452,197 research outputs found

    An ultrasensitive photoelectrochemical nucleic acid biosensor

    Get PDF
    A simple and ultrasensitive procedure for non-labeling detection of nucleic acids is described in this study. It is based on the photoelectrochemical detection of target nucleic acids by forming a nucleic acid/photoreporter adduct layer on an ITO electrode. The target nucleic acids were hybridized with immobilized oligonucleotide capture probes on the ITO electrode. A subsequent binding of a photoreporter—a photoactive threading bis-intercalator consisting of two N,N′-bis(3-propyl-imidazole)-1,4,5,8-naphthalene diimides (PIND) linked by a [Formula: see text] (bpy = 2,2′-bipyridine) complex (PIND–Ru–PIND)—allowed for photoelectrochemical detection of the target nucleic acids. The extremely low dissociation rate of the adduct and the highly reversible photoelectrochemical response under visible light illumination (490 nm) make it possible to conduct nucleic acid detection, with a sensitivity enhancement of four orders of magnitude over voltammetry. These results demonstrate for the first time the potential of photoelectrochemical biosensors for PCR-free ultrasensitive detection of nucleic acids

    Nanostructured luminescently labeled nucleic acids

    Get PDF
    Important and emerging trends at the interface of luminescence, nucleic acids and nanotechnology are: (i) the conventional luminescence labeling of nucleic acid nanostructures (e.g. DNA tetrahedron); (ii) the labeling of bulk nucleic acids (e.g. single‐stranded DNA, double‐stranded DNA) with nanostructured luminescent labels (e.g. copper nanoclusters); and (iii) the labeling of nucleic acid nanostructures (e.g. origami DNA) with nanostructured luminescent labels (e.g. silver nanoclusters). This review surveys recent advances in these three different approaches to the generation of nanostructured luminescently labeled nucleic acids, and includes both direct and indirect labeling methods

    The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor.

    Get PDF
    Mammalian Toll-like receptors (TLRs) 3, 7, 8 and 9 initiate immune responses to infection by recognizing microbial nucleic acids; however, these responses come at the cost of potential autoimmunity owing to inappropriate recognition of self nucleic acids. The localization of TLR9 and TLR7 to intracellular compartments seems to have a role in facilitating responses to viral nucleic acids while maintaining tolerance to self nucleic acids, yet the cell biology regulating the transport and localization of these receptors remains poorly understood. Here we define the route by which TLR9 and TLR7 exit the endoplasmic reticulum and travel to endolysosomes in mouse macrophages and dendritic cells. The ectodomains of TLR9 and TLR7 are cleaved in the endolysosome, such that no full-length protein is detectable in the compartment where ligand is recognized. Notably, although both the full-length and cleaved forms of TLR9 are capable of binding ligand, only the processed form recruits MyD88 on activation, indicating that this truncated receptor, rather than the full-length form, is functional. Furthermore, conditions that prevent receptor proteolysis, including forced TLR9 surface localization, render the receptor non-functional. We propose that ectodomain cleavage represents a strategy to restrict receptor activation to endolysosomal compartments and prevent TLRs from responding to self nucleic acids

    Physico-chemical foundations underpinning microarray and next-generation sequencing experiments

    Get PDF
    Hybridization of nucleic acids on solid surfaces is a key process involved in high-throughput technologies such as microarrays and, in some cases, next-generation sequencing (NGS). A physical understanding of the hybridization process helps to determine the accuracy of these technologies. The goal of a widespread research program is to develop reliable transformations between the raw signals reported by the technologies and individual molecular concentrations from an ensemble of nucleic acids. This research has inputs from many areas, from bioinformatics and biostatistics, to theoretical and experimental biochemistry and biophysics, to computer simulations. A group of leading researchers met in Ploen Germany in 2011 to discuss present knowledge and limitations of our physico-chemical understanding of high-throughput nucleic acid technologies. This meeting inspired us to write this summary, which provides an overview of the state-of-the-art approaches based on physico-chemical foundation to modeling of the nucleic acids hybridization process on solid surfaces. In addition, practical application of current knowledge is emphasized

    EXPEDITED PCR WITH STIRRING

    Get PDF
    Disclosed are an apparatus and methods for rapid amplification of nucleic acids. More particularly, the present dis closure relates to an apparatus for mixing a reaction solution during amplification of nucleic acids and to methods for amplifying nucleic acids. Also disclosed are methods for lysing cells in a sample and amplifying nucleic acids

    EXPEDITED PCR WITH STIRRING

    Get PDF
    Disclosed are an apparatus and methods for rapid amplifi cation of nucleic acids . More particularly , the present dis closure relates to an apparatus for mixing a reaction solution during amplification of nucleic acids and to methods for amplifying nucleic acids . Also disclosed are methods for lysing cells in a sample and amplifying nucleic acids

    Counting the ions surrounding nucleic acids.

    Get PDF
    Nucleic acids are strongly negatively charged, and thus electrostatic interactions-screened by ions in solution-play an important role in governing their ability to fold and participate in biomolecular interactions. The negative charge creates a region, known as the ion atmosphere, in which cation and anion concentrations are perturbed from their bulk values. Ion counting experiments quantify the ion atmosphere by measuring the preferential ion interaction coefficient: the net total number of excess ions above, or below, the number expected due to the bulk concentration. The results of such studies provide important constraints on theories, which typically predict the full three-dimensional distribution of the screening cloud. This article reviews the state of nucleic acid ion counting measurements and critically analyzes their ability to test both analytical and simulation-based models

    Chemistry of living systems Semiannual report, Apr. 1 - Sep. 30, 1967

    Get PDF
    Biochemical studies on nucleic acids, proteins, metabolisms, bacteriophages, and related topic

    Nucleic acids and protein synthesis in cancer cell mitochondria. I. Nucleic acids in rat hepatoma mitochondria

    Get PDF
    The contents of nucleic acids in rat liver and hepatoma mitochondria and the physico-chemical properties on DNA's isolated from these mitochondria were comparatively investigated. The results are briefly summarized as follows. 1. The contents of DNA and RNA per mg protein of the hepatoma cell mitochondria were about 10 and 2 to 4 times higher than those of rat liver mitochondria, respectively. 2. The &#955; max. and &#955;min. values of DNA isolated from the hepatoma mitochondria were 257 m&#956; and 231 m&#956;, respectively and those of DNA isolated from the nuclei were 259 m&#956; and 233 m&#956;, respectively, in saline-citrate, pH 7.0. 3. Three fractions of mitochondrial DNA were obtained by the sucrose density gradient and these DNA fractions corresponded, probably, to about 30 S, and 20 S and 14 S DNA's. 4. There was little difference in base compositions between nuclear and mitochondrial DNA's of the hepatoma cells. 5. The degree of hybridization between the nuclear and mitochondrial DNA's of the hepatoma cells was almost the same as that between the nuclear and nuclear DNA's of the hepatoma cells, and somewhat higher than that between the nuclear DNA of rat liver and the nuclear DNA of hepatoma cells. 6. &#34;Highly twisted&#34; circular, &#34;open&#34; circular and linear forms were observed in the DNA preparations of the hepatoma mitochondria. The average values of contour lengths of rat liver and the hepatoma DNA's observed at high frequency were 5.3 &#956; and 4.5 &#956;. 7. A discussion was made on the relation between the genetic informations of mitochondrial DNA and the formation of a mitochondrion in rat liver and the hepatoma cells.</p

    Introduction of structural affinity handles as a tool in selective nucleic acid separations

    Get PDF
    The method is used for separating nucleic acids and other similar constructs. It involves selective introduction, enhancement, or stabilization of affinity handles such as single-strandedness in the undesired (or desired) nucleic acids as compared to the usual structure (e.g., double-strandedness) of the desired (or undesired) nucleic acids. The undesired (or desired) nucleic acids are separated from the desired (or undesired) nucleic acids due to capture by methods including but not limited to immobilized metal affinity chromatography, immobilized single-stranded DNA binding (SSB) protein, and immobilized oligonucleotides. The invention is useful to: remove contaminating genomic DNA from plasmid DNA; remove genomic DNA from plasmids, BACs, and similar constructs; selectively separate oligonucleotides and similar DNA fragments from their partner strands; purification of aptamers, (deoxy)-ribozymes and other highly structured nucleic acids; Separation of restriction fragments without using agarose gels; manufacture recombinant Taq polymerase or similar products that are sensitive to host genomic DNA contamination; and other applications
    corecore