186 research outputs found

    Spatio-temporal distribution of microplastics in a Mediterranean river catchment: The importance of wastewater as an environmental pathway

    Get PDF
    Embargo until June 25, 2023Microplastics (MPs) are considered to be ubiquitous contaminants in freshwater ecosystems, yet their sources and pathways at the river catchment scale need to be better determined. This study assessed MP (55–5000 µm) pollution in a Mediterranean river catchment (central Spain) and aimed to identify the importance of wastewater as an environmental pathway. We sampled treated and untreated wastewaters, and raw and digested sludge from five WWTPs during two seasons. River water and sediments were sampled at three locations with different anthropogenic influences during three seasons. On average, 93% (47–99%) of MPs were retained by WWTPs. Concentrations in river water and sediment ranged between 1 and 227 MPs/m3 and 0–2630 MPs/kg dw, respectively. Concentrations strongly depended upon land-use, with pollution levels increasing significantly downstream of urban and industrial areas. Seasonality influenced the observed MP concentrations strongly. During high flow periods, higher water but lower sediment concentrations were observed compared to low flow periods. We estimate that 1 × 1010 MPs are discharged into the catchment via treated and untreated wastewater annually, which constitutes up to 50% of the total MP catchment discharge. Thus, we conclude that the wastewater system represents a major environmental pathway for MPs into Mediterranean rivers with low dilution capacity.acceptedVersio

    Time-course biofilm formation and presence of antibiotic resistance genes on everyday plastic items deployed in river waters

    Full text link
    The plastisphere has been widely studied in the oceans; however, there is little information on how living organisms interact with the plastisphere in freshwater ecosystems, and particularly on how this interaction changes over time. We have characterized, over one year, the evolution of the eukaryotic and bacterial communities colonizing four everyday plastic items deployed in two sites of the same river with different anthropogenic impact. α-diversity analyses showed that site had a significant role in bacterial and eukaryotic diversity, with the most impacted site having higher values of the Shannon diversity index. β-diversity analyses showed that site explained most of the sample variation followed by substrate type (i.e., plastic item) and time since first colonization. In this regard, core microbiomes/biomes in each plastic at 1, 3, 6 and 12 months could be identified at genus level, giving a global overview of the evolution of the plastisphere over time. The measured concentration of antibiotics in the river water positively correlated with the abundance of antibiotic resistance genes (ARGs) on the plastics. These results provide relevant information on the temporal dynamics of the plastisphere in freshwater ecosystems and emphasize the potential contribution of plastic items to the global spread of antibiotic resistanceThe authors acknowledge the financial support provided by the Spanish Government (Ministerio de Ciencia e Innovacion, ´ MICIN): PID2020–113769RB-C21/22, PLEC2021–007693 (Funded by MCIN/ AEI/10.13039/501100011033 and by the European Union “NextGenerationEU”/PRTR”), the IMPASSE project (PCIN-2017–06) belonging to the EU JPI-Water initiative, and the Thematic Network of Micro- and Nanoplastics in the Environment (RED2018–102345-T, EnviroPlaNet Network). SMC thanks the Universidad de Alcala ´ for the award of an FPI contract. A. Rico thanks the Talented Researcher Support Programme - Plan GenT (CIDEGENT/2020/043) of the Generalitat Valenciana. The authors gratefully acknowledge the Genomics Unit of the “Parque Científico de Madrid” for qPCR experiments and Illumina sequencin

    Complete aromatase deficiency in four adult men: detection of a novel mutation and two known mutations in the CYP19A1 gene

    Get PDF
    The abstracts descibes four new cases of patients with aromatase deficiency. Both the clinical features and the results of the molecular studies are reported

    Retention efficiency for microplastic in a landscape estimated from empirically validated dynamic model predictions

    Get PDF
    Soils are recipients of microplastic that can be subsequently transferred to the sea. Land sources dominate inputs to the ocean, but knowledge gaps about microplastic retention by land hinder assessments of input rates. Here we present the first empirical evaluation of a dynamic microplastic fate model operating at landscape level. This mechanistic model accounts for hydrology, soil and sediment erosion, particle characteristics and behavior. We predict microplastic concentrations in water and sediments of the Henares river (Spain) within the measurement uncertainty boundaries (error factors below 2 and 10, respectively). Microplastic export from land and discharge by river fluctuates in a non-linear manner with precipitation and runoff variability. This indicates the need of accurate dynamic descriptions of soil and stream hydrology even when modeling microplastic fate and transport in generic scenarios and at low spatio-temporal resolution. A time-averaged landscape retention efficiency was calculated showing 20–50% of the microplastics added to the catchment over a multiannual period were retained. While the analysis reveals persistent uncertainties and knowledge gaps on microplastic sources to the catchment, these results contribute to the quantitative understanding of the role of terrestrial environments in accumulating microplastics, delaying their transport to the sea

    Large-scale monitoring and risk assessment of microplastics in the Amazon River

    Get PDF
    Microplastics (MPs) are one of the most widespread contaminants worldwide, yet their risks for freshwater ecosystems have seldom been investigated. In this study, we performed a large monitoring campaign to assess the presence and risks of MPs in Amazonian freshwater ecosystems. We investigated MP pollution in 40 samples collected along 1500 km in the Brazilian Amazon, including the Amazon River, three major tributaries, and several streams next to the most important urban areas. MPs in the 55–5000 µm size range were characterized (size, shape, color) by microscopy and identified (polymer composition) by infrared spectroscopy. Ecotoxicological risks were assessed using chronic Species Sensitivity Distributions for effects triggered by food dilution and tissue translocation using data alignment methods that correct for polydispersity of environmental MPs and bioaccessibility. This study shows that MPs are ubiquitous contaminants in Amazonian freshwater ecosystems, with measured concentrations (55–5000 µm) ranging between 5 and 152 MPs/m3 in the Amazon River and its main tributaries, and between 23 and 74,550 MPs/m3 in urban streams. The calculated Hazardous Concentration for the 5% of species (HC5) derived from the SSDs for the entire MP range (1–5000 µm) were 1.6 × 107 MPs/m3 (95% CI: 1.2 × 106 – 4.0 × 108) for food dilution, and 1.8 × 107 MPs/m3 (95% CI: 1.5 × 106 – 4.3 × 108) for translocation. Rescaled exposure concentrations (1–5000 µm) in the Amazon River and tributaries ranged between 6.0 × 103 and 1.8 × 105 MPs/m3, and were significantly lower than the calculated HC5 values. Rescaled concentrations in urban streams ranged between 1.7 × 105 and 5.7 × 108 MPs/m3, and exceeded both calculated HC5 values in 20% of the locations. This study shows that ecological impacts by MP contamination are not likely to happen in the Amazon River and its major tributaries. However, risks for freshwater organisms may be expected in near densely populated areas, such as the cities of Manaus or Belem, which have limited wastewater treatment facilities.Large-scale monitoring and risk assessment of microplastics in the Amazon RiverpublishedVersio

    Exploring the planetary boundary for chemical pollution

    Get PDF
    Rockström et al. (2009a, 2009b) have warned that humanity must reduce anthropogenic impacts defined by nine planetary boundaries if “unacceptable global change” is to be avoided. Chemical pollution was identified as one of those boundaries for which continued impacts could erode the resilience of ecosystems and humanity. The central concept of the planetary boundary (or boundaries) for chemical pollution (PBCP or PBCPs) is that the Earth has a finite assimilative capacity for chemical pollution, which includes persistent, as well as readily degradable chemicals released at local to regional scales, which in aggregate threaten ecosystem and human viability. The PBCP allows humanity to explicitly address the increasingly global aspects of chemical pollution throughout a chemical's life cycle and the need for a global response of internationally coordinated control measures. We submit that sufficient evidence shows stresses on ecosystem and human health at local to global scales, suggesting that conditions are transgressing the safe operating space delimited by a PBCP. As such, current local to global pollution control measures are insufficient. However, while the PBCP is an important conceptual step forward, at this point single or multiple PBCPs are challenging to operationalize due to the extremely large number of commercial chemicals or mixtures of chemicals that cause myriad adverse effects to innumerable species and ecosystems, and the complex linkages between emissions, environmental concentrations, exposures and adverse effects. As well, the normative nature of a PBCP presents challenges of negotiating pollution limits amongst societal groups with differing viewpoints. Thus, a combination of approaches is recommended as follows: develop indicators of chemical pollution, for both control and response variables, that will aid in quantifying a PBCP(s) and gauging progress towards reducing chemical pollution; develop new technologies and technical and social approaches to mitigate global chemical pollution that emphasize a preventative approach; coordinate pollution control and sustainability efforts; and facilitate implementation of multiple (and potentially decentralized) control efforts involving scientists, civil society, government, non-governmental organizations and international bodies

    On the Relationship Between the Optical Emission-Line and X-ray Luminosities in Seyfert 1 Galaxies

    Full text link
    We have explored the relationship between the [O III] λ\lambda5007 and the 2--10 keV luminosities for a sample of Broad- and Narrow-Line Seyfert 1 galaxies (BLSy1 and NLSy1, respectively). We find that both types of Seyferts span the same range in luminosity and possess similar [O III]/X-ray ratios. The NLSy1s are more luminous than BLSy1s, when normalized to their central black hole masses, which is attributed to higher mass accretion rates. However, we find no evidence for elevated [O III]/X-ray ratios in NLSy1s, which would have been expected if they had excess EUV continuum emission compared to BLSy1s. Also, other studies suggest that the gas in narrow-line regions (NLR) of NLSy1s and NLSy1s span a similar range in ionization, contrary to what is expected if those of the former are exposed to a stronger flux of EUV radiation. The simplest interpretation is that, like BLSy1s, a large EUV bump is not present in NLSy1s. However, we show that the [OIII]/X-ray ratio can be lowered as a result of absorption of the ionizing continuum by gas close to the central source, although there is no evidence that intrinsic line-of-sight absorption is more common among NLSy1s, as would be expected if there were a larger amount of circumnuclear gas. Other possible explanations include: 1) anisotropic emission of the ionizing radiation, 2) higher gas densities in the NLR of NLSy1s, resulting in lower average ionization, or 3) the presence of strong winds in the the nuclei of NLSy1s which may drive off much of the gas in the narrow-line region, resulting in lower cover fraction and weaker [O III] emission.Comment: 18 pages, including 3 figures, 2 tables. Accepted for publication in The Astrophysical Journa

    Mapping Cumulative Environmental Risks: Examples from The EU NoMiracle Project

    Get PDF
    We present examples of cumulative chemical risk mapping methods developed within the NoMiracle project. The different examples illustrate the application of the concentration addition (CA) approach to pesticides at different scale, the integration in space of cumulative risks to individual organisms under the CA assumption, and two techniques to (1) integrate risks using data-driven, parametric statistical methods, and (2) cluster together areas with similar occurrence of different risk factors, respectively. The examples are used to discuss some general issues, particularly on the conventional nature of cumulative risk maps, and may provide some suggestions for the practice of cumulative risk mapping

    Exploring the planetary boundary for chemical pollution

    Full text link
    • …
    corecore