36 research outputs found

    A survey on author profiling, deception, and irony detection for the Arabic language

    Full text link
    "This is the peer reviewed version of the following article: [FULL CITE], which has been published in final form at [Link to final article using the DOI]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] The possibility of knowing people traits on the basis of what they write is a field of growing interest named author profiling. To infer a user's gender, age, native language, language variety, or even when the user lies, simply by analyzing her texts, opens a wide range of possibilities from the point of view of security. In this paper, we review the state of the art about some of the main author profiling problems, as well as deception and irony detection, especially focusing on the Arabic language.Qatar National Research Fund, Grant/Award Number: NPRP 9-175-1-033Rosso, P.; Rangel-Pardo, FM.; Hernandez-Farias, DI.; Cagnina, L.; Zaghouani, W.; Charfi, A. (2018). A survey on author profiling, deception, and irony detection for the Arabic language. Language and Linguistics Compass. 12(4):1-20. https://doi.org/10.1111/lnc3.12275S120124Abuhakema , G. Faraj , R. Feldman , A. Fitzpatrick , E. 2008 Annotating an arabic learner corpus for error Proceedings of The sixth international conference on Language Resources and Evaluation, LREC 2008Adouane , W. Dobnik , S. 2017 Identification of languages in algerian arabic multilingual documents Proceedings of The Third Arabic Natural Language Processing Workshop (WANLP)Adouane , W. Semmar , N. Johansson , R 2016a Romanized berber and romanized arabic automatic language identification using machine learning Proceedings of the Third Workshop on NLP for Similar Languages, Varieties and Dialects; COLING 53 61Adouane , W. Semmar , N. Johansson , R. 2016b ASIREM participation at the discriminating similar languages shared task 2016 Proceedings of the Third Workshop on NLP for Similar Languages, Varieties and Dialects; COLING 163 169Adouane , W. Semmar , N. Johansson , R. Bobicev , V. 2016c Automatic detection of arabicized berber and arabic varieties Proceedings of the Third Workshop on NLP for Similar Languages, Varieties and Dialects; COLING 63 72Alfaifi , A. Atwell , E. Hedaya , I. 2014 Arabic learner corpus (ALC) v2: A new written and spoken corpus of Arabic learnersAlharbi , K. 2015 The irony volcano explodes black comedyAli , A. Bell , P. Renals , S. 2015 Automatic dialect detection in Arabic broadcast speechAlmeman , K. Lee , M. 2013 Automatic building of Arabic multi dialect text corpora by bootstrapping dialect words 1 6Aloshban , N. Al-Dossari , H. 2016 A new approach for group spam detection in social media for Arabic language (AGSD) 20 23Al-Sabbagh , R. Girju , R. 2012 YADAC: Yet another dialectal Arabic corpusAlsmearat , K. Al-Ayyoub , M. Al-Shalabi , R. 2014 An extensive study of the bag-of-words approach for gender identification of Arabic articlesAlsmearat , K. Shehab , M. Al-Ayyoub , M. Al-Shalabi , R. Kanaan , G. 2015 Emotion analysis of Arabic articles and its impact on identifying the authors genderArfath , P. Al-Badrashiny , M. Diab , M. El Kholy , A. Eskander , R. Habash , N. Pooleery , M. Rambow , O. Roth , R. M. 2014 MADAMIRA: A fast, comprehensive tool for morphological analysis and disambiguation of ArabicBarbieri , F. Basile , V. Croce , D. Nissim , M. Novielli , N. Patti , V. 2016 Overview of the Evalita 2016 sentiment polarity classification taskBarbieri , F. Saggion , H 2014 Modelling irony in twitter 56 64Barbieri , F. Saggion , H. Ronzano , F 2014 Modelling sarcasm in Twitter, a novel approachBasile , V. Bolioli , A. Nissim , M. Patti , V. Rosso , P. 2014 Overview of the Evalita 2014 sentiment polarity classification taskBlanchard, D., Tetreault, J., Higgins, D., Cahill, A., & Chodorow, M. (2013). TOEFL11: A CORPUS OF NON-NATIVE ENGLISH. ETS Research Report Series, 2013(2), i-15. doi:10.1002/j.2333-8504.2013.tb02331.xBosco, C., Patti, V., & Bolioli, A. (2013). Developing Corpora for Sentiment Analysis: The Case of Irony and Senti-TUT. IEEE Intelligent Systems, 28(2), 55-63. doi:10.1109/mis.2013.28Bouamor , H. Habash , N. Salameh , M. Zaghouani , W. Rambow , O. Abdulrahim , D. Oflazer , K. 2018 The MADAR Arabic Dialect Corpus and LexiconBouchlaghem , R. Elkhlifi , A. Faiz , R. 2014 Tunisian dialect Wordnet creation and enrichment using web resources and other Wordnets 104 113 https://doi.org/10.3115/v1/W14-3613Boujelbane , R. BenAyed , S. Belguith , L. H. 2013 Building bilingual lexicon to create dialect Tunisian corpora and adapt language modelCagnina L. Rosso , P 2015 Classification of deceptive opinions using a low dimensionality representationCavalli-Sforza , V. Saddiki , H. Bouzoubaa , K. Abouenour , L. Maamouri , M. Goshey , E. 2013 Bootstrapping a Wordnet for an Arabic dialect from other Wordnets and dictionary resourcesCotterell , R. Callison-Burch , C. 2014 A multi-dialect, multi-genre corpus of informal written ArabicDahlmeier , D. Tou Ng , H. Mei Wu , S. 2013 Building a large annotated corpus of learner English: the NUS corpus of learner English 22 31Darwish , K. Sajjad , H. Mubarak , H. 2014 Verifiably effective Arabic dialect identification 1465 1468Duh , K. Kirchhoff , K. 2006 Lexicon acquisition for dialectal Arabic using transductive learningElfardy , E. Diab , M. T. 2013 Sentence level dialect identification in Arabic 456 461Estival , D. Gaustad , T. Hutchinson , B. Bao-Pham , S. Radford , W. 2008 Author profiling for English and Arabic emailsFitzpatrick, E., Bachenko, J., & Fornaciari, T. (2015). Automatic Detection of Verbal Deception. Synthesis Lectures on Human Language Technologies, 8(3), 1-119. doi:10.2200/s00656ed1v01y201507hlt029Franco-Salvador, M., Rangel, F., Rosso, P., Taulé, M., & Antònia Martít, M. (2015). Language Variety Identification Using Distributed Representations of Words and Documents. Experimental IR Meets Multilinguality, Multimodality, and Interaction, 28-40. doi:10.1007/978-3-319-24027-5_3Ghosh , A. Li , G. Veale , T. Rosso , P. Shutova , E. Barnden , J. Reyes , A. 2015 Semeval-2015 task 11: Sentiment analysis of figurative language in twitter 470 478Graff , D. Maamouri , M. 2012 Developing LMF-XML bilingual dictionaries for colloquial Arabic dialects 269 274Habash , N. Khalifa , S. Eryani , F. Rambow , O. Abdulrahim , D. Erdmann , A. Saddiki , H. 2018 Unified Guidelines and Resources for Arabic Dialect OrthographyHabash , N. Rambow , O. Kiraz , G. 2005 Morphological analysis and generation for Arabic dialectsHaggan, M. (1991). Spelling errors in native Arabic-speaking English majors: A comparison between remedial students and fourth year students. System, 19(1-2), 45-61. doi:10.1016/0346-251x(91)90007-cHassan , H. Daud , N. M. 2011 Corpus analysis of conjunctions: Arabic learners difficulties with collocationsHayes-Harb, R. (2006). Native Speakers of Arabic and ESL Texts: Evidence for the Transfer of Written Word Identification Processes. TESOL Quarterly, 40(2), 321. doi:10.2307/40264525Hernández-Farías, I., Benedí, J.-M., & Rosso, P. (2015). Applying Basic Features from Sentiment Analysis for Automatic Irony Detection. Lecture Notes in Computer Science, 337-344. doi:10.1007/978-3-319-19390-8_38Hernández Fusilier, D., Montes-y-Gómez, M., Rosso, P., & Guzmán Cabrera, R. (2015). Detecting positive and negative deceptive opinions using PU-learning. Information Processing & Management, 51(4), 433-443. doi:10.1016/j.ipm.2014.11.001Karoui , J. Benamara , F. Moriceau , V. Aussenac-Gilles , N. Hadrich Belguith , L. 2015 Towards a contextual pragmatic model to detect irony in tweetsKaroui , J. Zitoune , F. B. Moriceau , V. 2017 SOUKHRIA: Towards an irony detection system for Arabic in social mediaLjubesic , N. Mikelic , N. Boras , D. 2007 Language identification: How to distinguish similar languagesLópez-Monroy, A. P., Montes-y-Gómez, M., Escalante, H. J., Villaseñor-Pineda, L., & Stamatatos, E. (2015). Discriminative subprofile-specific representations for author profiling in social media. Knowledge-Based Systems, 89, 134-147. doi:10.1016/j.knosys.2015.06.024Magdy, W., Darwish, K., & Weber, I. (2016). #FailedRevolutions: Using Twitter to study the antecedents of ISIS support. First Monday. doi:10.5210/fm.v21i2.6372Maier , W. Gomez-Rodriguez , C. 2014 Language variety identification in Spanish tweetsMalmasi , S. Dras , M. 2014 Arabic native language identificationMechti , S. Abbassi , A. Belguith , L. H. Faiz , R. 2016 An empirical method using features combination for Arabic native language identificationMukherjee, A., Liu, B., & Glance, N. (2012). Spotting fake reviewer groups in consumer reviews. Proceedings of the 21st international conference on World Wide Web - WWW ’12. doi:10.1145/2187836.2187863Proceedings of the EMNLP’2014 Workshop on Language Technology for Closely Related Languages and Language Variants. (2014). doi:10.3115/v1/w14-42Pennebaker , J. W. Chung , C. K. Ireland , M. E. Gonzales , A. L. Booth , R. J. 2007 The development and psychometric properties of LIWC2007 http://www.liwc.net/LIWC2007LanguageManual.pdf http://liwc.netPotthast , M. Rangel , F. Tschuggnall , M. Stamatatos , E. Rosso , P. Stein , B. 2017 Overview of PAN'17 G. Jones 10456 Springer, ChamRandall M. Groom , N. 2009 The BUiD Arab learner corpus: a resource for studying the acquisition of l2 English spellingRangel , F. Rosso , P. 2015 On the multilingual and genre robustness of emographs for author profiling in social media 274 280 Springer-Verlag, LNCSRangel, F., & Rosso, P. (2016). On the impact of emotions on author profiling. Information Processing & Management, 52(1), 73-92. doi:10.1016/j.ipm.2015.06.003Rangel , F. Rosso , P. Koppel , M. Stamatatos , E. Inches , G. 2013 Overview of the author profiling task at PAN 2013 P. Forner R. Navigli D. TufisRangel , F. Rosso , P. Potthast , M. Stein , B. Daelemans , W. 2015 Overview of the 3rd author profiling task at PAN 2015 L. Cappellato N. Ferro G. Jones E. San JuanRangel , F. Rosso , P. Verhoeven , B. Daelemans , W. Potthast , M. Stein , B. 2016 Overview of the 4th author profiling task at PAN 2016: Cross-genre evaluationsRefaee , E. Rieser , V. 2014 An Arabic twitter corpus for subjectivity and sentiment analysis 2268 2273Reyes, A., Rosso, P., & Buscaldi, D. (2012). From humor recognition to irony detection: The figurative language of social media. Data & Knowledge Engineering, 74, 1-12. doi:10.1016/j.datak.2012.02.005Reyes, A., Rosso, P., & Veale, T. (2012). A multidimensional approach for detecting irony in Twitter. Language Resources and Evaluation, 47(1), 239-268. doi:10.1007/s10579-012-9196-xRosso, P., & Cagnina, L. C. (2017). Deception Detection and Opinion Spam. Socio-Affective Computing, 155-171. doi:10.1007/978-3-319-55394-8_8Saâdane , H. 2015 Traitement Automatique de L'Arabe Dialectalise: Aspects Methodologiques et AlgorithmiquesSaâdane , H. Nouvel , D. Seffih , H. Fluhr , C. 2017 Une approche linguistique pour la détection des dialectes arabesSadat , F. Kazemi , F. Farzindar , A. 2014 Automatic identification of Arabic language varieties and dialects in social mediaSadhwani , P. 2005 Phonological and orthographic knowledge: An Arab-Emirati perspectiveSchler , J. Koppel , M. Argamon , S. Pennebaker , J. W. 2006 Effects of age and gender on blogging 199 205Shoufan , A. Al-Ameri , S. 2015 Natural language processing for dialectical Arabic: A surveySoliman , T. Elmasry , M. Hedar , A-R. Doss , M. 2013 MINING SOCIAL NETWORKS' ARABIC SLANG COMMENTSSulis, E., Irazú Hernández Farías, D., Rosso, P., Patti, V., & Ruffo, G. (2016). Figurative messages and affect in Twitter: Differences between #irony, #sarcasm and #not. Knowledge-Based Systems, 108, 132-143. doi:10.1016/j.knosys.2016.05.035Tetreault , J. Blanchard , D. Cahill , A. 2013 A report on the first native language identification shared task Proceedings of the 8th Workshop on Innovative Use of NLP for Building Educational Applications 48 57Tillmann , C. Mansour , S. Al Onaizan , Y. 2014 Improved sentence-level Arabic dialect classification Proceedings of the VarDia006C Workshop 110 119Tono, Y. (2012). International Corpus of Crosslinguistic Interlanguage: Project overview and a case study on the acquisition of new verb co-occurrence patterns. Tokyo University of Foreign Studies, 27-46. doi:10.1075/tufs.4.07tonWahsheh , H. A. Al-Kabi , M. N. Alsmadi , I. M. 2013b SPAR: A system to detect spam in Arabic opinionsZaghouani , W. Charfi , A. 2018a Arap-Tweet: A Large Multi-Dialect Twitter Corpus for Gender, Age and Language Variety Identification Miyazaki, JapanZaghouani , W. Charfi , A. 2018b Guidelines and Annotation Framework for Arabic Author Profiling Miyazaki, JapanZaghouani , W. Mohit , B. Habash , N. Obeid , O. Tomeh , N. Rozovskaya , A. Farra , N. Alkuhlani , S. Oflazer , K. 2014 Large scale Arabic error annotation: Guidelines and frameworkZaghouani , W. Habash , N. Bouamor , H. Rozovskaya , A. Mohit , B. Heider , A. Oflazer , K. 2015 Correction annotation for non-native Arabic texts: Guidelines and corpus Proceedings of the Association for Computational Linguistics, Fourth Linguistic Annotation Workshop 129 139Zaidan , O. F. Callison-Burch , C 2011 The Arabic online commentary dataset: An annotated dataset of informal Arabic with high dialectal content Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: short papers -Volume 2 Association for Computational Linguistics 37 41Zaidan, O. F., & Callison-Burch, C. (2014). Arabic Dialect Identification. Computational Linguistics, 40(1), 171-202. doi:10.1162/coli_a_00169Zampieri , M. Gebre , B. G. 2012 Automatic identification of language varieties: The case of PortugueseZampieri , M. Tan , L. Ljubesic , N. Tiedemann , J. 2014 A report on the DSL shared task 2014 Proceedings of the First Workshop on Applying NLP Tools to Similar Languages, Varieties and Dialects 58 67Zampieri , M. Tan , L. Ljubesic , N. Tiedemann , J. Nakov , P. 2015 Overview of the DSL shared task 2015 1Zbib , R. Malchiodi , E. Devlin , J. Stallard , D. Matsoukas , S. Schwartz , R. Makhoul , J. Zaidan , O. F. Callison Burch , C. 2012 Machine translation of Arabic dialects Proceedings of the 2012 conference of the North American chapter of the Association for Computational Linguistics: Human language technologies Association for Computational Linguistics 49 5

    A study on IoT-related security issues, challenges, and solutions.

    Get PDF
    The Internet of Things is now being developed to be the most cutting-edge and user-centric technology in the works. Raising both an individual\u27s and society\u27s level of life is the goal of this endeavour. When a technology advances, it always acquires certain flaws, which are always open to being attacked and taken advantage of in some manner. In this work, the problems posed by the Internet of Things (IoT) based on the fundamental security principles of confidentiality, integrity, and availability are discussed. It has also been discussed how an overview of the security restrictions, requirements, processes, and solutions implemented for the challenges generated in secured communication inside the IoT ecosystem. In this paper, the vulnerabilities of the underlying Internet of Things network are brought to light, and many security concerns on multiple tiers of the Internet of Things ecosystem have been examined. Based on the findings of our research into the vulnerabilities that are now present, a variety of potential solutions have been proposed in order to solve the ongoing problems that are plaguing the IoT ecosystem. In addition to that, it provides an overview of the various protocols that are used for security in IoT

    Arabic Sentiment Analysis Based on Word Embeddings and Deep Learning

    Get PDF
    Social media networks have grown exponentially over the last two decades, providing the opportunity for users of the internet to communicate and exchange ideas on a variety of topics. The outcome is that opinion mining plays a crucial role in analyzing user opinions and applying these to guide choices, making it one of the most popular areas of research in the field of natural language processing. Despite the fact that several languages, including English, have been the subjects of several studies, not much has been conducted in the area of the Arabic language. The morphological complexities and various dialects of the language make semantic analysis particularly challenging. Moreover, the lack of accurate pre-processing tools and limited resources are constraining factors. This novel study was motivated by the accomplishments of deep learning algorithms and word embeddings in the field of English sentiment analysis. Extensive experiments were conducted based on supervised machine learning in which word embeddings were exploited to determine the sentiment of Arabic reviews. Three deep learning algorithms, convolutional neural networks (CNNs), long short-term memory (LSTM), and a hybrid CNN-LSTM, were introduced. The models used features learned by word embeddings such as Word2Vec and fastText rather than hand-crafted features. The models were tested using two benchmark Arabic datasets: Hotel Arabic Reviews Dataset (HARD) for hotel reviews and Large-Scale Arabic Book Reviews (LARB) for book reviews, with different setups. Comparative experiments utilized the three models with two-word embeddings and different setups of the datasets. The main novelty of this study is to explore the effectiveness of using various word embeddings and different setups of benchmark datasets relating to balance, imbalance, and binary and multi-classification aspects. Findings showed that the best results were obtained in most cases when applying the fastText word embedding using the HARD 2-imbalance dataset for all three proposed models: CNN, LSTM, and CNN-LSTM. Further, the proposed CNN model outperformed the LSTM and CNN-LSTM models for the benchmark HARD dataset by achieving 94.69%, 94.63%, and 94.54% accuracy with fastText, respectively. Although the worst results were obtained for the LABR 3-imbalance dataset using both Word2Vec and FastText, they still outperformed other researchers’ state-of-the-art outcomes applying the same dataset

    Enhancing IoT Data Dependability through a Blockchain Mirror Model

    Get PDF
    The Internet of Things (IoT) is a remarkable data producer and these data may be used to prevent or detect security vulnerabilities and increase productivity by the adoption of statistical and Artificial Intelligence (AI) techniques. However, these desirable benefits are gained if data from IoT networks are dependablethis is where blockchain comes into play. In fact, through blockchain, critical IoT data may be trusted, i.e., considered valid for any subsequent processing. A simple formal model named the Mirror Model is proposed to connect IoT data organized in traditional models to assets of trust in a blockchain. The Mirror Model sets some formal conditions to produce trusted data that remain trusted over time. A possible practical implementation of an application programming interface (API) is proposed, which keeps the data and the trust model in synch. Finally, it is noted that the Mirror Model enforces a top-down approach from reality to implementation instead of going the opposite way as it is now the practice when referring to blockchain and the IoT

    System-independent ASR error detection and classification using Recurrent Neural Network

    Get PDF
    This paper addresses errors in continuous Automatic Speech Recognition (ASR) in two stages: error detection and error type classification. Unlike the majority of research in this field, we propose to handle the recognition errors independently from the ASR decoder. We first establish an effective set of generic features derived exclusively from the recognizer output to compensate for the absence of ASR decoder information. Then, we apply a variant Recurrent Neural Network (V-RNN) based models for error detection and error type classification. Such model learn additional information to the recognized word classification using label dependency. As a result, experiments on Multi-Genre Broadcast Media corpus have shown that the proposed generic features setup leads to achieve competitive performances, compared to state of the art systems in both tasks. Furthermore, we have shown that V-RNN trained on the proposed feature set appear to be an effective classifier for the ASR error detection with an Accuracy of 85.43%

    Hardware/software co-design of fractal features based fall detection system

    Get PDF
    Falls are a leading cause of death in older adults and result in high levels of mortality, morbidity and immobility. Fall Detection Systems (FDS) are imperative for timely medical aid and have been known to reduce death rate by 80%. We propose a novel wearable sensor FDS which exploits fractal dynamics of fall accelerometer signals. Fractal dynamics can be used as an irregularity measure of signals and our work shows that it is a key discriminant for classification of falls from other activities of life. We design, implement and evaluate a hardware feature accelerator for computation of fractal features through multi-level wavelet transform on a reconfigurable embedded System on Chip, Zynq device for evaluating wearable accelerometer sensors. The proposed FDS utilises a hardware/software co-design approach with hardware accelerator for fractal features and software implementation of Linear Discriminant Analysis on an embedded ARM core for high accuracy and energy efficiency. The proposed system achieves 99.38% fall detection accuracy, 7.3× speed-up and 6.53× improvements in power consumption, compared to the software only execution with an overall performance per Watt advantage of 47.6×, while consuming low reconfigurable resources at 28.67%

    Edge computing to secure iot data ownership and trade with the ethereum blockchain

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. With an increasing penetration of ubiquitous connectivity, the amount of data describing the actions of end-users has been increasing dramatically, both within the domain of the Internet of Things (IoT) and other smart devices. This has led to more awareness of users in terms of protecting personal data. Within the IoT, there is a growing number of peer-to-peer (P2P) transactions, increasing the exposure to security vulnerabilities, and the risk of cyberattacks. Blockchain technology has been explored as middleware in P2P transactions, but existing solutions have mainly focused on providing a safe environment for data trade without considering potential changes in interaction topologies. we present EdgeBoT, a proof-of-concept smart contracts based platform for the IoT built on top of the ethereum blockchain. With the Blockchain of Things (BoT) at the edge of the network, EdgeBoT enables a wider variety of interaction topologies between nodes in the network and external services while guaranteeing ownership of data and end users’ privacy. in EdgeBoT, edge devices trade their data directly with third parties and without the need of intermediaries. This opens the door to new interaction modalities, in which data producers at the edge grant access to batches of their data to different third parties. Leveraging the immutability properties of blockchains, together with the distributed nature of smart contracts, data owners can audit and are aware of all transactions that have occurred with their data. we report initial results demonstrating the potential of EdgeBoT within the IoT. we show that integrating our solutions on top of existing IoT systems has a relatively small footprint in terms of computational resource usage, but a significant impact on the protection of data ownership and management of data trade

    Edge Computing to Secure IoT Data Ownership and Trade with the Ethereum Blockchain

    Get PDF
    With an increasing penetration of ubiquitous connectivity, the amount of data describing the actions of end-users has been increasing dramatically, both within the domain of the Internet of Things (IoT) and other smart devices. This has led to more awareness of users in terms of protecting personal data. Within the IoT, there is a growing number of peer-to-peer (P2P) transactions, increasing the exposure to security vulnerabilities, and the risk of cyberattacks. Blockchain technology has been explored as middleware in P2P transactions, but existing solutions have mainly focused on providing a safe environment for data trade without considering potential changes in interaction topologies. we present EdgeBoT, a proof-of-concept smart contracts based platform for the IoT built on top of the ethereum blockchain. With the Blockchain of Things (BoT) at the edge of the network, EdgeBoT enables a wider variety of interaction topologies between nodes in the network and external services while guaranteeing ownership of data and end users' privacy. in EdgeBoT, edge devices trade their data directly with third parties and without the need of intermediaries. This opens the door to new interaction modalities, in which data producers at the edge grant access to batches of their data to different third parties. Leveraging the immutability properties of blockchains, together with the distributed nature of smart contracts, data owners can audit and are aware of all transactions that have occurred with their data. we report initial results demonstrating the potential of EdgeBoT within the IoT. we show that integrating our solutions on top of existing IoT systems has a relatively small footprint in terms of computational resource usage, but a significant impact on the protection of data ownership and management of data trade

    Blockchain and smart contracts for insurance: Is the technology mature enough?

    Get PDF
    Blockchain is receiving increasing attention from academy and industry, since it is considered a breakthrough technology that could bring huge benefits to many different sectors. In 2017, Gartner positioned blockchain close to the peak of inflated expectations, acknowledging the enthusiasm for this technology that is now largely discussed by media. In this scenario, the risk to adopt it in the wake of enthusiasm, without objectively judging its actual added value is rather high. Insurance is one the sectors that, among others, started to carefully investigate the possibilities of blockchain. For this specific sector, however, the hype cycle shows that the technology is still in the innovation trigger phase, meaning that the spectrum of possible applications has not been fully explored yet. Insurers, as with many other companies not necessarily active only in the financial sector, are currently requested to make a hard decision, that is, whether to adopt blockchain or not, and they will only know if they were right in 3â\u80\u935 years. The objective of this paper is to support actors involved in this decision process by illustrating what a blockchain is, analyzing its advantages and disadvantages, as well as discussing several use cases taken from the insurance sector, which could easily be extended to other domains
    corecore