105 research outputs found

    Plant-Associated Bacterial Degradation of Toxic Organic Compounds in Soil

    Get PDF
    A number of toxic synthetic organic compounds can contaminate environmental soil through either local (e.g., industrial) or diffuse (e.g., agricultural) contamination. Increased levels of these toxic organic compounds in the environment have been associated with human health risks including cancer. Plant-associated bacteria, such as endophytic bacteria (non-pathogenic bacteria that occur naturally in plants) and rhizospheric bacteria (bacteria that live on and near the roots of plants), have been shown to contribute to biodegradation of toxic organic compounds in contaminated soil and could have potential for improving phytoremediation. Endophytic and rhizospheric bacterial degradation of toxic organic compounds (either naturally occurring or genetically enhanced) in contaminated soil in the environment could have positive implications for human health worldwide and is the subject of this review

    Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    Get PDF
    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2–3 ‰ heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures

    Preliminary analysis of life within a former subglacial lake sediment in Antarctica

    Get PDF
    Since the first descriptions of Antarctic subglacial lakes, there has been a growing interest and awareness of the possibility that life will exist and potentially thrive in these unique and little known environments. The unusual combination of selection pressures, and isolation from the rest of the biosphere, might have led to novel adaptations and physiology not seen before, or indeed to the potential discovery of relic populations that may have become extinct elsewhere. Here we report the first microbiological analysis of a sample taken from a former subglacial lake sediment in Antarctica (Lake Hodgson, on the Antarctic Peninsula). This is one of a number of subglacial lakes just emerging at the margins of the Antarctic ice sheet due to the renewed onset of deglaciation. Microbial diversity was divided into 23.8% Actinobacteria, 21.6% Proteobacteria, 20.2% Planctomycetes and 11.6% Chloroflexi, characteristic of a range of habitat types (Overall, common sequences were neither distinctly polar, low temperature, freshwater nor marine). Twenty three percent of this diversity could only be identified to “unidentified bacterium”. Clearly these are diverse ecosystems with enormous potential
    corecore