218 research outputs found
Lecithin addition to starter pig diets with and without added fat and whey
A total of 316 crossbred weanling pigs were used in two studies to evaluate the effect of the addition of edible-grade, unbleached soy lecithin on growth in starter pig diets with and without added fat and/or dried whey. Addition of fat to a corn-soybean meal diet improved (P\u3c.05) feed efficiency but addition of lecithin did not affect performance. When lecithin and fat were added in combination, average daily gain was less (P\u3c.05) than for diets without added fat. This may be due to a high level of undigestible fat having a limiting effect on intake and consequently decreasing gains. A low level of lecithin (1.5%) in diets without whey gave approximately the same response as a 4% fat diet without thus making lecithin a possible fat substitute should, it be economically feasible.; Swine Day, Manhattan, KS, November 15, 198
Total differential cross sections for Ar–CH4 from an ab initio potential
Total differential cross sections for the Ar–CH4 scattering complex at ECM=90.1 meV were obtained from converged close-coupling calculations based on a recent ab initio potential computed by symmetry-adapted perturbation theory (SAPT). Agreement with experiment is good, which demonstrates the accuracy of the SAPT potential
The rp-process and new measurements of beta-delayed proton decay of light Ag and Cd isotopes
Recent network calculations suggest that a high temperature rp-process could
explain the abundances of light Mo and Ru isotopes, which have long challenged
models of p-process nuclide production. Important ingredients to network
calculations involving unstable nuclei near and at the proton drip line are
-halflives and decay modes, i.e., whether or not -delayed proton
decay takes place. Of particular importance to these network calculation are
the proton-rich isotopes Ag, Ag, Cd and Cd. We
report on recent measurements of -delayed proton branching ratios for
Ag, Ag, and Cd at the on-line mass separator at GSI.Comment: 4 pages, uses espcrc1.sty. Proceedings of the 4th International
Symposium Nuclei in the Cosmos, June 1996, Notre Dame/IN, USA, Ed. M.
Wiescher, to be published in Nucl.Phys.A. Also available at
ftp://ftp.physics.ohio-state.edu/pub/nucex/nic96-gs
rp-Process weak-interaction mediated rates of waiting-point nuclei
Electron capture and positron decay rates are calculated for
neutron-deficient Kr and Sr waiting point nuclei in stellar matter. The
calculation is performed within the framework of pn-QRPA model for rp-process
conditions. Fine tuning of particle-particle, particle-hole interaction
parameters and a proper choice of the deformation parameter resulted in an
accurate reproduction of the measured half-lives. The same model parameters
were used to calculate stellar rates. Inclusion of measured Gamow-Teller
strength distributions finally led to a reliable calculation of weak rates that
reproduced the measured half-lives well under limiting conditions. For the
rp-process conditions, electron capture and positron decay rates on Kr
and Sr are of comparable magnitude whereas electron capture rates on
Sr and Kr are 1--2 orders of magnitude bigger than the
corresponding positron decay rates. The pn-QRPA calculated electron capture
rates on Kr are bigger than previously calculated. The present
calculation strongly suggests that, under rp-process conditions, electron
capture rates form an integral part of weak-interaction mediated rates and
should not be neglected in nuclear reaction network calculations as done
previously.Comment: 13 pages, 4 figures, 4 tables; Astrophysics and Space Science (2012
Ultracold collisions of oxygen molecules
Collision cross sections and rate constants between two ground- state oxygen
molecules are investigated theoretically at translational energies below K and in zero magnetic field. We present calculations for elastic and spin-
changing inelastic collision rates for different isotopic combinations of
oxygen atoms as a prelude to understanding their collisional stability in
ultracold magnetic traps. A numerical analysis has been made in the framework
of a rigid- rotor model that accounts fully for the singlet, triplet, and
quintet potential energy surfaces in this system. The results offer insights
into the effectiveness of evaporative cooling and the properties of molecular
Bose- Einstein condensates, as well as estimates of collisional lifetimes in
magnetic traps. Specifically, looks like a good candidate for
ultracold studies, while is unlikely to survive evaporative
cooling. Since is representative of a wide class of molecules that
are paramagnetic in their ground state we conclude that many molecules can be
successfully magnetically trapped at ultralow temperatures.Comment: 15 pages, 9 figure
Proton Drip-Line Calculations and the Rp-process
One-proton and two-proton separation energies are calculated for proton-rich
nuclei in the region . The method is based on Skyrme Hartree-Fock
calculations of Coulomb displacement energies of mirror nuclei in combination
with the experimental masses of the neutron-rich nuclei. The implications for
the proton drip line and the astrophysical rp-process are discussed. This is
done within the framework of a detailed analysis of the sensitivity of rp
process calculations in type I X-ray burst models on nuclear masses. We find
that the remaining mass uncertainties, in particular for some nuclei with
, still lead to large uncertainties in calculations of X-ray burst light
curves. Further experimental or theoretical improvements of nuclear mass data
are necessary before observed X-ray burst light curves can be used to obtain
quantitative constraints on ignition conditions and neutron star properties. We
identify a list of nuclei for which improved mass data would be most important.Comment: 20 pages, 9 figures, 2 table
Managed Aquifer Recharge as a Tool to Enhance Sustainable Groundwater Management in California
A growing population and an increased demand for water resources have resulted in a global trend of groundwater depletion. Arid and semi-arid climates are particularly susceptible, often relying on groundwater to support large population centers or irrigated agriculture in the absence of sufficient surface water resources. In an effort to increase the security of groundwater resources, managed aquifer recharge (MAR) programs have been developed and implemented globally. MAR is the approach of intentionally harvesting and infiltrating water to recharge depleted aquifer storage. California is a prime example of this growing problem, with three cities that have over a million residents and an agricultural industry that was valued at 47 billion dollars in 2015. The present-day groundwater overdraft of over 100 km3 (since 1962) indicates a clear disparity between surface water supply and water demand within the state. In the face of groundwater overdraft and the anticipated effects of climate change, many new MAR projects are being constructed or investigated throughout California, adding to those that have existed for decades. Some common MAR types utilized in California include injection wells, infiltration basins (also known as spreading basins, percolation basins, or recharge basins), and low-impact development. An emerging MAR type that is actively being investigated is the winter flooding of agricultural fields using existing irrigation infrastructure and excess surface water resources, known as agricultural MAR. California therefore provides an excellent case study to look at the historical use and performance of MAR, ongoing and emerging challenges, novel MAR applications, and the potential for expansion of MAR. Effective MAR projects are an essential tool for increasing groundwater security, both in California and on a global scale. This chapter aims to provide an overview of the most common MAR types and applications within the State of California and neighboring semi-arid regions
Primary care nurses struggle with lifestyle counseling in diabetes care: a qualitative analysis
Contains fulltext :
89605.pdf (publisher's version ) (Open Access)BACKGROUND: Patient outcomes are poorly affected by lifestyle advice in general practice. Promoting lifestyle behavior change require that nurses shift from simple advice giving to a more counseling-based approach. The current study examines which barriers nurses encounter in lifestyle counseling to patients with type 2 diabetes. Based on this information we will develop an implementation strategy to improve lifestyle behavior change in general practice. METHOD: In a qualitative semi-structured study, twelve in-depth interviews took place with nurses in Dutch general practices involved in diabetes care. Specific barriers in counseling patients with type 2 diabetes about diet, physical activity, and smoking cessation were addressed. The nurses were invited to reflect on barriers at the patient and practice levels, but mainly on their own roles as counselors. All interviews were audio-recorded and transcribed. The data were analyzed with the aid of a predetermined framework. RESULTS: Nurses felt most barriers on the level of the patient; patients had limited knowledge of a healthy lifestyle and limited insight into their own behavior, and they lacked the motivation to modify their lifestyles or the discipline to maintain an improved lifestyle. Furthermore, nurses reported lack of counseling skills and insufficient time as barriers in effective lifestyle counseling. CONCLUSIONS: The traditional health education approach is still predominant in primary care of patients with type 2 diabetes. An implementation strategy based on motivational interviewing can help to overcome 'jumping ahead of the patient' and promotes skills in lifestyle behavioral change. We will train our nurses in agenda setting to structure the consultation based on prioritizing the behavior change and will help them to develop social maps that contain information on local exercise programs
- …