211 research outputs found

    Collaborative Computation in Self-Organizing Particle Systems

    Full text link
    Many forms of programmable matter have been proposed for various tasks. We use an abstract model of self-organizing particle systems for programmable matter which could be used for a variety of applications, including smart paint and coating materials for engineering or programmable cells for medical uses. Previous research using this model has focused on shape formation and other spatial configuration problems (e.g., coating and compression). In this work we study foundational computational tasks that exceed the capabilities of the individual constant size memory of a particle, such as implementing a counter and matrix-vector multiplication. These tasks represent new ways to use these self-organizing systems, which, in conjunction with previous shape and configuration work, make the systems useful for a wider variety of tasks. They can also leverage the distributed and dynamic nature of the self-organizing system to be more efficient and adaptable than on traditional linear computing hardware. Finally, we demonstrate applications of similar types of computations with self-organizing systems to image processing, with implementations of image color transformation and edge detection algorithms

    Solución de Problemas Matriciales de “Gran Escala” sobre Procesadores Multinúcleo y GPUs

    Get PDF
    Few realize that, for large matrices, many dense matrix computations achieve nearly the same performance when the matrices are stored on disk as when they are stored in a very large main memory. Similarly, few realize that, given the right programming abstractions, coding Out-of-Core (OOC) implementations of dense linear algebra operations (where data resides on disk and has to be explicitly moved in and out of main memory) is no more difficult than programming high-performance implementations for the case where the matrix is in memory. Finally, few realize that on a contemporary eight core architecture or a platform equiped with a graphics processor (GPU) one can solve a 100, 000 × 100, 000 symmetric positive definite linear system in about one hour. Thus, for problems that used to be considered large, it is not necessary to utilize distributed-memory architectures with massive memories if one is willing to wait longer for the solution to be computed on a fast multithreaded architecture like a multi-core computer or a GPU. This paper provides evidence in support of these claimsPocos son conscientes de que, para matrices grandes, muchos cálculos matriciales obtienen casi el mismo rendimiento cuando las matrices se encuentran almacenadas en disco que cuando residen en una memoria principal muy grande. De manera parecida, pocos son conscientes de que, si se usan las abstracciones de programacón correctas, codificar algoritmos Out-of-Core (OOC) para operaciones de Álgebra matricial densa (donde los datos residen en disco y tienen que moverse explícitamente entre memoria principal y disco) no resulta más difícil que codificar algoritmos de altas prestaciones para matrices que residen en memoria principal. Finalmente, pocos son conscientes de que en una arquictura actual con 8 núcleos o un equipo con un procesador gráfico (GPU) es posible resolver un sistema lineal simétrico positivo definido de dimensión 100,000 × 100,000 aproximadamente en una hora. Así, para problemas que solían considerarse grandes, no es necesario usar arquitecturas de memoria distribuida con grandes memorias si uno está dispuesto a esperar un cierto tiempo para que la solución se obtenga en una arquitectura multihebra como un procesador multinúcleo o una GPU. Este trabajo presenta evidencias que soportan tales afirmaciones

    Programming matrix algorithms-by-blocks for thread-level parallelism

    Get PDF
    With the emergence of thread-level parallelism as the primary means for continued improvement of performance, the programmability issue has reemerged as an obstacle to the use of architectural advances. We argue that evolving legacy libraries for dense and banded linear algebra is not a viable solution due to constraints imposed by early design decisions. We propose a philosophy of abstraction and separation of concerns that provides a promising solution in this problem domain. The first abstraction, FLASH, allows algorithms to express computation with matrices consisting of blocks, facilitating algorithms-by-blocks. Transparent to the library implementor, operand descriptions are registered for a particular operation a priori. A runtime system, SuperMatrix, uses this information to identify data dependencies between suboperations, allowing them to be scheduled to threads out-of-order and executed in parallel. But not all classical algorithms in linear algebra lend themselves to conversion to algorithms-by-blocks. We show how our recently proposed LU factorization with incremental pivoting and closely related algorithm-by-blocks for the QR factorization, both originally designed for out-of-core computation, overcome this difficulty. Anecdotal evidence regarding the development of routines with a core functionality demonstrates how the methodology supports high productivity while experimental results suggest that high performance is abundantly achievabl

    GOLPH2 expression may serve as diagnostic marker in seminomas

    Get PDF
    ABSTRACT: BACKGROUND: GOLPH2 (Golgi phosphoprotein 2) is a novel Golgi membrane protein. Despite its unknown physiologic function, however, it has been proposed as a biomarker for hepatocellular and prostate carcinoma due to its upregulation in those cancer entities. Whether the overexpression of GOLPH2 is tumour specific or a generic parameter of malignancy and whether this finding is true for additional carcinomas has not been determined. In this study, we aimed to evaluate the expression pattern of GOLPH2 in testicular seminomas, the most common histologic subtype of testicular neoplasm. METHODS: GOLPH2 protein expression was assessed by immunohistochemistry in 69 testicular seminomas and compared to the expression rates in matching normal testicular tissue and intratubular germ cell neoplasia of unclassified type (IGCNU). In addition, a subset of Leydig cell tumours was analyzed accordingly. RESULTS: GOLPH2 was consistently overexpressed (89.9%) in seminomas. Matching non-neoplastic tissue showed weak or negative staining. The observed differences between non-neoplastic and neoplastic tissue were statistically highly significant (p < 0.001). There were no significant associations with tumour status. Interestingly, GOLPH2 was also highly expressed in the intertubular Leydig cells as well as in Leydig cell tumours. CONCLUSIONS: GOLPH2 protein is highly expressed in seminomas and in Leydig cell tumours. This study fosters the association of GOLPH2 with malignant neoplastic processes. The staining pattern is easily assessable and consistent which is a favourable property especially in clinical settings. GOLPH2 could be a novel immunohistochemical marker for the assessment of testicular neoplasms, especially against the background that in analogy to hepatocellular carcinomas complementary GOLPH2 serum levels might be helpful in detecting metastases or recurrent tumour. Therefore serum studies and analyses of GOLPH2 expression in non-seminomatous germ cell tumours are strongly warranted

    Role of Collectins and Complement Protein C1q in pregnancy and parturition

    Get PDF
    Collectins such as surfactant proteins SP-A, SP-D, and mannan-binding lectin (MBL), as well as complement protein C1q are evolutionarily conserved innate immune molecules. They are known to opsonize a range of microbial pathogens (bacteria, fungi, virus, and parasites) and trigger effector clearance mechanisms involving phagocytosis and/or complement activation. Collectins and C1q have also attracted attention in studies involving pregnancy as they are expressed in the female reproductive tissues during pregnancy; a unique state of immune suppression with increased susceptibility to infectious diseases. Recent studies are beginning to unravel their functional significance in implantation, placentation, pregnancy maintenance and parturition in normal and adverse pregnancies. Collectins and C1q, expressed in gestational tissues during pregnancy, might alter the status of mother’s immune response to the allogenic fetus and the microenvironment, thereby serving as important regulators of fetus-mother interaction. Here, we discuss the functional roles that have been assigned to SPA, SP-D, MBL and C1q in pregnancy and parturition

    Rheumatoid arthritis and pregnancy: evolution of disease activity and pathophysiological considerations for drug use

    Get PDF
    It has long been known that pregnancy and childbirth have a profound effect on the disease activity of rheumatic diseases. For clinicians, the management of patients with RA wishing to become pregnant involves the challenge of keeping disease activity under control and adequately adapting drug therapy during pregnancy and post-partum. This article aims to summarize the current evidence on the evolution of RA disease activity during and after pregnancy and the use of anti-rheumatic drugs around this period. Of recent interest is the potential use of anti-TNF compounds in the preconception period and during pregnancy. Accumulating experience with anti-TNF therapy in other immune-mediated inflammatory diseases, such as Crohn’s disease, provides useful insights for the use of TNF blockade in pregnant women with RA, or RA patients wishing to become pregnant

    Mannose Binding Lectin Is Required for Alphavirus-Induced Arthritis/Myositis

    Get PDF
    Mosquito-borne alphaviruses such as chikungunya virus and Ross River virus (RRV) are emerging pathogens capable of causing large-scale epidemics of virus-induced arthritis and myositis. The pathology of RRV-induced disease in both humans and mice is associated with induction of the host inflammatory response within the muscle and joints, and prior studies have demonstrated that the host complement system contributes to development of disease. In this study, we have used a mouse model of RRV-induced disease to identify and characterize which complement activation pathways mediate disease progression after infection, and we have identified the mannose binding lectin (MBL) pathway, but not the classical or alternative complement activation pathways, as essential for development of RRV-induced disease. MBL deposition was enhanced in RRV infected muscle tissue from wild type mice and RRV infected MBL deficient mice exhibited reduced disease, tissue damage, and complement deposition compared to wild-type mice. In contrast, mice deficient for key components of the classical or alternative complement activation pathways still developed severe RRV-induced disease. Further characterization of MBL deficient mice demonstrated that similar to C3−/− mice, viral replication and inflammatory cell recruitment were equivalent to wild type animals, suggesting that RRV-mediated induction of complement dependent immune pathology is largely MBL dependent. Consistent with these findings, human patients diagnosed with RRV disease had elevated serum MBL levels compared to healthy controls, and MBL levels in the serum and synovial fluid correlated with severity of disease. These findings demonstrate a role for MBL in promoting RRV-induced disease in both mice and humans and suggest that the MBL pathway of complement activation may be an effective target for therapeutic intervention for humans suffering from RRV-induced arthritis and myositis

    The ter Mutation in the Rat Dnd1 Gene Initiates Gonadal Teratomas and Infertility in Both Genders

    Get PDF
    A spontaneous mutation leading to the formation of congenital ovarian and testicular tumors was detected in the WKY/Ztm rat strain. The histological evaluation revealed derivatives from all three germ layers, thereby identifying these tumors as teratomas. Teratocarcinogenesis was accompanied by infertility and the underlying mutation was termed ter. Linkage analysis of 58 (WKY-ter×SPRD-Cu3) F2 rats associated the ter mutation with RNO18 (LOD = 3.25). Sequencing of candidate genes detected a point mutation in exon 4 of the dead-end homolog 1 gene (Dnd1), which introduces a premature stop codon assumed to cause a truncation of the Dnd1 protein. Genotyping of the recessive ter mutation revealed a complete penetrance of teratocarcinogenesis and infertility in homozygous ter rats of both genders. Morphologically non-tumorous testes of homozygous ter males were reduced in both size and weight. This testicular malformation was linked to a lack of spermatogenesis using immunohistochemical and histological staining. Our WKY-Dnd1ter/Ztm rat is a novel animal model to investigate gonadal teratocarcinogenesis and the molecular mechanisms involved in germ cell development of both genders
    corecore