.1 Node Evaluation
The evaluation of a subdomain H is done by running the MultiAgent Collaborative
Search (MACS) algorithm within H. The MACS algorithm explores the subdomain H
and stores in a local archive Al all the promising points in H. The local archive Al is
then compared to the global archive Ag containing all the points in the search space for
which P is true. The points in Ev(H) = (Al ∩ Ag)∩ H represent the evaluation of the
subdomain.

4.7.2 Node Branching
First we recall that each subdomain is a hyperrectangle. Branching is done through the
standard bisection method: the (relative) largest edge of the domain to be subdivided is
selected and two new subdomains (i.e, η = 2) are obtained by splitting with respect to
a point midpoint x̃. More formally, let



Hybrid Behavioral-Based Multiobjective Space Trajectory Optimization 243

H = [a1,b1]×·· ·× [an,bn]

be the domain to be subdivided. Let

j ∈ arg max
i=1,...,n

bi − ai

Di − di
,

where di and Di denote respectively the lower and upper bounds for variable xi in the
original domain D. We can now subdivide the interval bi − ai into a number n j of
subintervals and look for the one that contains the majority of the points in H. Now
if the subinterval has boundaries bik and aik with k = 1, ...,n j, the cutting point x̃ j is
defined as:

x̃ j =
{

bikif (bi − bik) > (aik − ai)
aikif (bi − bik) ≤ (aik − ai)

Then, we define the two new subdomains

H1 = [a1,b1]×·· ·× [a j, x̃ j]×·· ·× [an,bn],

H2 = [a1,b1]×·· ·× [x̃ j,b j]×·· ·× [an,bn].

4.7.3 The Game of Exploration
The selection of the subdomain H on which to perform a new search with MACS de-
pends on the outcome of a simple game between two players: explorer and exploiter.

Before presenting the game and selection process, we need to introduce two other
functions ω and ϕ . Let H be a given subdomain and H̃ be its father. Function ω is
defined as follows for H:

ω(H) =
max{N(H),1}

N
�(D)
�(H)

(19)

where �(·) denotes the geometric mean of the edge lengths of an n-dimensional hyper-
rectangle, N is the number of points in Ev(H̃), obtained through the evaluation of the
father node H̃ by the MACS algorithm, and N(H) is equal to the number of points in
Ev(H̃) which also belong to H, i.e., N(H) =| Ev(H̃)∩H | (for the root node D we sim-
ply set N(D) = N). We also remark that in (19) the ratio between geometric means of
the edge lengths can also be viewed as the nth root of a ratio between volumes:

�(D)
�(H)

=
(

Vol(D)
Vol(H)

) 1
n

.

Then, small values for ω are obtained for subdomains with small N(H) and large vol-
ume, i.e., for subdomains with a low density of observed points. Function ϕ is defined
as follows:

ϕ(H) = |{i|I(xi) = 0}| (20)

Now, the player explore always tries to maximize the volume of the explored space
and therefore selects the subdomain with the lowest value of ω . The player exploiter
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always tries to maximize convergence and thus selects always the subdomain with the
highest value of ϕ . If both players play explore (explore-explore strategy), then the al-
gorithm will select the subdomain with the smallest ω for further exploration, if both
players play converge (converge-converge strategy), then the algorithm will select the
subdomain with the highest ϕ . If explorer plays explore first and exploiter plays con-
verge (explore-converge strategy) then, the algorithm will rank the subdomain accord-
ing to ω and then, among the first nω of them will take the one with the largest number
of elements in Al . Vice versa, if exploiter plays first (converge-explore strategy), the
algorithm will rank the subdomains according to ϕ and among the first nϕ will select
the one with the lowest ω . The selection of the strategy to play depends on the outcome
of the game.

If both players play converge then exploiter gets a reward only if it finds an improve-
ment while explorer gets no reward whatsoever. Since we are interested in collecting as
many different elements of a set as possible, this strategy is not convenient for any of
the two players. If both players play explore then the explorer gets a reward while the
exploiter gets half of the reward of the explorer only if an improvement is registered.
This strategy is convenient if no improvements are registered with any other strategy
or if no information is available. Thus, it is the first strategy that both players play at
the beginning. The outcome of the exploration of a subdomain could be: a) a number
of points belonging to the set X higher than the one already available, b) a number of
points belonging to the set X lower or equal to the number already available, c) no points
belonging to the set X . In the last case the algorithm plays explore-explore, in case a)
though the subdomain looks promising the higher number of points could suggest an
over-exploitation of the subdomain and the algorithm then plays explore-converge. Fi-
nally, in case b) the algorithm plays converge-explore.

4.8 Discussion

The hybrid behavioral-based approach presented in the previous sections is one possible
implementation of the concept expressed by Eq.8. In particular we used a very simple
action selection mechanism for both social and individualistic actions. More sophisti-
cated mechanisms may allow for a reduction of the number of function evaluations or
could include a learning mechanism. Furthermore, in the present implementation there
is a limited use of the past history of the search process. The behavior Eq.8 depends on
the archive Al , which works as a repository of the social knowledge, and on the state of
the agent at step k − 1, therefore only a partial history is preserved and used.

4.9 Preliminary Optimization Test Cases

The proposed optimization approach, combining MACS with deterministic domain de-
composition, was implemented in a software code in Matlab called EPIC, and tested on
a number of standard problems, well known in literature. In a previous work [24, 25],
EPIC was tested on single objective optimization problems related to space trajectory
design, showing good performances.

Here we initially used a set of test functionsthat can be found in [10, 9]. In the next
section EPIC will be tested on a typical space trajectory optimization problem.
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Table 1. Multiobjective test functions

Scha f2 = (x−5)2 ; f1 =

⎧
⎪⎪⎨

⎪⎪⎩

−x i f x ≤ 1
−2+x i f 1 < x < 3
4−x i f 3 < x ≤ 4
−4+x i f x > 4

x ∈ [−5,10]

Deb f1 = x1 x1,x2 ∈ [0,1]

f2 = (1+10x2)
[
1−

(
x1

1+10x2

)α
− x1

1+10x2
sin(2πqx1)

]
α = 2;. q = 4

T4 g = 1+10(n−1)+∑n
i=2[x

2
i −10cos(2πqxi)]; x1 ∈ [0,1];

h = 1−
√

f1
g xi ∈ [−5,5];

f1 = x1; f2 = gh i = 2, . . . ,n

The test case, T4, is commonly recognized as one of the most challenging problems
since it has 219 different local Pareto fronts of which only one corresponds to the global
Pareto-optimal front. In this case the exploration capabilities of each single agents are
enough to locate the correct front with a very limited effort. In fact even with just five
agents it was possible to reconstruct (see Fig. 2b) the correct Pareto front 20 times over
20 different runs. The total number of function evaluations was fixed to 20000 for each
of the runs, though already after 10000 function evaluations EPIC was always able to
locate the global front (see Fig. 2a).

Despite the small number of agents the sampled points of the Pareto are quite well
distributed with just few and limited interruptions. The use of a limited number of agents
instead of a large population is related also to the complexity of the algorithm. In fact
the complexity of the procedure for the management of the global archive is of order
nA(np + nA), where nA is the archive size and np is the population size, while the com-
plexity of the exploration-perception mechanism is of order np(n+np), therefore, even
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Fig. 2. Pareto front for the test case T4: a) 10000 function evaluations, b) 20000 function
evaluations
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Table 2. Comparison of the average Euclidian distances between 500 uniformly space points on
the optimal Pareto front for various optimization algorithms

Approach T4 Scha Deb
EPIC 1.542e-3 (5.19e-4) 5.4179e-4 (1.7e-4) 1.4567e-4 (3.61e-4)
NSGA-II 0.513053 (0.118460) 0.002536 (0.000138) 0.001594 (0.000122)
PAES 0.854816 (0.527238) 0.002881 (0.00213) 0.070003 (0.158081)
MOPSO 0.0011611 (0.0007205) 0.002057 (0.000286) 0.00147396 (0.00020178)

if the algorithm is overall polynomial in population dimension, the computational cost
would increase quadratically with the number of agents.

As an additional proof of the effectiveness of MACS, we compare the average Eu-
clidean distance of 500 uniformly spaced points on the true optimal Pareto front from
an equal number of points belonging to the solution found by EPIC, NSGA-II, PAES
and MOPSO (see Table 2).

5 Application to Space Trajectory Design

In this section we present an apparently very simple example of space trajectory opti-
mization. It is a two impulse transfer from the Earth to the asteroid Apophis. As it often
happens, the goal is to minimize the propellant consumption and the time of flight. The
cost of the mission, in fact, increases proportionally to both quantities.

The propellant consumption is a function of the velocity change, or Δv[23], required
to depart from the Earth and to rendezvous with Apophis. Both the Earth and Apophis
are point masses, with the only source of gravity attraction being the Sun. Therefore,
the spacecraft is assumed to be initially at the Earth, flying along its orbit. The first
velocity change, or Δv1, is used to leave the orbit of the Earth and put the spacecraft
into a transfer orbit to Apophis. The second change in velocity, or Δv2, is then used to
inject the spacecraft into Apophis’ orbit.

The two Δv’s are a function of the positions of the Earth and Apophis at the time
of departure t0 and at the time of arrival t f = t0 + T , where T is the time of flight. The
contour lines of the sum of the two Δv is represented in Fig. 3 for t0 ∈ [3675,10500]T

MJD2000 and T ∈ [50,900]days.
As can be seen in the specified solution space D there is a large number of local

minima. Each minimum has a different value but some of them are nested, very close to
each other with similar values. For each local minimum, there can be a different front of
locally Pareto optimal solutions. The global Pareto front should contain the best transfer
with minimum total Δv and the fastest transfer with minimum TOF.

The best known approximation of the global Pareto front is represented in Fig. 4. It
is a disjoint front corresponding to two basins of attraction of two minima as can be
seen in Fig. 5. The lower front is made of solutions with a very low transfer time, the
upper front, instead, is made of solutions with a much longer transfer time but a total
Δv similar to the one of the solutions belonging to the lower front.

Besides containing local minima with similar Δv, the two basins of attraction present
similar values of the first objective function. Converging to the upper front is therefore
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Fig. 4. Earth-Apophis transfer: dual front

quite a challenge since the lower front has a significantly lower value of the second
objective function. It is only when the optimizer converges to the a vicinity of the local
minimum of the upper front that the latter becomes not dominated by the lower front.
The upper front contains the global minimum with a total Δv = 4.3786 k/s while the
lower front contains only a local minimum.
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Fig. 5. Earth-Apophis transfer: distribution of the solutions in the search space

Table 3. Comparison of the metrics M1 and M2 ont he Earth-Apophis case

Approach Metric 3000 6000 9000
EPIC M1 4% (39.00) 38% (22.28) 51% (17.53)

M2 1.89 (5.9) 1.66 (5.14) 0.66 (3.22)
NSGA-II M1 10% (26.51) 19% (27.54) 24% (25.63)

M2 20.96 (27.78) 11.99 (16.20) 10.12 (12.82)

In order to test the multi-objective optimizers with this simple but typical space tra-
jectory design problem, we define two metrics:

M1 =
1

Mp

Mp

∑
i=1

min
j∈Np

100
∥
∥
∥

f j − fi

fi

∥
∥
∥ (21)

M2 =
1

Np

Np

∑
i=1

min
j∈Mp

100
∥∥
∥

f j − fi

f j

∥∥
∥ (22)

Although similar, the two metrics are measuring two different things: M1 is the sum,
over all the elements in the global Pareto front, of the minimum distance of all the
elements in the Pareto front Np from the the ith element in the global Pareto front. M2,
instead, is the sum, over all the elements in the Pareto front Np, of the minimum distance
of the elements in the global Pareto front from the ith element in the Pareto front Np.

Therefore, if Np is only a partial representation of the global Pareto front but is a very
accurate partial representation, then metrics M1 would give a high value and metrics M2
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Fig. 6. Earth-Apophis transfer: comparison of two not-converged runs

a low value. If both metrics are high then the Pareto front Np is partial and poorly
accurate. In Table 3 we represented metrics M1 and metrics M2, in brackets, for an
increasing number of function evaluations and for two different optimizers.

We compared EPIC against the optimization algorithm that displayed the best per-
formances on this case, NSGA-II. NSGA-II was run several times with crossover prob-
ability ranging from 0.5 to 0.9 in order to tune the main parameters, in particular we
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Fig. 7. Earth-Apophis transfer: domain decomposition process. The red circles are the non-
dominated solutions at each step while the blues dots are the whole set of solutions3.

performed several tests to find a good population size. The results in Table 3 were the
best obtained over all the runs. For 3000 function evaluations we used a population of
200 individuals while for the 6000 evaluations and the 9000 evaluations test we used a
population of 300 individuals since it was returning better results.

On the other hand EPIC was run with a very small population of 10 agents, with a
filter size of 5 agents. For, 3000 evaluations we did not use the domain decomposition.
For 6000 evaluations we used a decomposition in 2 subintervals. For 9000 evaluations,
we tested a 3 subdomain decomposition and a 2 subdomain decomposition. In both
cases the first cut is always along the TOF coordinate.
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For each number of function evaluations we performed 100 independent runs. The
table reports the percentage of times the metric M1 is below 2%, and in brackets the
average value of M1 over the 100 runs. It should be noted that a value of M1 larger
than 2% up to 10% does not necessary correspond to a fully unsuccessful run. The 2%
tolerance, on the other hand, guarantees that the algorithm was able to identify both
parts of the Pareto front with a good distribution of the points.

In the Table 3 we also reported the average value and the standard deviation (in
brackets) of metric M2. This second metric measures the accuracy of the convergence
to even a portion of the whole Pareto front.

As can be seen for a low number of function evaluations, NSGA-II performs better
than EPIC, though EPIC achieves a better value of M2, which means a better local
convergence on average. Conversely, when NSGA-II is not converging to the global
front, is converging to a local front, while when EPIC is not converging to the whole
global front is converging to a portion of it. Figs. 6 are showing two typical cases in
which the metric M1 is over 30% for both the optimization algorithms. In both cases the
number of function evaluations is 3000.

Fig. 7 shows an example of the domain decomposition process. At step 1 MACS is
run on the entire search space D and in this example identifies only the lower part of the
global front. The search space is then partitioned in two subdomains and MACS is run
on the unexplored one. The second step leads to the identification of a local front. The
third step explores the unexplored subdomain and identifies the upper part of the global
front. At each step MACS was run for 3000 function evaluations.

For a higher number of function evaluations, NSGA-II progressively increases the
number of successes, though the accuracy remains lower than for EPIC. The large pop-
ulation of NSGA-II, in fact, samples the solution space better than the small population
of EPIC. On the other hand the decomposition of the solution space allows EPIC to
increase the exploration even with a small number of agents. This is demonstrated by
the number of successful runs which is more than double than the one of NSGA-II.

6 Conclusions

In this chapter we presented a hybrid behavioral-based search algorithm for multiobjec-
tive optimization problems. We showed its effectiveness on a set of standard problems
and in particular on a space trajectory design problem. The latter, though very simple,
well illustrates some typical difficulties in the use of global methods for the design of
space trajectories.

Though some of them, like NSGA-II, perform statistically well, still on a small num-
ber of trials the result could be only a partial reconstruction of the full Pareto front or
a full but inaccurate reconstruction of it. The proposed hybridization increases the ro-
bustness (i.e. repeatability of the result) and the convergence accuracy at the same time.
Even the stochastic part of the algorithm, based on a multiagent system, performs better
compared to known optimizer. This is mainly due to good mixture of actions performing
both local and global search and to the adaptivity of the search.
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