8 research outputs found
Deneysel meme kanseri modelinde süt proteinlerinin koruyucu etkisi
Amaç: Süt serumu proteinlerinin insan sağlığına üzerine birçok yararlı etkileri olduğu bilinmektedir. Çalışmamızda, sıçanlarda N-metil-N-nitrozure ile indüklenen meme kanseri modelinde süt serumu proteinlerinin koruyucu etkileri araştırılmıştır.
Yöntemler: Çalışmamızda deneysel meme kanseri modeli oluşturmak üzere 130 günlük Sprague-Dawley türü, dişi, virjin sıçanlara 100 gün ara ile iki kez N-metil-N-nitrozüre enjekte edildi. Çalışma boyunca sıçanlara haftada iki kez orogastrik gavajla süt serumu proteinleri verildi. Sıçanlar 180 gün sonunda sakrifiye edildi doku örnekleri toplandı. Karaciğer, böbrek ve meme dokularındaki glutatyon, malondialdehit ve protein karbonil değerleri karşılaştırıldı.
Bulgular: Tüm dokularda en yüksek malondialdehit ve protein karbonil değerleri N-metil-N-nitrozüre grubundaki sıçanlarda en düşük malondialdehit ve protein karbonil değerleri de kontrol grubunda gözlendi. N-metil-N-nitrozüre ile birlikte süt serumu proteinleri verildiğinde ise bu değerlerdeki artışların baskılanarak kontrol grubu değerlerine yaklaştığı gözlendi.
Sonuç: Çalışmamızda N-metil-N-nitrozüre ile oluşturulan meme kanseri modelinde N-metil-N-nitrozüre etkisiyle oluşan biyokimyasal değişikliklere karşı süt serumu proteinlerinin koruyucu etkisi olduğu gözlenmiştir
European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS).
The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed.The EU-ROS consortium (COST Action BM1203) was supported by the European Cooperation in Science and Technology (COST). The present overview represents the final Action dissemination summarizing the major achievements of COST Action BM1203 (EU-ROS) as well as research news and personal views of its members. Some authors were also supported by COST Actions BM1005 (ENOG) and BM1307 (PROTEOSTASIS), as well as funding from the European Commission FP7 and H2020 programmes, and several national funding agencies
Anti-cancer effects of curcumin, quercetin and tea catechins
Polyphenols are present in high amounts in all parts of plants including roots, seeds, flowers, leaves, branches and trunk as well as plant derived products such as tea, coffee and wine. Extensive amount of information is available on biological effects of polyphenols including antioxidant, anti-cancer, antiinflammatory, anti-coagulant and anti-microbial activities. In recent years, researchers have turned their interest towards identifying molecular mechanisms underlying the anti-cancer effects of these compounds. However, the limited bioavailability of polyphenols and the existence of differences in cancer cells in terms of intracellular mechanisms affected has necessitated the use of specific approaches to individual cancer cell types as well as methods of increasing bioavailability. In this review, the structures, bioavailability, biological activities and molecular mechanisms of anti-cancer effects of curcumin, quercetin and tea catechins are discussed
European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS)
The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed
European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS)
The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed