223 research outputs found

    The kiwifruit allergen act d 1 activates NF-κB signaling and affects mRNA expression of TJ proteins and innate pro-allergenic cytokines

    Get PDF
    Impairment of the intestinal barrier is one of the key events in the initiation of the sensitization process in food allergy. The aim of this study was to explore the effects of kiwifruit allergen Act d 1 on intestinal permeability and tight junction protein (TJP) gene expression in vivo and to explore its potential to activate the NF-ĸB signaling pathway and to regulate expression of epithelial pro-allergenic cytokines. Influences of Act d 1 on TJP gene expression and pro-allergenic cytokines in the mouse intestine was analyzed by qPCR upon allergen administration by oral gavage. The effect on the in vivo intestinal permeability was assessed in ELISA by measuring the translocation of β-lactoglobulin (BLG) into circulation. The capacity of Act d 1 to activate the NF-ĸB pathway was tested in HEK293 cells by fluorescent microscopy and flow cytometry. Administration of Actinidin (Act d 1) increased intestinal permeability to the BLG. This was accompanied by changes in gene expression of TJP mRNA and pro-allergenic cytokines IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) compared to the control. Act d 1 reduced TEER of the HEK293 monolayer, was positive in an NF-ĸB-reporter HEK293 cell assay, and induced secretion of TSLP. These findings shed more light on the molecular events in the sensitization process of kiwifruit but possibly also of other protease food allergens

    Evaluation of neurological effects of cerium dioxide nanoparticles doped with different amounts of zirconium following inhalation exposure in mouse models of Alzheimer’s and vascular disease

    Get PDF
    Increasing evidence from toxicological and epidemiological studies indicates that the brain is an important target for ambient (ultrafine) particles. Disturbance of redox-homeostasis and inflammation in the brain are proposed as possible mechanisms that can contribute to neurotoxic and neurodegenerative effects. Whether and how engineered nanoparticles (NPs) may cause neurotoxicity and promote neurodegenerative diseases such as Alzheimer's disease (AD) is largely unstudied. We have assessed the neurological effects of subacute inhalation exposures (4 mg/m3 for 3 h/day, 5 days/week for 4 weeks) to cerium dioxide (CeO2) NPs doped with different amounts of zirconium (Zr, 0%, 27% and 78%), to address the influence of particle redox-activity in the 5xFAD transgenic mouse model of AD. Four weeks post-exposure, effects on behaviour were evaluated and brain tissues were analysed for amyloid-β plaque formation and reactive microglia (Iba-1 staining). Behaviour was also evaluated in concurrently exposed non-transgenic C57BL/6J littermates, as well as in Western diet-fed apolipoprotein E-deficient (ApoE-/-) mice as a model of vascular disease. Markers of inflammation and oxidative stress were evaluated in brain cortex. The brains of the NP-exposed 5xFAD mice revealed no accelerated amyloid-β plaque formation. No significant treatment-related behaviour impairments were observed in the healthy C57BL/6J mice. In the 5xFAD and ApoE-/- models, the NP inhalation exposures did not affect the alternation score in the X-maze indicating absence of spatial working memory deficits. However, following inhalation exposure to the 78% Zr-doped CeO2 NPs changes in forced motor performance (string suspension) and exploratory motor activity (X-maze) were observed in ApoE-/- and 5xFAD mice, respectively. Exposure to the 78% doped NPs also caused increased cortical expression of glial fibrillary acidic protein (GFAP) in the C57BL/6J mice. No significant treatment-related changes neuroinflammation and oxidative stress were observed in the 5xFAD and ApoE-/- mice. Our study findings reveal that subacute inhalation exposure to CeO2 NPs does not accelerate the AD-like phenotype of the 5xFAD model. Further investigation is warranted to unravel whether the redox-activity dependent effects on motor activity as observed in the mouse models of AD and vascular disease result from specific neurotoxic effects of these NPs

    Altered non-coding RNA expression profile in F1 progeny 1 year after parental irradiation is linked to adverse effects in zebrafish

    Get PDF
    Gamma radiation produces DNA instability and impaired phenotype. Previously, we observed negative effects on phenotype, DNA methylation, and gene expression profiles, in offspring of zebrafish exposed to gamma radiation during gametogenesis. We hypothesize that previously observed effects are accompanied with changes in the expression profile of non-coding RNAs, inherited by next generations. Non-coding RNA expression profile was analysed in F1 offspring (5.5 h post-fertilization) by high-throughput sequencing 1 year after parental irradiation (8.7 mGy/h, 5.2 Gy total dose). Using our previous F1-γ genome-wide gene expression data (GSE98539), hundreds of mRNAs were predicted as targets of differentially expressed (DE) miRNAs, involved in pathways such as insulin receptor, NFkB and PTEN signalling, linking to apoptosis and cancer. snRNAs belonging to the five major spliceosomal snRNAs were down-regulated in the F1-γ group, Indicating transcriptional and post-transcriptional alterations. In addition, DEpiRNA clusters were associated to 9 transposable elements (TEs) (LTR, LINE, and TIR) (p = 0.0024), probable as a response to the activation of these TEs. Moreover, the expression of the lincRNAs malat-1, and several others was altered in the offspring F1, in concordance with previously observed phenotypical alterations. In conclusion, our results demonstrate diverse gamma radiation-induced alterations in the ncRNA profiles of F1 offspring observable 1 year after parental irradiation.publishedVersio

    Characterizing the Chemical Profile of Incidental Ultrafine Particles for Toxicity Assessment Using an Aerosol Concentrator

    Get PDF
    Incidental ultrafine particles (UFPs) constitute a key pollutant in industrial workplaces. However, characterizing their chemical properties for exposure and toxicity assessments still remains a challenge. In this work, the performance of an aerosol concentrator (Versatile Aerosol Concentration Enrichment System, VACES) was assessed to simultaneously sample UFPs on filter substrates (for chemical analysis) and as liquid suspensions (for toxicity assessment), in a high UFP concentration scenario. An industrial case study was selected where metal-containing UFPs were emitted during thermal spraying of ceramic coatings. Results evidenced the comparability of the VACES system with online monitors in terms of UFP particle mass (for concentrations up to 95 µg UFP/m3 ) and between filters and liquid suspensions, in terms of particle composition (for concentrations up to 1000 µg/ m3). This supports the applicability of this tool for UFP collection in view of chemical and toxicological characterization for incidental UFPs. In the industrial setting evaluated, results showed that the spraying temperature was a driver of fractionation of metals between UF (<0.2 µm) and fine (0.2– 2.5 µm) particles. Potentially health hazardous metals (Ni, Cr) were enriched in UFPs and depleted in the fine particle fraction. Metals vaporized at high temperatures and concentrated in the UF fraction through nucleation processes. Results evidenced the need to understand incidental particle formation mechanisms due to their direct implications on particle composition and, thus, exposure. It is advisable that personal exposure and subsequent risk assessments in occupational settings should include dedicated metrics to monitor UFPs (especially, incidental).What’s important about this paper: Our work addresses the challenge of characterizing the bulk chemical composition of ultrafine particles in occupational settings, for exposure and toxicity assessments. We tested the performance of an aerosol concentrator (VACES) to simultaneously sample ultrafine particles (UFPs) on filter substrates and as liquid suspensions, in a high UFP concentration scenario. An industrial case study was selected where metal-bearing UFPs were emitted. We report the chemical exposures characterized in the industrial facility, and evidence the comparability of the VACES system with online monitors for UFP particle mass (up to 95 µg UFP/m3) as well as between UFP chemical composition on filters and in suspension. This supports the applicability of this tool for UFP collection in view of chemical and toxicological characterization of exposures to incidental UFPs in workplace settings.Highlights: - The VACES system is a useful tool for UFP sampling in high-concentration settings; - UFP collected simultaneously on filters and in suspension showed good comparability; - UFP chemical profiles were characterized; - Health-hazardous metals Ni and Cr accumulated in UFPs; - Understanding emission mechanisms is key to identifying exposure sources.This work was funded by SIINN ERA-NET (project id: 16), the Spanish MINECO (PCIN-2015-173-C02-01) and the French agency (Region Hauts de France). The Spanish Ministry of Science and Innovation (Project CEX2018-000794-S; Severo Ochoa) and the Generalitat de Catalunya (project number: AGAUR 2017 SGR41) provided support for the indirect costs for the Institute of Environmental Assessment and Water Research (IDAEA-CSIC). We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).info:eu-repo/semantics/publishedVersio

    In vitro toxicity of industrially relevant engineered nanoparticles in human alveolar epithelial cells: air–liquid interface versus submerged cultures

    Get PDF
    Diverse industries have already incorporated within their production processes engineered nanoparticles (ENP), increasing the potential risk of worker inhalation exposure. In vitro models have been widely used to investigate ENP toxicity. Air–liquid interface (ALI) cell cultures have been emerging as a valuable alternative to submerged cultures as they are more representative of the inhalation exposure to airborne nano-sized particles. We compared the in vitro toxicity of four ENP used as raw materials in the advanced ceramics sector in human alveolar epithelial-like cells cultured under submerged or ALI conditions. Submerged cultures were exposed to ENP liquid suspensions or to aerosolised ENP at ALI. Toxicity was assessed by determining LDH release, WST-1 metabolisation and DNA damage. Overall, cells were more sensitive to ENP cytotoxic effects when cultured and exposed under ALI. No significant cytotoxicity was observed after 24 h exposure to ENP liquid suspensions, although aerosolised ENP clearly affected cell viability and LDH release. In general, all ENP increased primary DNA damage regardless of the exposure mode, where an increase in DNA strand-breaks was only detected under submerged conditions. Our data show that at relevant occupational concentrations, the selected ENP exert mild toxicity to alveolar epithelial cells and exposure at ALI might be the most suitable choice when assessing ENP toxicity in respiratory models under realistic exposure conditions

    In Vitro Toxicity of Industrially Relevant Engineered Nanoparticles in Human Alveolar Epithelial Cells: Air-Liquid Interface versus Submerged Cultures

    Get PDF
    This article belongs to the Special Issue Engineered Nanomaterials Exposure and Risk Assessment: Occupational Health and SafetyDiverse industries have already incorporated within their production processes engineered nanoparticles (ENP), increasing the potential risk of worker inhalation exposure. In vitro models have been widely used to investigate ENP toxicity. Air-liquid interface (ALI) cell cultures have been emerging as a valuable alternative to submerged cultures as they are more representative of the inhalation exposure to airborne nano-sized particles. We compared the in vitro toxicity of four ENP used as raw materials in the advanced ceramics sector in human alveolar epithelial-like cells cultured under submerged or ALI conditions. Submerged cultures were exposed to ENP liquid suspensions or to aerosolised ENP at ALI. Toxicity was assessed by determining LDH release, WST-1 metabolisation and DNA damage. Overall, cells were more sensitive to ENP cytotoxic effects when cultured and exposed under ALI. No significant cytotoxicity was observed after 24 h exposure to ENP liquid suspensions, although aerosolised ENP clearly affected cell viability and LDH release. In general, all ENP increased primary DNA damage regardless of the exposure mode, where an increase in DNA strand-breaks was only detected under submerged conditions. Our data show that at relevant occupational concentrations, the selected ENP exert mild toxicity to alveolar epithelial cells and exposure at ALI might be the most suitable choice when assessing ENP toxicity in respiratory models under realistic exposure conditions.This research was funded by CERASAFE (www.cerasafe.eu; accessed on 26 October 2021), with the support of ERA-NET SIINN (project id:16) and the Portuguese Foundation for Science and Technology (FCT; SIINN/0004/2014). This work was also supported by the NanoBioBarriers project (PTDC/MED-TOX/31162/2017), co-financed by the Operational Program for Competitiveness and Internationalization (POCI) through European Regional Development Funds (FEDER/FNR) and FCT; Spanish Ministry of Science and Innovation (projects PCIN-2015-173-C02-01 and CEX2018-000794- S-Severo Ochoa), and by the Romanian National Authority for Scientific Research and Innovation (CCCDI-UEFISCDI, project number 29/2016 within PNCDI III). M.J. Bessa (SFRH/BD/120646/2016) and F. Brandão (SFRH/BD/101060/2014) are recipients of FCT PhD scholarships under the framework of Human Capital Operating Program (POCH) and European Union funding. The Doctoral Program in Biomedical Sciences, of the ICBAS—University of Porto, offered additional funds. S. Fraga thanks FCT for funding through program DL 57/2016–Norma transitória (Ref. DL-57/INSA-06/2018). Thanks are also due to FCT/MCTES for the financial support to EPIUnit (UIDB/04750/2020).info:eu-repo/semantics/publishedVersio

    The use of adverse outcome pathways in the safety evaluation of food additives

    Get PDF
    Funder: ILSI EuropeAbstract: In the last decade, adverse outcome pathways have been introduced in the fields of toxicology and risk assessment of chemicals as pragmatic tools with broad application potential. While their use in the pharmaceutical and cosmetics sectors has been well documented, their application in the food area remains largely unexplored. In this respect, an expert group of the International Life Sciences Institute Europe has recently explored the use of adverse outcome pathways in the safety evaluation of food additives. A key activity was the organization of a workshop, gathering delegates from the regulatory, industrial and academic areas, to discuss the potentials and challenges related to the application of adverse outcome pathways in the safety assessment of food additives. The present paper describes the outcome of this workshop followed by a number of critical considerations and perspectives defined by the International Life Sciences Institute Europe expert group

    Toxicity of copper oxide and basic copper carbonate nanoparticles after short-term oral exposure in rats

    Get PDF
    Copper oxide (CuO) nanoparticles (NPs) and copper carbonate nanoparticles (Cu2CO3(OH)(2) NPs have applications as antimicrobial agents and wood preservatives: an application that may lead to oral ingestion via hand to mouth transfer. Rats were exposed by oral gavage to CuO NPs and Cu2CO3(OH)(2) NPs for five consecutive days with doses from 1 to 512 mg/kg and 4 to 128 mg/kg per day, respectively, and toxicity was evaluated at days 6 and 26. Both CuO NPs and Cu2CO3(OH)(2) NPs induced changes in hematology parameters, as well as clinical chemistry markers (e.g. increased alanine aminotransferase, ALT) indicative of liver damage For CuO NPs histopathological alterations were observed in bone marrow, stomach and liver mainly consisting of an inflammatory response, ulceration, and degeneration. Cu2CO3(OH)(2) NPs induced morphological alterations in the stomach, liver, intestines, spleen, thymus, kidneys, and bone marrow. In spleen and thymus lymphoid, depletion was noted that warrants further immunotoxicological evaluation. The NPs showed partial dissolution in artificial simulated stomach fluids, while in intestinal conditions, the primary particles simultaneously shrank and agglomerated into large structures. This means that both copper ions and the particulate nanoforms should be considered as potential causal agents for the observed toxicity. For risk assessment, the lowest bench mark dose (BMD) was similar for both NPs for the serum liver enzyme AST (an indication of liver toxicity), being 26.2 mg/kg for CuO NPs and 30.8 mg/kg for Cu2CO3(OH)(2) NPs. This was surprising since the histopathology evidence demonstrates more severe organ damage for Cu2CO3(OH)(2) NPs than for CuO NPs

    An explorative approach to understanding individual differences in driving performance and neurocognition in long-term benzodiazepine users

    Get PDF
    Objective: Previous research reported cognitive and psychomotor impairments in long‐term users of benzodiazepine receptor agonists (BZRAs). This article explores the role of acute intoxication and clinical complaints. Methods: Neurocognitive and on‐road driving performance of 19 long‐term (≥6 months) regular (≥twice weekly) BZRA users with estimated plasma concentrations, based on self‐reported use, exceeding the therapeutic threshold (CBZRA+), and 31 long‐term regular BZRA users below (CBZRA−), was compared to that of 76 controls. Results: BZRA users performed worse on tasks of response speed, processing speed, and sustained attention. Age, but not CBZRA or self‐reported clinical complaints, was a significant covariate. Road‐tracking performance was explained by CBZRA only. The CBZRA + group exhibited increased mean standard deviation of lateral position comparable to that at blood‐alcohol concentrations of 0.5 g/L. Conclusions: Functional impairments in long‐term BZRA users are not attributable to self‐reported clinical complaints or estimated BZRA concentrations, except for road‐tracking, which was impaired in CBZRA + users. Limitations to address are the lack of assessment of objective clinical complaints, acute task related stress, and actual BZRA plasma concentrations. In conclusion, the results confirm previous findings that demonstrate inferior performance across several psychomotor and neurocognitive domains in long‐term BZRA users

    Altered Adipogenesis in Zebrafish Larvae Following High Fat Diet and Chemical Exposure Is Visualised by Stimulated Raman Scattering Microscopy.

    Get PDF
    Early life stage exposure to environmental chemicals may play a role in obesity by altering adipogenesis; however, robust in vivo methods to quantify these effects are lacking. The goal of this study was to analyze the effects of developmental exposure to chemicals on adipogenesis in the zebrafish (Danio rerio). We used label-free Stimulated Raman Scattering (SRS) microscopy for the first time to image zebrafish adipogenesis at 15 days post fertilization (dpf) and compared standard feed conditions (StF) to a high fat diet (HFD) or high glucose diet (HGD). We also exposed zebrafish embryos to a non-toxic concentration of tributyltin (TBT, 1 nM) or Tris(1,3-dichloroisopropyl)phosphate (TDCiPP, 0.5 µM) from 0–6 dpf and reared larvae to 15 dpf under StF. Potential molecular mechanisms of altered adipogenesis were examined by qPCR. Diet-dependent modulation of adipogenesis was observed, with HFD resulting in a threefold increase in larvae with adipocytes, compared to StF and HGD. Developmental exposure to TBT but not TDCiPP significantly increased adipocyte differentiation. The expression of adipogenic genes such as pparda, lxr and lepa was altered in response to HFD or chemicals. This study shows that SRS microscopy can be successfully applied to zebrafish to visualize and quantify adipogenesis, and is a powerful approach for identifying obesogenic chemicals in vivo.This research is financially supported by Netherlands Organisation for Scientific Research (NWO) VIDI/864.09.005, ASPASIA /015.006.018, VICI/918.10.628, NWO-Groot grant, and the European Union’s Horizon 2020 research and innovation program under grant agreement number 654148 LaserLaB Europe
    corecore