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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Microplastic fate model in terrestrial 
environment validated against empirical 
data. 

• 20–50% Microplastic retention effi-
ciency by landscape is estimated. 

• Model predictions are within measure-
ment uncertainty boundaries. 

• Microplastic runoff from soil is an 
important source to the river. 

• Sources of microplastic to terrestrial 
environment remain uncertain.  
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A B S T R A C T   

Soils are recipients of microplastic that can be subsequently transferred to the sea. Land sources dominate inputs 
to the ocean, but knowledge gaps about microplastic retention by land hinder assessments of input rates. Here we 
present the first empirical evaluation of a dynamic microplastic fate model operating at landscape level. This 
mechanistic model accounts for hydrology, soil and sediment erosion, particle characteristics and behavior. We 
predict microplastic concentrations in water and sediments of the Henares river (Spain) within the measurement 
uncertainty boundaries (error factors below 2 and 10, respectively). Microplastic export from land and discharge 
by river fluctuates in a non-linear manner with precipitation and runoff variability. This indicates the need of 
accurate dynamic descriptions of soil and stream hydrology even when modeling microplastic fate and transport 
in generic scenarios and at low spatio-temporal resolution. A time-averaged landscape retention efficiency was 
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calculated showing 20–50% of the microplastics added to the catchment over a multiannual period were 
retained. While the analysis reveals persistent uncertainties and knowledge gaps on microplastic sources to the 
catchment, these results contribute to the quantitative understanding of the role of terrestrial environments in 
accumulating microplastics, delaying their transport to the sea.   

1. Introduction 

Soils are the main recipients of microplastic pollution that is subse-
quently transferred to aquatic ecosystems [21,29,35,39,44]. Globally, it 
has been estimated that terrestrial sources contribute between 64% and 
90% of the plastic debris in the oceans [40]. However knowledge gaps 
about their accumulation in soil, run-off and in-stream transport [4] has 
hindered robust assessments of these diffuse terrestrial source and their 
influence on regional and global distributions of microplastics [15,46, 
47]. 

Models of microplastics fate and transport on land and stream water 
can be useful tools to address some of these gaps, by rigorously assim-
ilate the complex behavior of these materials while accounting for 
environmental variability. Microplastics possess relatively low density, 
extremely wide shape and size distributions (ranging from the nano-
meter to the >cm scale) and can engage in interactions with other 
components of the environment such as soil water, soil natural particles 
and river sediments (among others), the stocks and flux of which can 
also vary in time [14,16,17,23,26,53]. Scarcity of harmonized holistic 
datasets useful to characterize both inputs and exposure of microplastics 
in specific landscapes and times, have represented a limitation on these 
models’ development [22]. 

Landscape-scale, mechanistic models of microplastic fate and trans-
port are needed to confront the scarcity of monitoring data, constrain 
fluxes to the marine environment and rigorously quantify environmental 
distributions. Unfortunately, only few prototypes of such models exist 
[13,2,31,49], and none have been tested against empirical data, so far. 
This limits the capacity to make rigorous assessment of microplastics 
fate and distribution and prioritize the pollution reduction actions called 
for by international governance and agreements [15,46,47]. 

Accumulation of microplastics in soils is likely associated to in-
teractions with soil aggregates and storage in soil pores. Their mobili-
zation from soil has been described as dependent on soil erosion 

processes mainly through water runoff. Bioturbation may also influence 
microplastic fate [11,31,37,38,42]. Riverine transport of microplastics 
depends on flow characteristics (stream power and turbulence), in-
teractions with river sediments (setting, entrainment, and burial in the 
river bed) and hetero-aggregation processes (i.e., binding of micro-
plastics into natural sediment aggregates in the stream) [2,31,44,6,9] 
(Fig. 1). This framework however remains purely theoretical in absence 
of empirical validations. Fortunately, recent studies have provided 
seminal contributions to filling some of these lacunae enabling the 
definition of empirical relations between particle characteristics and 
transport rates [24,50,51]. Data that can help building holistic assess-
ments of microplastics sources and distribution at landscape level [11, 
35,43,48] have also become available and can be used for model 
training and assessment. 

Here, we advance microplastic fate modelling by assembling and 
testing INCA-MP (Integrated Catchment model of MicroPlastics trans-
port) (Fig. 1), a mechanistic system-dynamics model assimilating this 
state of the art [2,24,31,50,51]. INCA-MP describes landscape (catch-
ment areas, river network structure, elevation and land use) and 
weather data (including daily time series of precipitation and air tem-
perature). It also assimilates data of microplastic concentrations and 
sources to soils and streams (through application of sewage sludge to 
agricultural land and wastewater releases), and a generic ambient 
source (amb, kg km− 2 d− 1) conceptually encompassing atmospheric 
deposition and other diffuse sources (e.g. from the fragmentation of 
litter, agricultural plastics, polymeric coatings degradation, wastewater 
irrigation etc.). 

In this study we show the first calibration and performance assess-
ment of INCA-MP in a configuration that describes the Henares, a 
Mediterranean river and catchment in Spain. This location choice was 
driven by the availability of observation (repeated in space and time) of 
microplastics in river water and sediments. Consistently collected data 
on microplastics concentrations in sewage sludge and wastewater, 

Fig. 1. : Depiction of the model frame with details on microplastics fate processes accounted for with their driving processes and/or parameters. White squares 
represent generic microplastics. Grey irregular shapes are natural sediments. The green corona surrounding some of the white squares represent biofouling. 
Abbreviation reported in parenthesis refer to the symbol of the relevant parameter included in the calibration. Processes reported in blue text refer to components of 
the model that were turned off in this specific application due limitations imposed by the resolution of the experimental dataset. 
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representing known important terrestrial and water-directed sources are 
also available for this site [42,43] and can be used to generate estimates 
of microplastic sources to the catchment. The scenario definition 
included information on estimated atmospheric deposition drawn from 
recent literature [8,57]. The aim of the study was to develop a first 
empirically constrained calibration and an external assessment of model 
predictivity. In addition, the calibrated model was used to develop a 
mechanistic assessment of microplastics storage and flows at the 
catchment scale and to estimate the average capacity of the landscape to 
delay microplastic transport to the marine environment. 

2. Experimental 

2.1. Model description 

INCA-MP is a semi-distributed daily-timestep model in the INCA 
family [25,31,32]. It consists of a hydrology module that produces 
overland water and river flows and a microplastic module that uses these 
variables to simulate on-land and in-stream mobilization and transport 
of microplastic particles. The in-stream model solves its ordinary dif-
ferential equations (ODE) using the Rosenbrock4 solver from boost: 
odeint [1]. Other ODEs are solved using an implementation of the 
Runge-Kutta 4 DASCRU solver [52]. The Model is built in the Mobius 
modelling framework [34]. 

The catchment is divided into sub-catchments. Each sub-catchment 
is divided into a set of landscape units (land use types) defined by the 
percentage of surface area they cover and by an individual set of soil 
characteristics, climate parameters (e.g. precipitation data) and micro-
plastic inputs. Fluxes from land to the river are computed once per 
landscape unit and aggregated over each sub-catchment. In-stream 
processes are computed per river section whereby, in the current 
application we design one river section per sub-catchment. Water and 
suspended particles, including microplastic, are transported down-
stream in a (potentially branching) river network. The complete math-
ematical description of INCA-MP and the value of all parameters that 
were not included in the calibration are available in the supplementary 
information. 

2.2. Catchment description and microplastic sampling and analysis 

The model was set up for the Henares River catchment (4144 km2) in 
Spain, which is located in the upper Tagus River Basin, the longest river 
in the Iberian Peninsula (Fig. S2). The area has a Mediterranean climate, 
with dry and hot summers and mild-to-cold winters. The upper part of 
the catchment is characterized by forests and extensive agriculture, 
while the lower part is prevalently agricultural but also receiving 
wastewater discharges from industrial and urban areas, including the 
cities of Guadalajara and Alcalá de Henares, which have approximately 
90,000 and 200,000 inhabitants, respectively. 

Microplastic monitoring data was obtained from three sampling 
sites, which were selected according to the degree of anthropogenic 
impact in the subcatchments described by the different prevalence of 
land-uses. Site 1-Sorbe was located downstream of forested and vege-
tated areas representing less than 10% of the total catchment, Site 2- 
Badiel was in a small sub-catchment influenced by agriculture and 
wastewater discharges from small villages representing less than 7% of 
the total catchment area and Site 3-Henares was located at the catch-
ment outlet downstream of the cities and the industrial areas of Gua-
dalajara and Alcalá de Henares and draining the entire catchment 
(Fig. S2, Table S1, S2, S7, S8). The sampling sites were located next to 
river flow gauging stations, from which data was obtained from the 
Centro de Estudios y Experimentacion de Obras Publicas [7]. Daily 
values of air temperature and precipitation were obtained from the 
E-OBS gridded dataset. 

Microplastics were monitored in stream water and river sediments, 
and in samples of sewage sludge applied to agricultural soils in the 

catchment and in wastewater. River monitoring took place during three 
sampling dates, covering three different seasons (spring, summer, 
autumn; Table S2). The methods used for microplastic sampling as well 
as the results of the microplastic monitoring are described in [43] 
Stream water (5–10 m3) was collected using a pump system and passed 
through a battery of nets (from 300 to 55 µm mesh) to volume reduce 
and size fractionate the samples. River sediment samples were taken 
using a core sampler to collect approximately 0.5 kg of material from a 
depth of 0–10 cm. Processed sewage sludge (representing the material 
applied to fields) was sampled directly from the sewage sludge hopper 
following standard processes for digestion and dehydration at the Waste 
Water Treatment Plants (WWTPs). In total, the study is based on 64 
individual measurements of microplastics: 27 samples of sediments 
collected in 3 locations at 3 time points, 9 observations of stream water 
concentrations from integrative large volume samples, 10 and 18 ob-
servations of wastewater effluent and sewage sludge concentrations, 
respectively. For the sake of calibration and model assessment, model 
predictions were compared to the average of the replicated samples. 

Microplastic particles were extracted from the respective sample 
matrices using approaches adapted to each sample type and comprising 
steps such as volume reduction, density separation and organic matter 
removal [20,43]. Stream water samples were handled according to their 
organic matter content. Some samples were sufficiently free from ma-
terial to be directly vacuum filtered onto filter papers (Whatman GF/A, 
Ø 47 mm) for analysis. Samples with higher organic content were left to 
settle until the overlying liquid was clear. This was carefully decanted 
and filtered onto a filter paper and retained for analysis. The organic 
residue was treated using Fenton’s reagent and filtered onto a filter 
paper for analysis. River sediment and sewage sludge samples were both 
subjected to an organic matter removal and density separation proced-
ure following the procedure set out in [20]. Samples were treated using 
Fenton’s reagent to reduce the organic content before a series of 
sequential density extractions at freshwater (1 g cm− 3) and high 
(1.8 cm− 3) density using filtered water and saturated sodium iodide 
solution, respectively. Each separation was filtered onto a filter paper 
and retained for analysis. 

Isolated particles were first subjected to a visual pre-selection of 
suspected microplastics using a Nikon SMZ 745 T stereomicroscope (20x 
magnification), which were subsequently photographed and character-
ized by size, morphology and color using an Infinity 1 camera accessory 
and the Infinity Analyze (v.6.5.4) software package. Suspected micro-
plastics were identified following the protocol of [28]. 

Suspected microplastics were analyzed using Fourier Transform 
Infrared (FTIR) spectroscopy to confirm plastic composition. Larger 
microplastics (>300 µm) were analyzed using an Agilent Cary 630 FTIR 
with a diamond ATR accessory. Smaller particles and fibers were 
analyzed using a Perkin Elmer Spotlight 400 FTIR in µ-transmission 
mode. A diamond compression cell (Perkin Elmer, DC-3) was used to 
compress particles and improve spectral quality before loading onto the 
Spotlight FTIR. Four co-scans, taken at a spectral resolution of 4 cm− 1, 
were taken for each particle measurement on both FTIR instruments. For 
the larger particles, a background measurement was taken before each 
particle measurement. For the smaller particles, a new background was 
taken each time the diamond compression cell was loaded onto the 
machine every 1–10 particles. Each spectrum was compared to a series 
of commercial PerkinElmer Polymer library, Agilent Polymer library, 
open source [36] and in-house libraries and manually verified to 
confirm the polymer type. The size cutoff for microplastic detection was 
set to 50 µm. 

During visual analysis, the length and width of each particle was 
measured using the Infinity Analyze software package. In addition to 
this, the depth of each particle was estimated. This facilitated an esti-
mate of the volume of each particle. Microplastic mass estimates were 
then generated by combining the particle volume with a density value, 
based on the FTIR results for each particle. The full method, quality 
assurance measures and list of polymer densities used is provided in [43] 
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and [20]. 
Microplastic mass inputs into the Henares catchment via treated and 

untreated wastewater were estimated on the basis of measured micro-
plastic concentrations in the inflows (untreated wastewater) and efflu-
ents (treated wastewater) of five selected WWTPs during two sampling 
events and the total wastewater volumes emitted over the course of the 
year, considering all discharge points (Fig. S2). Microplastic inputs into 
agricultural soils were estimated for each sub-catchment corresponding 
to Sites 1–3 based on land cover data and the sewage sludge application 
data provided by Council of Sustainable Development of Castilla la 
Mancha. For this, we first calculated the amount of sewage sludge from 
WWTP that was applied in each main crop (i.e., wheat, barley, corn) 
during the periods 2017–2019. We assigned wheat and barley as the 
main crops cultivated in mixed and non-irrigated agricultural lands, and 
corn as the main crop cultivated in irrigated agricultural lands. We 
estimated that approximately 1.5–2.7% of land dedicated to wheat and 
barley production had used sewage sludge as fertilizer at least once 
during that period, at a dose of 0.7–3.9 tons/ha dw; while about 2–15% 
of areas dedicated to corn production applied sewage sludge at least 
once at a dose of 2.5–4.6 tons/ha dw. By using this information and the 
amount of land dedicated to non-irrigated, mixed and irrigated agri-
cultural production, we estimated that the total sewage sludge appli-
cation to the sub-catchment dedicated to Sites 1, 2, and 3 were 36–77, 
173–373 and 2557–16068 tons of sewage sludge dw during the period 
2017–2019. The microplastic mass added to agricultural soils was 
determined on the basis of the concentrations measured in processed 
sewage sludge (after digestion and dehydration) of the three most 
relevant WWTPs in the watershed (WWTP 1, 4 and 5 from [43]). 

2.3. Scope, limitations and main assumptions of the model application 

The assumptions and boundaries associated to the modelling sce-
nario are the following:  

i. The model scenario details input of microplastic (fragments and 
fibers) from known supposedly important sources such as: sewage 
sludge application to agricultural fields and wastewater effluents. 
An additional generic source (named ambient input (amb)) is also 
considered, encompassing the contribution of atmospheric 
deposition, inputs from fragmentation of litter in the catchment, 
contaminated water irrigation or any other uncharted source of 
fragments and fibers. In order to determine the amount of 
microplastic applied with sewage sludge to the fields, we multi-
plied the estimated concentration of microplastic in sewage 
sludge [42] with the amount of sewage sludge applied to agri-
cultural lands of each sub-catchment every year. The sewage 
sludge was modeled as being applied in the August of each year, 
as this is typically the period of application in this region. Sewage 
sludge concentration was one of the parameters that was subject 
to variation in the Monte Carlo analysis. Since the analyses of 
different samples of sewage sludge provided variable results, the 
sewage sludge concentrations used in individual runs were esti-
mated randomly drawing from a lognormal distribution fitted to 
the distribution of measured sewage sludge data (Table S1). 
Similarly, the representative concentrations of microplastic in 
wastewater effluents used in the model were drawn from a 
lognormal distribution fitted to the set of measured concentra-
tions from different WWTPs discharging into the Henares River 
(Table S2). These fitted distribution represented the priors for 
modelling microplastics inputs to the catchment from these 
sources. Because no direct observations of amb exist, a homoge-
nous distribution was assumed as the prior for this parameter. We 
therefore considered a broad range (0–0.004 kg km− 2 d− 1) that 
contains and exceeds by one and a half order of magnitude the 
range of atmospheric depositions of microplastic measured in 
Europe (ranging 0.000005–0.0001 kg km− 2 d− 1) [8,57]. Any 

possible value of amb within this range was assumed to have the 
same probability.  

ii. The model scenario did not consider sources from tyre wear. The 
analytical method used to detect microplastic concentration was 
not suited or validated to detect these materials, especially in 
sewage sludge and river sediments. Suspected tyre wear particles 
were therefore excluded from the calibration and validation 
dataset. Accordingly, sources for these particles were not 
considered as model inputs. This approach represents an un-
avoidable narrowing of scope that fortunately does not invalidate 
the assessment and the conclusions of the study. Hence, there is 
no claim this study addresses the mass budget of all microplastic 
typologies in the system: it only addresses those that could be 
quantitatively analyzed in the environmental samples and for 
which the model could be reliably calibrated and assessed.  

iii. Simulations were conducted to predict masses of microplastics 
divided in two classes – namely, fibers and fragments. Accord-
ingly, the experimental dataset used for calibration and model 
assessment were also grouped in this way. The class “fragment” 
included all individual microplastic observations data did not 
have the characteristic elongated shape of fibers (e.g. the ratio 
between the two main dimensions was higher than 100 and one 
dimension was below 20 µm). The fragment and fiber groups 
were not separated any further into size or density classes due to 
insufficient number of particles in the river sediment samples. All 
modelled microplastic were attributed a density value of 1.1. 
Considering the focus on such broad size classes, fragmentation 
processes, homoaggregation and ageing processing affecting 
particle density and size, were turned off during the model sim-
ulations (despite the model frame can detail them). This poten-
tially represents a critical simplification. We argue that this was 
an unavoidable option given the lack of knowledge on the rate of 
these processes in soils and sediments. Their inclusion would 
have introduced the need of highly arbitrary assumptions and 
unquantifiable uncertainties.  

iv. In first approximation, all model parameters related to on-land 
sources, mobilization and transport of microplastics were set to 
be the same across all the landscape, regardless of land-use ty-
pologies. This is unrealistic, as erosion is probably higher in 
agricultural soils compared to pastures and forest soil, while 
primary sources and atmospheric depositions are higher in urban 
areas than, for example, in forests. However, considering the lack 
of sufficient information on spatial distribution of source in-
tensity or other processes rates, and the focus of the model inte-
grating across broader areas of the catchment, it is argued that 
the approach introduced here represented the minimalistic con-
servative assumption.  

v. While INCA-MP dynamically calculates pools and concentrations 
of microplastic in soil, no sufficient empirical data of microplastic 
concentrations in different soil types are yet available in this 
catchment, or elsewhere in Europe. We overcome this limitation 
by setting two conditions: first, we assumed an initial pool of 
200 t of microplastics (fragments plus fibers) in the catchment 
topsoil layer (e. g. the part of the soil that can directly engage in 
microplastic exchange with the atmosphere and runoff water 
assumed to be 5 cm) at the beginning of the simulation period. 
This assumption was drawn from the few empirical evidences 
available to date: The assumed initial pool of soil microplastics is 
in fact equivalent to an average concentration of 0.00006% of 
total microplastics in soil, which is consistent with the range of 
observed soil concentration data available from different regions 
after averaging soil with different level of contamination (e.g. 
urban, agricultural, background soils) [10,12,18,19,27,41,45,48, 
54–56]. The second condition is that the annual average of the 
total pool of microplastics in soil Ssoil_y increases with time (that is 
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Ssoil_y − Ssoil_y− 1 ≥ 0). This is consistent with evidences from a 
range of studies [10,12,55,56]. 

2.4. Parameter calibration, uncertainty analysis and model assessment 

A lack of harmonized holistic observations of microplastics in source 
matrixes (such as sewage sludge and wastewater samples) and envi-
ronmental compartments (e.g. sediments and stream water) consistently 
sampled and analyzed in specific locations and times has so far repre-
sented a major hindrance to the assessment of models and the effort of 
reducing uncertainties in their parameters. Exploiting the new obser-
vation dataset, a calibration algorithm was developed based on a Monte 
Carlo run of the model, where each run utilizes a set of parameters 
randomly sampled from a-priori distributions drawn from empirical 
observations or, when these were absent, from uniform distribution 
defined from conservative assumptions on their expected ranges (as 
described in the previous section). A success score (mathematically 
described below) was attributed to each model run based on the fit to 
observed concentration data. The output of the analysis was the poste-
rior distribution of the parameter set and predicted microplastic con-
centration, obviously encompassing an estimation of the parameters’ 
and outputs’ most likely values. Such an approach allows consider the 
empirical information and its associated variability and uncertainty in a 
fully objective way. No arbitrary manual tuning of parameters’ values 
was in fact operated in this study to achieve high predictive 
performance. 

The first step to set up the model scenario for microplastic fate pre-
diction is the description of the catchment hydrology. INCA-MP achieve 
this mechanistically starting from meteorological data. Calibration 
against hydrological data was implemented by tuning the parameters of 
the hydrological module as described elsewhere[32], in order to maxi-
mize the fit between river flow predictions at the control points and 
respective observations. INCA-MP satisfactorily reproduces stream 
water flow (Fig. S1, Table S3) at two points: the Sorbe and Henares. 
Predictions for the Badiel point were unfortunately unsatisfactory, likely 
due to the small agricultural area drained by this first-order reach in 
combination with the daily temporal resolution of the model. In these 
conditions, even a single unmapped water extraction and/or recharge 
points can significantly affect river water flows. In order to avoid further 
propagating such an uncertainty, Badiel data were excluded from the 
analysis. 

The observations dataset of “fragments” was considered during 
parameter calibration, owing to the broader density of data available for 
this class and their larger morphological and physical heterogeneity. 
The dataset of “fibers” was instead used as external validation set. While 
the data of fibers originated from the same samples in which also the 
fragments were determined, the two subsets can be treated as inde-
pendent. In fact: i) fragments and fibers have distinct sources ii) they are 
transported with different efficiency within soil, river sediments and 
stream water; and iii) the model utilizes different sets of equations and 
parameters for fragments and fibers [24,50,51]. The independence of 
these two subsets of data is ultimately demonstrated by the lack of 
correlation in measured concentrations of fibers and fragments in all 
analyzed matrices. 

Table S7 (supplementary information) lists the parameter set 
included in the calibration. These parameters were chosen for being the 
most sensitive ones in determining changes in stream water predicted 
concentrations of microplastic (e.g. the result of an initial sensitivity 
analysis run through the “hold other parameter constant” approach). 
Such a preselection was necessary to keep sampling space dimension 
computationally manageable. Other parameters were either set to 
reflect the assumptions given above or were available from literature 
[24,50,51]. 

We run the model from 2012 to 2019 (inclusive). This period was 
initialized with a 5 years “warm-up” period preceding the year of the 

monitoring. In the Monte Carlo simulation, parameter sets were sampled 
based on a Latin Hypercubes strategy, with prior distributions given in 
Table. The Monte Carlo simulation was scripted using the Python 
wrapper that is available for all Mobius models. The number of sampled 
parameter sets was 10000. We follow a GLUE-like methodology [3], and 
assign a likelihood value Li (unitless) to each parameter set, based on the 
yielded model fitness. Li is used as a weight when determining the 
posterior distribution of the parameters and the distribution of model 
outcomes, and was calculated as: 

Li = 0.3 • NNSE
(
mhenares,sim,mhenares,obs

)
+ 0.2

• NNSE
(
msorbe,sim,msorbe,obs

)
+ 0.3 • NNSE

(
chenares,sim, chenares,obs

)
+ 0.2

• NNSE(csorbe,sim, csorbe,obs)

(1)  

Where m = mbed,frag is the mass of bed fragments, c = csusp,frag is the 
concentration of suspended fragments, and NNSE is a normalized Nash- 
Sutcliffe efficiency given by 

NNSE(sim, obs) =
1

1 −

∑

t
(1− obst

simt)
2

∑

t
(1− obst

obs
)2

(2) 

∑
t includes all the individual time steps in which there is an 

observation of fragments in stream water or river sediments. The nu-
merical coefficients attribute arbitrary weights for the likelihood 
calculation. Results from Henares were given a slightly higher weight 
(0.3) compared to Sorbe (0.2) due to the lower stream order and the 
larger catchment. While the Henares datasets represented over 95% of 
the total empirically-derived information, the choices of these arbitrary 
coefficients allowed maintaining a level of influence in the calibration 
also for the smaller catchment Sorbe. Model results from the Badiel 
sampling point were disregarded due to flow conditions that were 
difficult to model. This had little impact on the study as Badiel repre-
sented less than 7% of the total agricultural area of the whole Henares 
catchment. The results from Henares were given a slightly higher weight 
due to the larger catchment size. 

Observed data (obs) were derived from the measurements of micro-
plastic occurrence by converting information on individual particles 
size, shape, and density at each point into an aggregated mass value. For 
converting the observed concentrations in the river sediment from 
kg(MP)/kg(sediment) to kg(MP)/m2 we assumed that microplastics 
accumulate in the top 15cm of the sediment bed (this is the length of the 
sampling cylinders) and that the density of the sediment is 2g/cm3, 
which is representative of what was measured. 

2.5. Calculation of average landscape retention efficiency 

In order to define a measurement that quantify the tendence of a 
catchment to retain microplastics emitted over land or in the catchment 
stream we introduce the Retention Efficiency Index (eff) representing a 
measure of the fraction of the microplastic total mass added to the 
system that tend to remain in catchment soils and river sediments, over 
time. It is calculated as the median of the time variability of the 
instantaneous retention efficiency effT, whereby: 

effT =
Sc_T

ScT + ET
∗ 100 (3) 

Here, Sc_T (kg) is the total storage of microplastics present at any 
given time step T in the soil and sediments of the catchment, minus the 
total storage assumed at the beginning of the simulation (i.e. Sc_T =

(Ssoil_T + SsedimentT ) − (Ssoil_t0 + Ssedimentt0 ). 
ET (kg) is the total export of microplastic from the catchment exiting 

the main river mouth integrated between t0 and T. 
effT is strongly dependent on meteorological and hydrological con-

ditions, varying strongly over time with a skewed distribution. This is 
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because both the export of microplastics from soil, sediments and the 
river mouth are driven by meteorological conditions and are maximized 
during unfrequent (in time) high flow events. Since the focus here is to 
describe a general retention efficiency, we calculate eff as the median of 
the values taken by effT over time throughout multiple years of simu-
lations (from 2012 to 2019). Calculations for eff were reiterated (as done 
for any other parameters) through the Monte Carlo analysis to keep 
track of uncertainties in model parameterization. 

3. Results 

3.1. Model Calibration 

Model calibration focused on obtaining informative posterior dis-
tributions of all parameters defining microplastic fate, including those 
for which measurement are not yet available. Concerning parameters 
with constrainable priors, calibration yielded posterior distributions for 
sewage sludge and wastewater microplastic concentrations (used to 
define inputs to the system) reflecting the distribution of measurements 
(Fig. 3). Higher likelihood values for the generic ambient input amb (for 
which no detailed information was available) tended instead to level out 
in the high range of the conservatively assumed homogeneous prior 
distribution (Fig. 3) suggesting sources other than sewage sludge and 
wastewater could have a very important role. 

Once fed with the best set of parameters from the calibration, the 
model converged to good precision (i.e. the breadth of the model con-
fidence boundaries obtained from the Monte Carlo analysis) and accu-
racy (i.e. the distance between the median of the model predictions from 
the observed data) (Fig. 2). Stream water concentrations of fragments 
were all within the model prediction confidence boundaries with the 
median of the predictions typically differing less than a factor of 2 from 
the observations. 

Concerning river sediments, for the Henares main stream, calibration 
yielded prediction confidence boundaries for fragments that contained 
experimental observations and that differed by less than a factor of 2 
from the measurements (Fig. 2). In the case of Sorbe, however the model 
tended to systematically overestimate fragment concentrations in sedi-
ments (in the worst case by a factor of 5), which is also in the range of the 
boundaries of measurement uncertainty [30]. 

The discrepancy between the model performance in estimating 
fragments in the river sediments of the Henares and Sorbe is explainable 
by the minimalistic assumptions introduced on microplastic sources 
(assumption iv of Section 2.3). In absence of specific evidence, the value 
of generic ambient source amb was in fact set to be the same in any point 
of the river catchment. This leads to overestimating inputs for Sorbe, 
which, unlike most of the remaining Henares catchment area, is a 
forested subcatchment with a low anthropic presence. For the sake of 
objectivity, however the introduction of arbitrary adjustments in the 
parameters were avoided, even when they could make sense. 

The model exhaustively captured the differences in microplastic 
levels observed at the two sub-catchments, both in stream water and 
river sediments. At the Henares points, fragment concentrations were 
measured to be at least one order of magnitude higher than at the Sorbe 
point, which was also precisely reflected by the model estimates. The 
ability of describing temporal variability could instead not be system-
atically assessed given that the difference between consequent mea-
surements at a given point was in most cases non-significant 
(considering the uncertainties inherent to concentration measurements 
in water and sediments [5,30]). 

Calibration enabled constraining uncertainties of many, yet not all, 
the model parameters included in the analysis (Fig. 3). For example, best 
estimates for entrainment (a parameter controlling erosion and settling of 
particles in the river sediments) successfully converged within the range 
0.5–1 d N m− 2. Large uncertainties however persist on the value of the 
parameters controlling microplastic erosion and storage in soil, with 

posterior distributions not dissimilar to the uniform prior. This is likely 
driven by the high degree of freedom imposed by the assumption of 
uniform prior distributions applied to all these interrelated parameters. 
Such a situation can in fact prevent convergence to a more defined 
domain without additional empirical insights. The predictive ability of 
the model, in spite of the residual uncertainty on the parameterization of 
the microplastic land erosion module, suggests that this part of the 
theoretical frame can potentially be further simplified if measurements 
of specific parameters will not become available. Alternatively, focused 
study on the dynamic of microplastics in the water column will be 
needed to increase confidence in this mechanistic frame. This could be 
the focus of a future application of the model. 

Despite these limitation and residual uncertainties on parameteri-
zation, the calibration of INCA-MP yielded meaningful predictions with 
relatively narrow precision boundaries. 

3.2. Assessment of model predictive ability 

Following calibration with the fragment dataset, we challenged the 
model to externally predict the microfiber dataset for the same case 
study. Predicted fiber concentrations had similar accuracy and precision 
to the fragment calibration (Fig. 2), demonstrating an ability of 
capturing the large spatial variability observed between the two moni-
toring locations. In the case of stream water, INCA-MP yielded predic-
tion boundaries for fiber concentrations that included experimental data 
and with median of predictions being within a factor of two from 
measurements. The prediction of fiber concentrations in river sediments, 
too, reflected the performance achieved with the calibration dataset 
with a tendence to overestimate. In this case an outlier was observed in 
the Henares datasets that was a factor of 10 higher from the median of 
predictions. This observation was likely a measurement outlier, 
exceeding by a factor > 10 the value of other measurements conducted 
at the same point. 

Considering the confidence boundaries for measurements of micro-
plastic in river sediments (estimated to vary by a factor of 3 below and 
above the mean of replicate measurements - meaning significant vari-
ability can be measured when differences between two observations are 
in the range or above a factor of 10) [5,30], these results can be 
considered as satisfactory. 

3.3. Dynamic assessment of microplastic flows and stocks in the 
catchment 

Following model calibration and evaluation, we analyzed the fluxes 
and budget of microplastics in the catchment calculated by the model. 
The model simulation captures the effects of baseline flow and high flow 
events in the accumulation and release of microplastics from river sed-
iments. Baseline flow results in a gradual accumulation of microplastics 
in the river sediments (Fig. 2). Low water flow and low runoff coincide 
with relatively constant level of microplastic in the stream (mostly fed 
by wastewater effluents). With baseline precipitation conditions, stream 
water concentrations increase partly contributed by land runoff. High 
flow (such as that observed in early 2018) depletes the stream bed 
reservoir generating a peak in microplastic stream water concentrations 
(Fig. 2). The post flood phase is then characterized by low concentra-
tions in both river sediments and stream water, as the terrestrial and in- 
stream stocks of readily mobile microplastics (i.e. the top soil and 
sediment pools) are depleted. 

Fig. 4 shows the temporal variability of microplastic inputs to river, 
inclusive of confidence intervals of the estimates. Input from land to 
river are in the order of 1000–4000 t y− 1. Wastewater effluents are an 
important source to the river too, roughly representing an equivalent 
input when considering the skewed distribution of these estimates. 
When comparing the median of the estimates wastewater instead rep-
resents one fifth of the inputs from land. 

Fig. 5A-C illustrates the temporal trends of fragments accumulation 
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Fig. 2. : Weighted quantiles of selected time series results of modeled and observed values of microplastics masses and concentrations in the riverbed and 
flowing water of the Henares and Sorbe reaches of the Henares River catchment. The quantiles are based on the ensemble of results from the Monte Carlo run, 
weighted by the performance parameter Li given in Eq. 1. 
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Fig. 3. : Prior and posterior distributions of the randomly drawn parameters. The x axes are the scale of the parameter values explored by the model to attain 
best predictions. The y axis is a weighted frequency where the weight in the posterior is the model performance measure Li given in Eq. 1.. “Samples” refer to the 
measured concentrations in sludge and wastewater given in Table S1 and Table S2. 

M. Norling et al.                                                                                                                                                                                                                                



Journal of Hazardous Materials 464 (2024) 132993

9

in the catchment in relation to the total river outflow, as predicted by the 
model. Repeated treatments with sewage sludge and other inputs from 
diffuse sources (represented by amb) drives to the multiannual accu-
mulation of microplastic in soil. The addition of microplastics through 

sludge application is shown by the step-like increases occurring during 
the summer months of each year (Fig. 5A). Following these spikes, the 
model predicts periods in which the soil temporarily tends to dissipate 
part of its microplastic pool (this is the case of at least over 25% of the 

Fig. 4. : Inputs of microplastic to the Henares stream. A. Total yearly microplastic transfer from land to river (sum of all the catchment). B. Estimated inputs of 
microplastic to river from wastewater effluents. The quantile distributions are computed in the same way as in the analysis in Figure. Wastewater flows are set as 
constant value, randomly extracted (at each iteration of the model run) from the distribution of empirical data. 

Fig. 5. : Dynamics of stocks and fluxes of microplastics in the catchment. A. Temporal variability of the storage of fragments by the catchment soil. B. Temporal 
variability of the microplastic storage by soil and river sediments. C. Annually integrated discharge of microplastics by the Henares river. D. Estimate of the 
catchment retention efficiency index eff. The quantile distributions in all these figures are computed in the same way as in the analysis in Figure. 
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parameter sets tested during the Monte Carlo analysis). With more 
conservative assumptions on microplastic mobilization from land, soil 
could still release particles to the stream water during more intense 
precipitation events. This was basically observed with all parameters 
sets. 

Over the 8 years of the simulation, the fragment pool in soil increases 
1.3–20% (depending on the parameter set). This is generally consistent 
with available evidences from other studies and locations [10,12,55,56]. 

Fig. 5B shows the total storage of fragments by the catchment sum-
ming the pool of soil and sediments. At any given moment soil hosts the 
majority of microplastics in the catchment (over 90%). This is because 
soil acts as a long-term capacitor while river sediments, according to the 
model predictions, can easily release during floods a large part of the 
accumulated microplastics. During one of these events (like the one in 
early 2018) the catchment can dissipate even 4–7.5 t (1–1.8 kg km− 2 

y− 1, scaled to the catchment area) of microplastics in few days. Annu-
ally, the Henares discharges from its mouth between 1.3 and 7.5 t y− 1 

(0.3 – 1.8 kg km− 2 y− 1) of microplastics (median of estimates) 
depending on year, and up to 19 t y− 1 (4.6 kg km− 2 y− 1) when consid-
ering less conservative estimates (Fig. 5C). 

3.4. Landscape efficiency to retain microplastics 

In order to give a better representation of this catchment ability to 
retain or delay transfer of microplastic to the downstream and their 
export through the river mouth, we integrated microplastic fluxes, and 
averaged soil and sediment microplastic storages, over time. Fig. 6 de-
picts the generalized and time-averaged catchment-scale mass budget. 
In order to justify levels of microplastics measured in stream water and 
river sediments, substantial runoff needs to be generated from land. 
Estimated release of microplastic from wastewater directly to the river, 
accounts only for 10–50% (median = 25%) of the total inputs of 
microplastics to the river. The magnitude of ambient diffuse sources on 
land (amb) is estimated to be 10–100 times higher than the input from 
sewage sludge applications. This is needed to justify substantial runoff to 
feed the river storage and runoff, while preventing the depletion of the 
soil storage (which is assumed to increase over time according to evi-
dences)[10,12,55,56]. This may appear surprising since sewage sludge 
application has been generally considered as a main source of micro-
plastics for soils[10,33]. On the other hand, dropping the assumption on 

the increase of soil storage over time leads to a lower estimate of amb 
relative to sewage sludge inputs, but also to a rapid and unlikely 
depletion of the soil storage. 

In summary, this analysis suggests that about 75% of the total input 
of microplastics to the catchments and stream derive from undefined 
sources (accounted here for by the amb parameter). These are contrib-
uted by atmospheric depositions, littering, and other diffuse sources. In 
order to further consolidate understanding of the mass budget of these 
pollutants in landscapes, further effort should be placed in the identifi-
cation of sources and assessment of their intensity. 

Next, we used modelled data on microplastic storage and discharge 
to calculate the index of catchment retention efficiency eff . Because the 
index is integrating over multiple years it represents the typical fraction 
of microplastics added to the catchment that tend to remain in the 
catchment soils or sediments, averaging the highly dynamic nature of 
microplastic flows and budget described in Fig. 5A-C. Fig. 5C shows the 
probabilistic distribution of estimated eff values (calculated for the 
period 2012–2019). The interquartile of the estimates varied between 
20%− 50%, with a mode at 30%, indicating a higher likelihood that the 
catchment retain, in average and on the long-term, a slight minority of 
the total load of microplastics added to the system. 

4. Discussion 

This first application and empirical assessment of a dynamic model 
of microplastic fate at catchment scale demonstrates the possibility of 
obtaining reliable mechanistic predictions. This study exploited one of 
the most detailed measurement datasets [43] describing microplastic 
inputs to and loads within the catchment and river consistently obtained 
from harmonized measurements. Once fed with inputs estimated from 
the measurements of sewage sludge and wastewater effluents the model 
yielded satisfactory predictions of microplastics concentrations in 
stream water and river sediments at the effluent points of the main river 
reaches with observations repeated over time. 

While this monitoring effort was sufficient to obtain satisfactory 
model accuracy and precision, substantially denser datasets, encom-
passing both environmental concentration data and quantitative infor-
mation on microplastic sources to the landscape and waterscape, are 
needed to improve some model parameters, especially those concerning 

Fig. 6. : Representation of time averaged stores and time integrated fluxes of microplastic in the Henares catchment for the period of the simulation 
(2012–2019). The thickness of the arrows is proportional to the flux values. The area of the circles is proportional to the storage value. Bolt numbers represent median 
estimates, interquartiles (25th and 75th percentiles) of estimates are given in parentheses. 
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microplastic runoff from soils. Low data density also prevented devel-
oping calibration and predictions for subclasses of particles (e.g. divided 
by size or density classes), as well as the parameterization of processes 
such as microplastic fragmentation and etheroaggregation rates. At 
present, only prediction for bulk fragments and bulk fibers could be 
achieved successfully. 

The simulation results revealed some important gap existing in the 
knowledge on microplastic sources to terrestrial environments. The 
mass budget assessment of Fig. 6 shows that measurable input of 
microplastics (e.g. through sewage sludge application, and wastewater 
effluents) only account for about a fraction (typically 25–50%) of the 
total input of fibers and fragments required to justify observed con-
centrations in stream water and river sediment. 

Because of the focus on mechanisms and the geographical and 
meteorological drivers of microplastic transport, INCA-MP is designed to 
provide specific (in time and space) predictions. The outcome and 
conclusion provided here are therefore site-specific. While this can be 
seen as a limitation, this study aims at demonstrating the possibility of 
dynamic mechanistic predictions of microplastic fate at this scale. This is 
a necessary and not yet achieved milestone towards sound upscaling and 
more generalized future assessments. 

In this geographic scenario, through the estimation of the landscape 
retention efficiency for microplastics (eff , %), we calculated that the 
catchment tend to retain, in average and over the long-time, between 
20% and 50% of the microplastics added to soils and stream water. A 
landscape ability of retaining microplastics delaying their transport to 
the oceans is an important, yet elusive parameter for regional and global 
microplastic distribution assessments. It is inversely related to the po-
tential for microplastics released to land to reach the marine environ-
ment and is essential for estimating mass budgets, ecosystem exposure 
and future trends of both terrestrial and marine microplastic pollution. 
To our knowledge, this is the first time such a retention efficiency is 
introduced and estimated in robust quantitative terms. Empirical as-
sessments of this parameters are rare and generally focusing on study 
conducted on small scales. These studies provided contrasting infor-
mation. For instance, a Canadian field-scale study[11] showed that a 
very high fraction of yearly microplastic addition to agricultural soils 
could be removed by regular but intense rains. In semiarid conditions, 
microplastic runoff was negligible when moderate rainfall occurred 
during a semi-controlled plot-scale runoff experiment[42]. Finally, 
another controlled plot-scale runoff study[37] showed that single short 
(1.5 h) high intensity precipitation events can mobilize 0.8–4% of high 
density polyethylene particles added to a soil plot, resulting in a 2–12% 
loss after three such events depending on particle size and soil charac-
teristics. Preferential erosion of microplastics (compared to natural soil 
particles) was also observed[37]. Our model results capture this vari-
ability associated to meteorological, hydrological factors. 

Because eff is sensible to the prevailing climatic conditions, the es-
timates obtained from this study can be primarily seen as relevant for a 
Mediterranean semiarid environment. Soil and river sediment storage 
and microplastic riverine export fluctuates with time due to precipita-
tion and runoff variability, whereby effT is maximized in wetter condi-
tions. Hence the distribution of eff will expectedly have a higher 
negative skewness (i.e. towards lower retention) in wetter environments 
and in region with soils presenting lower permeability. 

In conclusion, the present is the first empirical evaluation of a 
mechanistic, landscape-scale microplastic fate and transport model 
across soils, streams and river sediments. Our results provide encour-
aging insights about the possibility of drawing accurate estimates of 
microplastic flows and distribution across land and waterscapes. They 
show that microplastic export from land and discharge by river fluctu-
ates considerably and in a non-linear manner with precipitation and 
runoff variability. This indicates the need of a sufficiently accurate dy-
namic description of soil and stream hydrology even when modeling 
microplastic fate and transport in generic scenarios (including at low 

spatio-temporal resolution). Good predictive ability obtained here 
reinforce confidence on the possibility of elaborating local, landscape 
and, eventually, global level microplastic budget assessments starting 
from a sufficiently detailed mechanistic framework. These assessments 
are in fact crucial for supporting the efforts of prioritizing actions to 
protect the environment. 

Environmental Implication 

Soils are main recipients of microplastic pollution that is subse-
quently transferred to aquatic ecosystems. Land-based sources dominate 
microplastics inputs to the ocean but knowledge gaps about their 
accumulation in soil, run-off and in-stream transport has hindered as-
sessments of regional/global distributions and marine ecosystem expo-
sure. These gaps must be filled to prioritize environmental protection 
actions. Verified mechanistic models capable of describing this process 
are the main avenue to advance knowledge in the field. This paper fills 
this gap by presenting the first empirical validation of a mechanistic 
microplastic fate model operating at the river catchment scale. 
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