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Abstract: Measuring biodiversity simultaneously in different locations, at different temporal scales,
and over wide spatial scales is of strategic importance for the improvement of our understanding
of the functioning of marine ecosystems and for the conservation of their biodiversity. Monitoring
networks of cabled observatories, along with other docked autonomous systems (e.g., Remotely
Operated Vehicles [ROVs], Autonomous Underwater Vehicles [AUVs], and crawlers), are being
conceived and established at a spatial scale capable of tracking energy fluxes across benthic and
pelagic compartments, as well as across geographic ecotones. At the same time, optoacoustic
imaging is sustaining an unprecedented expansion in marine ecological monitoring, enabling
the acquisition of new biological and environmental data at an appropriate spatiotemporal scale.
At this stage, one of the main problems for an effective application of these technologies is the
processing, storage, and treatment of the acquired complex ecological information. Here, we provide
a conceptual overview on the technological developments in the multiparametric generation, storage,
and automated hierarchic treatment of biological and environmental information required to capture
the spatiotemporal complexity of a marine ecosystem. In doing so, we present a pipeline of ecological
data acquisition and processing in different steps and prone to automation. We also give an example
of population biomass, community richness and biodiversity data computation (as indicators for
ecosystem functionality) with an Internet Operated Vehicle (a mobile crawler). Finally, we discuss the
software requirements for that automated data processing at the level of cyber-infrastructures with
sensor calibration and control, data banking, and ingestion into large data portals.

Keywords: cabled observatories; crawler; imaging; ecological information treatment; ecological
indicators; data banking; artificial intelligence; cyber-infrastructures

1. Introduction

Earth System Science is embracing the idea that all processes on this planet are interconnected [1,2].
Ecological monitoring has been, to date, a central issue in marine sciences, since the footprint of human
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impacts on oceanic natural systems is growing to unparalleled historic levels [3], and industries are
forcing a race for the exploitation of marine areas for which science has no available data yet [4]. In this
scenario, the developments in mechatronics and robotic applications are greatly benefitting marine
sciences by favoring the exploration and multidisciplinary monitoring of ecosystems [5,6]. Presently,
robotic platforms are being designed for applications in the marine domain, in order to increase the
effectiveness of autonomous operations and remote data acquisition and communication, as well as
to overcome vessel assistance or more direct human intervention [7]. Longer autonomy in operative
missions is also being implemented through the improvement of decision-making algorithms based on
real-time data interpretation and of adaptive routines for the spatiotemporal exploration of monitored
marine areas and for the communication of the acquired information [8]. All such capabilities rely on
the augmentation of both battery duration and computational power for real-time or near real-time data
processing and communication [9–14]. Such autonomous operability is increasing the inter-platform
capability to communicate reciprocal location and measurements of performance and to operate
cooperatively in a synchronous fashion in the same area [15–18], as successfully implemented via
nature-inspired optimization approaches [19,20].

Cabled observatories can be upgraded for multidisciplinary ecological monitoring, especially
when based on optoacoustic imaging applications and complex environmental data acquisition [21,22].
Optoacoustic imaging technologies (e.g., High Definition [HD], multibeam, stereo- and hyperspectral
imaging, optical 3D sensors, and imaging sonars) can deliver real-time information on organisms’
presence, local abundance, as well as species composition (richness) and biodiversity, which can
be related to concomitant environmental changes [23]. Imaging per se is, therefore, sustaining the
revolution of the ecological monitoring of marine communities at all depths [24]. In this framework,
Danovaro et al. [4] described the need for an incoming “biological revolution” based on “cameras as
intelligent sensors” via Artificial Intelligence (AI) implementations in the tracking and classification
of different marine species. This would enable the delivery of data on organisms and ecosystems to
complement massive ecological, physical, and geochemical time series [25–27] in an effort to address
present knowledge gaps for future marine biodiversity conservation and restoration policies. Examples
of such needs, analytically presented in the recent Intergovernmental Science-Policy Platform on
Biodiversity and Ecosystem Services (IPBES) and the Intergovernmental Panel on Climate Change
(IPCC) reports, include ocean biogeochemistry (e.g., carbon cycle, primary production, carbon burial,
etc.) and the effect of the climate and hazards on biological systems from the individual to community
level (e.g., ecosystem capacity and limits of biological adaptation) [28,29].

Rountree et al. [30] identified different factors that limit the applicability of the video-tracking of
fauna behavior, habitat resource utilization, and ecological interactions in cabled observatories, with
limited spatial coverage being the principal constraining factor. In such cases, the collected information
may not be fully representative of the reality it wants to describe, leading to potential problems in the
form of biased interpretations of data. Statistically sound pre-planning, such as the random acquisition
of information over an appropriate temporal and spatial scale, can address this issue [31] and should
be more common in the marine domain. The issue of the poor representation utility of sampled
marine data and the needed remedies were highlighted in [32]. Such a spatial limitation could be
mitigated by deploying standardized modular units across wide bathymetric ranges and over different
geographic regions.

Recently, Aguzzi et al. [23] described how fixed and mobile platforms are being organized
in monitoring networks at a spatial scale capable of tracking energy fluxes across benthic and
pelagic compartments, as well as across ecotones. These could represent the birth of robotized
multidisciplinary ecological laboratories (i.e., where in situ manipulations can occur), deployable
at virtually any depth of the continual margin and in abyssal plains, thanks to cooperation with
various industries (Figure 1). Highly integrated benthopelagic monitoring providing seafloor and
water column flux data (i.e., superficial and vertical profiling buoys, including neutrino telescopes)
could enforce a holistic strategy in cooperation with satellites and less frequent vessel-assisted surveys.



Sensors 2020, 20, 1751 3 of 21

This coupled measurement would link sea surface processes (e.g., primary productivity) to carbon
fluxes input at the seabed in real-time [33]. When biological data are acquired over consecutive years
at a high frequency from all points within a spatial network, indicators like species density, biomass,
and the resulting biodiversity can be calculated, and their status changes can be tracked according to
concomitant environmental fluctuations [34,35]. In addition, relevant data on behavioral interactions
among species (i.e., food web architectures) and ecological changes due to anthropic impacts can also be
extracted [23]. Moreover, benthic network assets can be tuned to receive information from animal-borne
technologies, delivering data on the environmental variability experienced by individuals during their
displacements (i.e., data loggers storing oceanographic information of crossed seascapes [36,37]).

As a result of this technological development, marine ecology is gradually filling up some
knowledge gaps on species life traits and ecosystem functionality dynamics, which are of relevance for
the conservation and management of marine ecosystems (Table 1).
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animal-borne technologies) in different seabed environments. These areas can become robotized 
marine laboratories for real-time observations, also able to gather data from the water column, as the 
observatory system is routinely inspected by research vessels and their assisting technologies, as well 
as at the sea surface by buoys and satellite teledetection. 
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might be filled. In doing so, we present an example of ecological data acquisition and processing 
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community richness, and biodiversity) to be used for the management of species of economic value. 
Finally, we discuss the software requirements for data processing, banking, and ingestion into large 
data portals. 

Figure 1. Scheme of a multidisciplinary robotized network of cabled observatories and docked mobile
platforms (crawlers, Remotely Operated Vehicles [ROVs] and Autonomous Underwater Vehicles
[AUVs], and benthic moorings) branching off from telecommunication cables for powering and data
transfer, along with an enlarged vision of platforms and animals bearing data loggers (i.e., animal-borne
technologies) in different seabed environments. These areas can become robotized marine laboratories
for real-time observations, also able to gather data from the water column, as the observatory system is
routinely inspected by research vessels and their assisting technologies, as well as at the sea surface by
buoys and satellite teledetection.
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Table 1. Knowledge gaps existing in marine ecology, which increase according to the species
distribution depth, due to difficulties in repeating the field sampling with vessel assisted technologies,
at spatiotemporally representative ecological scales (adapted from [21,38]).

Autecology Biomass
Distribution ranges (bathymetric, geographic, endemism)
Connectivity ranges of adults (passive movement by currents, active movement by
locomotor activity)
Reproduction cycles (seasonal bathymetric displacements)
Growth cycles (growth rates and longevity)
Sex ratio (dimorphism in color and size)
Trophic niche (food items)
Rhythmic mode of displacement (endobenthic, nektobenthic, and benthopelagic)
Ethology (intra- and interspecific interactions)
Bioturbation (burrowing, burying)

Synecology Richness and Biodiversity (taxonomic and functional)
Trophic architecture (Guilds taxonomic composition, redundancy)
Animal-mediated benthopelagic coupling/energy transference (deep scattering layers,
bioluminescence panoramas)
Nurseries/Spawning grounds
Productivity (biomasses)

2. Objectives

To date, the ecological multiparametric information acquired by cabled observatories and their
networks is still poorly representative of the true scale of ecological phenomena it wants to describe.
That is, information collection is yet not organized in a way that properly represents the structural
complexity of the marine ecosystem. This risks reducing the value of such data in terms of the true
ecosystem state and dynamics. Therefore, there is clear urgency to indicate a roadmap in the handling
of the increasingly automatized acquisition and treatment of marine data along the envisaged growth
of robotized monitoring networks. Here, we provide a conceptual overview on the technological
developments in the generation, storage, and automated hierarchic treatment of such information,
such that the spatiotemporal structural complexity of a marine ecosystem might be better captured and
current knowledge gaps regarding marine biodiversity and conservation might be filled. In doing so,
we present an example of ecological data acquisition and processing along the computation of indicators
for ecosystem functionality (i.e., population biomass, community richness, and biodiversity) to be used
for the management of species of economic value. Finally, we discuss the software requirements for
data processing, banking, and ingestion into large data portals.

3. A New Numerically-Sustained Marine Ecology

The capability to remotely acquire multiparametric biological and environmental data at a high
frequency (i.e., in real-time) continuously over several years is gradually allowing a transition from
episodic to temporal analysis in quantitative marine ecology. These studies may obtain conclusions
similar to those derived from land ecology based on high-frequency and long-lasting time series of
multidisciplinary data [39–41]. Such complex quantitative analyses are facilitated by a data science
approach for the acquisition and processing of marine big-data, including multivariate statistical tools.
Those tools allow an exploratory analysis that counters the risk of significance inflation [42,43] in
order to identify robust indicators and environmental drivers useful for ecological monitoring and
management (i.e., a bottom up approach).

3.1. The Pipeline for the Computing of Ecological Indicators

The rate and exchange of energy into the ecosystems determines their functionality
(e.g., productivity), resulting in perceivable biodiversity, whose monitoring is of strategic importance
for the management and conservation of marine ecosystems [44]. This ecological monitoring should
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be able to address different aspects of that ecosystem functionality and dynamics in real-time and
in a continuous way, possibly over decades at adequate temporal scales via a spatially hierarchic
organization of platforms (Figure 2). Accordingly, acquired multidisciplinary data from different
sources may also generate different hierarchic ecological meanings (i.e., focusing on individuals
and populations compared to species and communities), which are of value when dedicated to the
measurement of ecosystem services and their ecological status (e.g., biomass). In this context, a pipeline
to extract indicators of biodiversity and ecosystem functionality from simple input biological variables
should be established as a guideline for hardware and software infrastructure development. That
pipeline for ecological data treatment can be tailored trough different sequential steps that can be
automated [34]:

1. The automatically acquired counts for motile megafauna species moving around a cabled
observatory station, along with, for instance, animal sizing (obtained by stereo or acoustic
multi-beam, time-of-flight 3D systems, or laser-scan imaging) and codified behavioral activity
(e.g., scavengers, predators, etc.) are input “biological variables” that act as a first basic layer of
biological information. This procedure should be done for each network platform independently.

2. A ratio between the counted animals in different observatory stations and the whole video-imaged
or acoustically scanned area (by adding all fields of views together) could serve as a density
estimate, which, together with rough estimates of class-size frequency distribution and total
biomass could be classified as “biological parameters” in the next stage of system complexity. This
procedure should be performed by pooling together data from all platforms of the monitoring
network at corresponding time-lags.

3. When data on local densities are computed for all species within a list (richness), evenness can be
obtained as a measure for biodiversity. Richness and evenness are ecological indicators within a
third layer of sematic information since they are attributes of ecosystem functionality. At this
level, ecological interactions can be calculated as descriptors for the food web architecture
by multivariate statistic approaches (i.e., species clustering in a Cartesian space indicates
spatiotemporal co-occurrence and may be used to highlight recurrent associations).

If feasible, all these measurements should be automatized in the form of a pipeline deployment
within the observatory network. At this point, the estimation reliability would still depend on how the
observatory network is set up to produce as much representative data as possible at an appropriate
spatial and temporal scale.

The ecological data calculated/derived from this pipeline are meant to produce ecological models
and forecasts (see Figure 2) to support biodiversity monitoring and management at an appropriate
hierarchical level. That is, statistical analysis (e.g., machine learning) tools can be used to perform
abundance modeling (i.e., intermediate semantic layers) of ecologically or economically important
species. Similarly, one can model carbon and energy fluxes as key ecosystem functions (i.e., the top
semantic layer). As the huge amount of literature on ecological modeling surpasses the goal here, we
only refer to some seminal references [45–48]. However, an important note is in order. Using only
classical statistical tools will likely not be enough to encompass the data complexity ensuing from
the above pipeline. The field of ecological modeling is, today, quickly responding to such changes in
data complexity, and substantial development in the available analysis tools is expected. Also, some
modeling applications might have to live inside the marine equipment to communicate live estimates
and predictions as part of the whole AI development, which could force us to think of new ways to
better integrate ecological modeling in this automatic pipeline.
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Figure 2. Different mechatronic hardware and software solutions (from cabled observatories to
their networks, integrating docked mobile platforms) to enforce ecological monitoring at different
spatiotemporal scales (from local to geographic; from days to years). As a result, data can be achieved at
different levels of ecological organization (from the individual to the species and the whole community)
under the form of the currently prioritized ecological indicators for management, following the strategic
advice of Danovaro et al. [21]. Such spatio–temporal coordination in platform monitoring requires
different levels of engineering complexity starting from the need to develop sensor calibration into a
common platform environment to platforms coordinating navigation and data collection. Subsequent
cyber-infrastructure development is required to store and process data, at the same time providing the
tools for their online visualization and later ingestion into larger international repositories, thereby
feeding ecological models and forecasts.

3.2. An Example with Data Form the Crawler Mobile Platform

An automatized pipeline for multiparametric data acquisition, treatment, and elaboration,
consisting of consecutive and, therefore, potentially automated steps [23], is described in detail above
(see Figure 2). This pipeline starts with the acquisition of biological and environmental variables
(as inputs) and ends with the computing of ecological indicators (the outputs) useful for ecosystem
monitoring, modeling, and forecasting. An example based on a benthic crawler is provided below
(Table 2).

This crawler is a compact, mobile platform moving on caterpillars, with an umbilical cable
connected to a central seafloor node providing a power supply, communication with the remote user,
and data transfer [49]. It was deployed at the methane hydrate site of Barkley Canyon, off Vancouver
Island (BC, Canada) as a part of the North-East Pacific Time-series Undersea Networked Experiments
(NEPTUNE) cabled observatory of Ocean Networks Canada (www.oceannetworks.ca). Imaging was
performed in the form of linear, constant back and forth, 20 m long imaging transects, during a period
of 14 months (i.e., February 2013 to April 2014), as described in [50]. Using the standardized animal
counts over a total area of 120 m2, the diversity indices (i.e., species richness, Shannon’s H’, Simpson
and Fisher’s α) and biomass (i.e., wet weight per m2) were calculated for each month.

www.oceannetworks.ca
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Table 2. Monthly diversity indices and biomass estimations at the Barkley Canyon hydrate site during
2013–2014, based on the counts reported by Doya et al. [50]. For a detailed calculation of biomass see
Supplementary Materials Section “Crawler Faunal Time Series Analysis”.

Indicators Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Apr

Richness 17 17 16 13 13 16 17 17 13 14 14 14 14 13
Diversity (Shannon Index) 1.97 2.00 2.13 1.87 1.48 1.02 1.84 1.90 1.80 2.14 2.05 1.86 1.39 2.23
Diversity (Simpson Index) 0.79 0.84 0.85 0.81 0.61 0.4 0.74 0.71 0.72 0.84 0.84 0.76 0.59 0.87

Diversity (Fisher α) 3.96 3.27 3.29 2.45 2.20 2.57 3.22 3.86 2.55 2.72 2.78 2.98 2.36 2.61
Biomass (g/m2) 44 34 41 161 477 770 285 34 30 143 49 25 36 39

3.3. Ecosystem Analysis Challenges for Monitoring Networks

While a system like that in Figure 2 is desirable, an accurate ecosystem analysis remains
challenging. For example, consider quantification of the microbial component in the water column.
Here, cabled observatories and their docked platforms can hardly provide accurate estimates of
microbial contributions to ecosystem functionality (i.e., the microbial loop). Imaging equipment can
identify the presence of bacterial mats on the seafloor [51], but not (yet) in the water column (e.g.,
carbon sequestration [52]). At the same time, platforms cannot yet image marine species living within
sediments (infaunal meio- or macrobenthos), leaving the biomass and biodiversity of that component
largely unaccounted for [21]. Possibly, a consistent development of in situ omics-based technologies
in the near future will help overcome such detection and measurement limitations, allowing the
quantification and modeling of diversity and abundance of microbiome and infaunal components.
Likewise, conventional imaging of pelagic zooplankton performing vertical migrations that reach
the benthic layer [53] can prove testing that depends on water turbidity and the characteristics of the
camera, in which case a combination of developing video (e.g., time-of flight 3D imaging [54,55] and
acoustic methods such as acoustic telemetry [56], wide band technologies [57], or Acoustic Doppler
Current Profiler (ADCP) backscatter [53]) would offer a broader understanding of the composition and
biomass of the monitored faunal communities [58]. Here, data derived from distinct sources would
have to be recompiled as described in step 2 of the pipeline for the computation of ecological indicators
(see Section 3.1 above).

A similarly challenging situation occurs when automatized data collection yields information that
is poorly representative of the true state of the surrounding ecosystem due to the lack of a pre-planned
sampling protocol (e.g., via limited or convenient spatial coverage). This is problematic because these
data might fail to produce reliable conclusions that generalize well to a broader spatial and composition
scale. Here, the automatic detection of individual characteristics (e.g., animal sizing) becomes relevant
to help addressing the representativeness issue. Methodological development is still needed here.
However, some sources [59–61] point to the idea that using inverse probability weighting, based on
individual characteristic information, to re-calibrate non-representative data with more accurate data
on manned animal catches from pre-planned survey campaigns, might also benefit marine monitoring.
Alternatively, as proposed here, a robotized monitoring network can be set-up following a pre-planned
sampling protocol, when possible.

An additional difficulty is the integration of the information collected across spatially distant
domains, with zones of non-instrumented areas in-between. This is typically an issue of spatial
interpolation and prediction [62–64]. For instance, data from distant zones could be interpolated based
on similar seascape information (if available) using kriging regression techniques or similar approaches.
On the other hand, the standardized use of ecological indicators may help to establish a benchmark
for a comparison of ecosystem functionality and productivity across areas with different monitoring
platforms bearing similar sensor assets.

4. Cyber-Infrastructure Development

The information pipeline needs to consider a statistical approach based on an appropriate density
of randomized measurements (in time and space) provided by all fixed and mobile platforms that belong



Sensors 2020, 20, 1751 8 of 21

to a network of observing systems. This approach provides an integrated view of the observed area
within a wide range of temporal and spatial acquisition frequencies of both imaging and environmental
data. This need would require a certain level of embedded capacity for data acquisition and treatment
from all the involved platforms or the efficient data transfer to a central data bank for post-processing.
This data bank should be implemented by automated routines for screening the data quality of each
monitoring platform in the network, as well as organizing time series of variables for their real- or near
real-time post processing for the production of parameter and indicator outputs. Accordingly, this
data bank would be the core of a cyber-infrastructure that would manage the acquired data quality by
evaluating the functioning status of all platforms and their sensors, as well as the data representation
by interactive end-user interfaces for result visualization. In this sense, cyber-infrastructures should be
endowed with an overall AI for data treatment, sensor integration, and data banking.

All marine monitoring networks are getting increasingly service- and end-user oriented, with
their data management cyber-infrastructures being upgraded to act as a “cognitive system” for data
interpretation by humans [22,65]. Ecoinformatics provide the methodological framework to process this
massive flow of information in order to extract scientifically relevant knowledge, as researchers address
complex questions at scales varying from the gene to the biosphere [40,41,66,67]. Cyber-infrastructures
built according to Ecoinformatics information-flow principles, on top of a hybrid-data proceeding
from networked platforms, are “Virtual Research Environments” for ecological monitoring [68]. Data
banks should not only be conceived of as mere repositories for multiparametric information with
poor sematic value but should also provide computational tools and high-level functionality for
automatically composing information workflows (i.e., from data collection at each sensor and platform
to its global elaboration over the network area) [69–72]. These workflows should be capable of yielding
new scientific knowledge for a diversified class of end-users spanning form scientists to citizens and
policy makers.

In order to fulfill this role, user navigation and analysis capabilities require the design of efficient
web interfaces between people and data banks [73–75]. Ecological processes could be investigated
by any end-user worldwide via those web interfaces. These interactive windows could allow us to
visualize complex biological and environmental information in the form of synthetic graphic outputs,
highlighting significant global change trends. Putative causes (i.e., the environmental control) and effect
(ecological indicator variation) relationships could be analyzed via the choice of different multivariate
statistics and time series analysis approaches [34,35,76–78] that are selected based on data quality.

4.1. Sensor Integration

Monitoring networks for robotic platforms require not only hardware development but also
a concomitant suitable software architecture for sensor and platform control, as well as for data
communication, processing, storage, and visualization [79]. The integration of sensors into marine
platforms is always a challenging task when measurements have to be done in the ocean due to the
variety of hardware designs and the settings of both types of components. A solution to control
component interactions at different hierarchical levels of organization relies on the use of underwater
“Internet of Things” approaches: the combination of sensors into platforms as physical systems upon
the standardization of their interoperability, as well as the development of software. Unfortunately, we
currently lack a marine internet due to limitations in platform communication for the rapid absorption
of light and radio waves in seawater.

To date, connecting any type of USB drive into a computer is a very easy “plug’n’play” operation,
independent from the computer or operating system used. Ocean sensors will eventually also acquire
such a degree of interoperability, once instrument and platform manufacturers all agree on a set of
standards to be used. To achieve a “plug’n’play” integration of sensors into observation platforms, the
host platform controller must be able to [80]:

i. Detect a new sensor when it is close to a monitoring peripheral unit without human intervention
(i.e., Detection);
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ii. Obtain unambiguous description of the sensor via the transmission of metadata (ID, model, etc.)
and all required information to register it to an existing sensor web server (i.e., Identification);

iii. Establish communication between the platform and sensor to automatically adapt the
operation settings (e.g., activate a specific acquisition channel, set the sampling rate, etc.;
i.e. Configuration);

iv. Retrieve preliminary data in order to query the sensor about the required interface asset in
order to parse, process, and store the data (Simple Measurement Operations);

v. Manage data streaming into the archiving server (i.e., Data Ingestion);
vi. Set the “plug’n’play” mechanism aimed at reducing power and computational costs and lower

the bandwidth usage (i.e., Resource-Constrained).

Moreover, a critical step is the registration of sensors into existing Web services, which requires
a considerable amount of metadata on their characteristics and performance status, organized
and structured in a coherent way with measured parameters. Furthermore, the meaning of these
metadata has to be made explicit and understandable by machines; thus, controlled vocabularies
containing formal definitions, need to be used [81]. The American Ocean Observatory Initiative
(OOI; https://ooinet.oceanobservatories.org/ [82]) and the European Multidisciplinary Seafloor and
water column Observations (EMSO; http://www.emso-eu.org/site/) are moving in this direction. In
Europe, real-time mooring using generic instrumentation, the Instrumented Interface Module (MII),
and the ALBATROSS mooring line (Autonomous Line with a Broad Acoustic Transmission for
Research in Oceanography and Sea Sciences) have been developed based on the Esonet NoE principle.
This pioneering EMSO initiative relies on collecting all the mooring line data through an inductive
communication link every thirty minutes. Data are stored on an embedded PC. Daily data files are sent
to the MII through an acoustic link. ALBATROSS and MII data are sent in real time to the shore via an
electro-optical cable. Cabled observatories of European seas are now evolving to provide long-term,
high-resolution, and real-time deep ocean time series through a standard configuration: Each node
is being equipped with an EMSO Generic Instrument Module (EGIM), incorporating standardized
sensors to measure Ocean Essential Variables (EOVs; i.e., temperature, conductivity, pressure, dissolved
oxygen, turbidity, ocean currents, and passive acoustics). HD cameras will be added in the near
future for ecological monitoring purposes, allowing the gathering of information on relevant EOVs for
megafauna related to the abundance and distribution of “Fish”, “Marine turtles, birds and mammals”,
and “invertebrates”. In the medium- and long-term, the use of standards will lead to more robust and
cost-efficient systems. Presently, the platform’s acoustic communication capability and its adaptive
learning ability is being brought forward with different multidisciplinary hardware and software
solutions in the framework of international research actions (Table 3).

https://ooinet.oceanobservatories.org/
http://www.emso-eu.org/site/
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Table 3. Examples of EU projects related to oceanographic and coastal multiparametric monitoring,
where platform and cyber-infrastructure developments could serve as a model for benthic
ecology-oriented networks. Projects reproduce different operative scenarios using a variety of sensors,
platforms, and sets of Open Geospatial Consortium (OGC) protocols (e.g., Sensor Web Enablement;
SWE, Programmable Underwater Connector with Knowledge; PUCK (standard protocol), and Sensor
Observation Service; SOS), in order to demonstrate the feasibility of the use of standards to achieve
such a degree of interoperability.

Project Acronym Web

Optimizing and Enhancing the Integrated Atlantic Ocean
Observing Systems AtlantOS https://www.atlantos-h2020.eu/

Bringing together Research and Industry for the Development for the
Development of Glider Environmental Services BRIDGES www.bridges-h2020.eu

Copernicus Marine Environment Monitoring Service CMEMS http://marine.copernicus.eu/
European Marine Observation and Data Network EmodNet www.emodnet-physics.eu/Portal
European Multidisciplinary Seafloor and water-column Observatory EMSO-ERIC http://www.emso-eu.org/
European Global Ocean Observing System (SeaDataNet and SeaDataCloud) EuroGOOS www.seadatanet.org
Fixed-Point Open Ocean Observatories FixO3 www.fixo3.eu
Global Earth Observation System of Systems GEOSS www.earthobservations.org/geoss.php
Towards a joint European research infrastructure network for coastal
observatories JERICO-NEXT http://www.jerico-ri.eu/

NEXt generation, cost-effective, compact, multifunctional web enabled
Ocean Sensor systems empowering marine, maritime and fisheries
management

NEXOS www.nexosproject.eu

Ocean Data Interoperability Platform ODIP I/II www.odip.eu
In Situ Chemical Mapping probes SCHeMA www.schema-ocean.eu
Marine sensors for the 21st Century SenseOCEAN www.senseocean.eu/
Sensing, monitoring and actuating on the Underwater world through a
federated Research InfraStructure Extending the future internet SUNRISE http://fp7-sunrise.eu/

Improving and integrating European ocean observing and forecasting
systems for sustainable use of the oceans EUROSEA https://www.eurosea.eu/

Blue-Cloud: Piloting innovative services for Marine Research and the
Blue Economy Blue-Cloud https://cordis.europa.eu/project/id/862409

4.2. Automated Video-Imaging

The development of automation in image treatments for animal tracking, classification, and
counting, as well as the extraction of morphological features (e.g., size and color patterning) is a pivotal
aspect for the monitoring efficiency of a robotized network of fixed and mobile platforms. The software
implementation sustaining the artificial computing intelligence of each unit would transform cameras
into efficient sensor equivalents to any other environmental measuring device [34].

The general customization of automated image processing is an open issue in the scientific
community of pattern analysis [83,84], and the machine learning approaches used must take into
account differences in the acquisition platform, the specific location, the hardware imaging settings,
and, most importantly, the wide differences of the targeted species [85]. Firstly, the huge variety of
marine fauna shapes and sizes are the most relevant factors affecting the performance of shape-centered
recognition and classification. Then, artificial lighting systems for illuminating the scene may complicate
the identification of animals for the strong light absorption occurring in the sea water and for the
scattering effects caused by the presence of suspended particulates, as in the case of turbidity and for
the behavioral effects on biota.

The relevant subjects contained in the visual data can be recognized and classified by combining
computer vision and artificial intelligence methodologies, with performance comparable to that of
a visual inspection operated by expert users [86]. Such a combination can be facilitated via a wide
variety of approaches for improving the quality of images themselves [83,87,88]. Image restoration
methodologies are based on a physical model of light propagation for correcting the effects of light
absorption and scattering [89,90]. On the other hand, enhancement methodologies do not assume
any physical model and are based only on computer vision approaches for improving light and color
distribution and for reducing the hazing effects due to suspended particulates [91–93]. Recently
developed optical 3D systems can tackle turbid waters to varying extents, depending on the monitored

https://www.atlantos-h2020.eu/
www.bridges-h2020.eu
http://marine.copernicus.eu/
www.emodnet-physics.eu/Portal
http://www.emso-eu.org/
www.seadatanet.org
www.fixo3.eu
www.earthobservations.org/geoss.php
http://www.jerico-ri.eu/
www.nexosproject.eu
www.odip.eu
www.schema-ocean.eu
www.senseocean.eu/
http://fp7-sunrise.eu/
https://www.eurosea.eu/
https://cordis.europa.eu/project/id/862409
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objects’ reflectivity and distance, with time-of-flight method sensors offering greater range while
triangulating the potential for a higher resolution at short ranges [54,55].

Once the image improvement is carried out, animal classification can be performed by supervised
machine learning approaches, where a set of examples representing all the information needed for
discriminating the relevant specimens is used in learning automated algorithms for recognition and
classification [14,25,94–96]. Advanced methodologies in computer vision and pattern recognition are
emerging [97–100]. However, it is still challenging to identify the most appropriate approach for a
specific application context. Moreover, in most cases, only expert computer scientists can manage
the complex techniques needed for learning the appropriate classification algorithms. To overcome
these limits, future cyber-infrastructures should provide advanced digital libraries not only for storing
and accessing data but also the different machine learning tools capable of generating appropriate
algorithms for each specific application context (Figure 3). These infrastructures should be based on
high-level semantic layers (e.g., thesauruses and ontologies) for helping non expert users select the most
appropriate computing approaches [101–103]. Infrastructures should also provide powerful hardware
capabilities (e.g., computing clouds) for executing complex computational tasks (e.g., the training of
neural networks and the learning of evolutionary-based algorithms) and semantic annotation tools for
constructing ground-truth datasets [104,105] to be used as example datasets for the supervised machine
learning approaches. All these tools and data should be freely accessible through the internet [106]
and should be continuously updated as information accumulates, with the acquisition of new datasets
accomplished via citizen involvement and expert supervision [35].

4.3. Intelligent Data Banking

We need reliable AI embedded in data banking to weight the correlations found between
environmental variation and biological responses based on the autonomous analysis of data quality.
Embedded data banks should include a series of routines allowing real-time or near real-time data
visualization for time series plotting and subsequent statistical analysis [34,35,68]. Those graphical
interfaces should be created for each ecological indicator merging all data from each platform within
a network. Accordingly, some innovative and biologically-oriented developments in data banking
(having cameras as “intelligent sensors” for ecological monitoring) have been proposed according to
three sequential and automated stages of information processing (with a subsequent increment of the
information’s semantic value), as follows (Figure 4):

(1) Structure: The synchronous real-time storage of the input row’s biological and environmental
data as an incremental time series (one column per variable).

(2) Organization: The identification of a “biological event” (corresponding to the detection of an
individual into an image) can be associated with a series of concomitant environmental variables
(i.e., a data line) as a shapshot of the abiotic (i.e., habitat) portion of the Hutchinson niche [107].

(3) Function: The creation of a biological matrix for a species by extracting all data lines with counted
individuals along with all associated environmental data. A statistically-based vision of the
abiotic niche can be achieved by averaging all environmental variables at different time intervals
(e.g., diel, seasonal, and annual), and tolerance levels can be assessed as the maximum and
minimum values above and below which no individual is detected. Biological matrixes for all
the species can then be compared together (e.g., by K-NN) defining the abiotic plus the biotic
characteristics of their niches, hence providing information on their ecological interactions.
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Figure 3. Schematic representation of different automated image processing approaches integrated
into cyber-infrastructures managing semantic layer interfacing. Such an interface would allow for
easy access to relevant data collections and the formal ontology/thesaurus conceptualization of the
expertise needed to select and run the most appropriate computer vision and machine learning tools
for content-based image analysis and processing. The work-flow management task helps scientists
compose the most appropriate data analysis pipeline, while the learning process task executes the
pipeline with the aim of generating a processing function capable of elaborating the input data coming
from the specific application context.
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Figure 4. Time-lapse multiparametric data acquisition linking the detected number of individuals
for a certain species at each time-lapsed (T1, Tn) image, with the concomitant variation in habitat
conditioning (as represented by the status of all measured oceanographic and geochemical variables).
The contextual presence of individuals within a configuration of environmental variables is an
experimental approximation of the species’ ecological niche; the more diversified the group of installed
sensors, the better its approximation of the niche.

Examples of computational approaches capable of combining heterogeneous datasets into a unique
explanatory/predictive model can be obtained by using evolutionary computing approaches [26,108,109].
These approaches are becoming more and more relevant in the field of knowledge discovery as they
provide useful information capable of explaining the dynamics underlying the systems that generate
the analyzed data.

In this scenario, archiving metadata is also a very important task to produce high-quality and
intelligent data banks focused on the production of web services. These virtual facilities are available
in addition to data banks to ensure the proper interoperability between data clients and providers
as a key point in cyber-infrastructure design. Interesting and fast-growing solutions already exist.
Oceans 2.0 from Ocean Networks Canada (ONC; http://www.oceannetworks.ca/) is presently the most
advanced option for marine networks dedicated to ecological monitoring since it provides efficient
and intelligent processing and analysis systems to manage the large amount of data produced from
a diversified set of sensors deployed on fixed, mobile, benthic, pelagic, and even coastal platforms.
The archiving system is flexible and can easily support the wide variety of data types proceeding
from biological, oceanographic, and biogeochemical sensors with embedded storing, processing, and
computing workflow routines that are automated. Among these scripts, automation developments
centered on fauna tracking and classification for ecological indicator extraction offer the promising
potential to inspire similar implementations in other growing monitoring networks, such as EMSO
and OOI.

Similar initiatives allowing users/clients to discover and retrieve available data from different
pelagic and benthic sensors and their platforms and networks, all clustered together into a common
cyber managing infrastructure for smart applications, are presented in Figure 5 for the OBSEA cabled
video-observatory (www.obsea.es) as an example. This platform is a European Multidisciplinary
Seafloor and water column Observatory (EMSO) Testing-Site and has produced multiparametric
biological, oceanographic, and biogeochemical data since its deployment in 2009 [110]. Users can
directly access those data from standard web browsers, but, on top of the data bank, a Sensor

http://www.oceannetworks.ca/
www.obsea.es
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Observation Service (SOS; http://www.opengeospatial.org/standards/sos) is running to feed other,
larger, data repositories, such as the EmodNet. A standard mechanism, which is fully automated,
allows such a data bank to retrieve OBSEA multiparametric data and make them available to a broader
community [80,111]. Data collected from the OBSEA observatory need to comply with Copernicus
Marine Environment Monitoring Service (CMEMS) In Situ Thematic Assembly Center (INS TAC)
procedures. An automatic real-time data quality control system is applied according to the manual for
the real-time quality control of in-situ temperature and the salinity data of the Quality Assurance/Quality
Control of Real Time Oceanographic Data2 (QARTOD, https://ioos.noaa.gov/project/qartod) project
of the Integrated Ocean Observing System (IOOS, https://ioos.noaa.gov). The follow-through of the
QARTOD manual for the development of these tests was made while considering the community
acceptance, notability, and previous work of the IOOS. To allow proper references to OBSEA data
exploitation, the datasets are registered and catalogued on Pangaea, where full data sets can be
downloaded [112–114].
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Figure 5. The cyber-infrastructure organization required to store, organize, and process the
multiparametric information proceeding from all sensors and their platforms (as hardware
environments), as organized in each network. Data from any element within a geographical group
of different networks (i.e., the EMSO in the example) can be accessed through a regular web browser,
since all are linked to a larger management portal, and are then available to the broader community.
Benthic and pelagic (fixed and mobile) multiparametric platforms convey information to data banks
and are interfaced through a Sensor Observation Service (SOS) Client. This is the same mechanisms
used by portals such as the EmodNet to retrieve real-time or archived data from the platforms. This
data importing from different cyber-connected repository sources allows the data to be made available
to the broader community based on standardization in data acquisition, storage, and processing
(i.e., Open Geospatial Consortium’s-OGC O&M). An example is presented for the OBSEA web portal
that allows the access to the platform Data Bank through a regular web browser (A) and links to a
larger management portal (B), connecting together different monitoring pelagic and benthic fixed and
mobile multiparametric platforms.

5. Conclusions

Human induced ecological changes are growing today at an unprecedented rate, and it is critical
to adequately record and analyze these dynamics in order to plan the conservation and management
strategies of important natural resources. The complexity of the natural systems under observation is
daunting. Presently, marine systems are especially difficult to monitor, especially in remote or deep
sections, and data retrieval in this domain has always been difficult. However, monitoring at a high
temporal and spatial resolution, as well as at vast geographic scales, is needed if we want to keep pace
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with the fast changes in the marine environment. This observational power cannot be obtained with
traditional methods.

Recently, the rapid digitalization of our instrumentation and information systems, along with
hardware and software advances, promises to support the high level of environmental monitoring
required to meet the needs of today’s management of marine resources. We advocate for a
re-organization of these technological resources into robotized monitoring networks capable of
automatically acquiring and processing complex marine data at adequate temporal and spatial scales.
Those automatic networks could wildly reduce traditional monitoring costs while being more time
and space effective. Such a development is, today, possible, and an overview of the technological and
methodological challenges, along available solutions, further developments, and current examples of
ongoing large monitoring programs, is offered.

Further developments of marine robotized monitoring networks will be inevitably based on a
multi-disciplinary approach, where advances in mechatronics must meet innovations in hardware
design, software programming (intelligent algorithm), and statistical methodologies in order to
autonomously and flexibly answer ecologically-relevant marine questions, from the level of individual
organisms up to the level of communities. In this transformation, AI-based imaging and acoustic
practices are playing a central role in the production of suitable ecological indicators, requiring
the background development of cyber-infrastructures for data storage, processing, sensor/platform
management, and user-friendly web interfaces.

A collective effort should be devoted to finalizing the goal of implementing this highly integrative
data collection approach and seizing the opportunity to conceive and set up modern marine monitoring
networks, which could cost-effectively improve our knowledge and understanding of the physical,
biogeochemical and biological processes in the marine environment, the response of marine ecosystems
to natural and human-induced changes, and ultimately assist in the conception, design, application,
and evaluation of vast-scale management and conservation policies.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/6/1751/s1,
Table S1. Data sources for the steps in biomass estimation.
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