5,392 research outputs found

    A Survey of Ocean Simulation and Rendering Techniques in Computer Graphics

    Get PDF
    This paper presents a survey of ocean simulation and rendering methods in computer graphics. To model and animate the ocean's surface, these methods mainly rely on two main approaches: on the one hand, those which approximate ocean dynamics with parametric, spectral or hybrid models and use empirical laws from oceanographic research. We will see that this type of methods essentially allows the simulation of ocean scenes in the deep water domain, without breaking waves. On the other hand, physically-based methods use Navier-Stokes Equations (NSE) to represent breaking waves and more generally ocean surface near the shore. We also describe ocean rendering methods in computer graphics, with a special interest in the simulation of phenomena such as foam and spray, and light's interaction with the ocean surface

    The Hierarchic treatment of marine ecological information from spatial networks of benthic platforms

    Get PDF
    Measuring biodiversity simultaneously in different locations, at different temporal scales, and over wide spatial scales is of strategic importance for the improvement of our understanding of the functioning of marine ecosystems and for the conservation of their biodiversity. Monitoring networks of cabled observatories, along with other docked autonomous systems (e.g., Remotely Operated Vehicles [ROVs], Autonomous Underwater Vehicles [AUVs], and crawlers), are being conceived and established at a spatial scale capable of tracking energy fluxes across benthic and pelagic compartments, as well as across geographic ecotones. At the same time, optoacoustic imaging is sustaining an unprecedented expansion in marine ecological monitoring, enabling the acquisition of new biological and environmental data at an appropriate spatiotemporal scale. At this stage, one of the main problems for an effective application of these technologies is the processing, storage, and treatment of the acquired complex ecological information. Here, we provide a conceptual overview on the technological developments in the multiparametric generation, storage, and automated hierarchic treatment of biological and environmental information required to capture the spatiotemporal complexity of a marine ecosystem. In doing so, we present a pipeline of ecological data acquisition and processing in different steps and prone to automation. We also give an example of population biomass, community richness and biodiversity data computation (as indicators for ecosystem functionality) with an Internet Operated Vehicle (a mobile crawler). Finally, we discuss the software requirements for that automated data processing at the level of cyber-infrastructures with sensor calibration and control, data banking, and ingestion into large data portals.Peer ReviewedPostprint (published version

    SciTech News Volume 71, No. 1 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division Aerospace Section of the Engineering Division 9 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 11 Reviews Sci-Tech Book News Reviews 12 Advertisements IEEE

    Interactive Visualization of Molecular Dynamics Simulation Data

    Get PDF
    Molecular Dynamics Simulations (MD) plays an essential role in the field of computational biology. The simulations produce extensive high-dimensional, spatio-temporal data describ-ing the motion of atoms and molecules. A central challenge in the field is the extraction and visualization of useful behavioral patterns from these simulations. Throughout this thesis, I collaborated with a computational biologist who works on Molecular Dynamics (MD) Simu-lation data. For the sake of exploration, I was provided with a large and complex membrane simulation. I contributed solutions to his data challenges by developing a set of novel visual-ization tools to help him get a better understanding of his simulation data. I employed both scientific and information visualization, and applied concepts of abstraction and dimensions projection in the proposed solutions. The first solution enables the user to interactively fil-ter and highlight dynamic and complex trajectory constituted by motions of molecules. The molecular dynamic trajectories are identified based on path length, edge length, curvature, and normalized curvature, and their combinations. The tool exploits new interactive visual-ization techniques and provides a combination of 2D-3D path rendering in a dual dimension representation to highlight differences arising from the 2D projection on a plane. The sec-ond solution introduces a novel abstract interaction space for Protein-Lipid interaction. The proposed solution addresses the challenge of visualizing complex, time-dependent interactions between protein and lipid molecules. It also proposes a fast GPU-based implementation that maps lipid-constituents involved in the interaction onto the abstract protein interaction space. I also introduced two abstract level-of-detail (LoD) representations with six levels of detail for lipid molecules and protein interaction. Finally, I proposed a novel framework consisting of four linked views: A time-dependent 3D view, a novel hybrid view, a clustering timeline, and a details-on-demand window. The framework exploits abstraction and projection to enable the user to study the molecular interaction and the behavior of the protein-protein interaction and clusters. I introduced a selection of visual designs to convey the behavior of protein-lipid interaction and protein-protein interaction through a unified coordinate system. Abstraction is used to present proteins in hybrid 2D space, and a projected tiled space is used to present both Protein-Lipid Interaction (PLI) and Protein-Protein Interaction (PPI) at the particle level in a heat-map style visual design. Glyphs are used to represent PPI at the molecular level. I coupled visually separable visual designs in a unified coordinate space. The result lets the user study both PLI and PPI separately, or together in a unified visual analysis framework

    Climate Services for Resilient Development (CSRD) Partnership’s work in Latin America

    Get PDF
    The Climate Services for Resilient Development (CSRD) Partnership is a private-public collaboration led by USAID, which aims to increase resilience to climate change in developing countries through the development and dissemination of climate services. The partnership began with initial projects in three countries: Colombia, Ethiopia, and Bangladesh. The International Center for Tropical Agriculture (CIAT) was the lead organization for the Colombian CSRD efforts – which then expanded to encompass work in the whole Latin American region

    Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package

    Get PDF
    We introduce the \texttt{pyunicorn} (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. \texttt{pyunicorn} is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics or network surrogates. Additionally, \texttt{pyunicorn} provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis (RQA), recurrence networks, visibility graphs and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology.Comment: 28 pages, 17 figure

    Space-time multiresolution approach to atomistic visualization

    Get PDF
    Time-varying three-dimensional positional atomistic data are rich in spatial and temporal information. The problem is to understand them. This work offers multiple approaches that enable such understanding. An interactive atomistic visualization system is developed integrating complex analyses with visualization to present the data on space-time multiresolution basis facilitating the information extraction and generate understanding. This work also shows the usefulness of such an integrated approach. The information obtained from the analyses represents the system at multiple length and time scales. Radial distribution function (RDF) provides a complete average spatial map of the distribution of the atoms in the system which is probed to explore the system at different length scales. Coordination environments and cluster structures are visualized to look at the short range structures. Rings are visualized to understand the medium range structure. Displacement data and covariance matrices are visualized to understand the dynamical behaviors. Combinations of rendering techniques including animation, color map, sphere, polygonal and ellipsoid representations, pathlines and glyphs are used during the visualization process. The three-dimensional atomic configurations are reproduced accurately during rendering because of their physical significance while attributes such as coordination number, coordination stability and atomic species lack direct physical relevance and provide additional flexibilities in rendering. The performance results show interactive frame rates are achievable for systems consisting upto a thousand atoms. Such systems are typical of the systems simulated using first principles molecular dynamics simulations. The effectiveness and the usefulness of this work are justified for complex material systems using silicate and oxide liquids for visual analyses. The exploratory approach taken here has not been reported anywhere else before. The major contributions of this works are: 1. A new approach to the atomistic visualization advocating a formal integration of data analyses into the visualization system to improve the effectiveness and also present an implementation of the exploratory atomistic visualization system with integrated spatio-temporal analytical techniques. 2. The modeling of coordination environments, stability of the coordination environments, clusters, ring structures and diffusion for individual atoms. 3. The use of the visualization system for visual analysis of various liquid mineral systems of geophysical relevance

    CWI-evaluation - Progress Report 1993-1998

    Get PDF
    • …
    corecore