28 research outputs found

    Subsistence Strategies in Traditional Societies Distinguish Gut Microbiomes

    Get PDF
    Recent studies suggest that gut microbiomes of urban-industrialized societies are different from those of traditional peoples. Here we examine the relationship between lifeways and gut microbiota through taxonomic and functional potential characterization of faecal samples from hunter-gatherer and traditional agriculturalist communities in Peru and an urban-industrialized community from the US. We find that in addition to taxonomic and metabolic differences between urban and traditional lifestyles, hunter-gatherers form a distinct sub-group among traditional peoples. As observed in previous studies, we find that Treponema are characteristic of traditional gut microbiomes. Moreover, through genome reconstruction (2.2-2.5 MB, coverage depth x26-513) and functional potential characterization, we discover these Treponema are diverse, fall outside of pathogenic clades and are similar to Treponema succinifaciens, a known carbohydrate metabolizer in swine. Gut Treponema are found in non-human primates and all traditional peoples studied to date, suggesting they are symbionts lost in urban-industrialized societies

    Genetic Control of Obesity and Gut Microbiota Composition in Response to High-Fat, High-Sucrose Diet in Mice

    Get PDF
    Obesity is a highly heritable disease driven by complex interactions between genetic and environmental factors. Human genome-wide association studies (GWAS) have identified a number of loci contributing to obesity; however, a major limitation of these studies is the inability to assess environmental interactions common to obesity. Using a systems genetics approach, we measured obesity traits, global gene expression, and gut microbiota composition in response to a high-fat/high-sucrose (HF/HS) diet of more than 100 inbred strains of mice. Here we show that HF/HS feeding promotes robust, strain-specific changes in obesity that is not accounted for by food intake and provide evidence for a genetically determined set-point for obesity. GWAS analysis identified 11 genome-wide significant loci associated with obesity traits, several of which overlap with loci identified in human studies. We also show strong relationships between genotype and gut microbiota plasticity during HF/HS feeding and identify gut microbial phylotypes associated with obesity

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity

    Glycan degradation (GlyDeR) analysis predicts mammalian gut microbiota abundance and host diet-specific adaptations.

    No full text
    UnlabelledGlycans form the primary nutritional source for microbes in the human gut, and understanding their metabolism is a critical yet understudied aspect of microbiome research. Here, we present a novel computational pipeline for modeling glycan degradation (GlyDeR) which predicts the glycan degradation potency of 10,000 reference glycans based on either genomic or metagenomic data. We first validated GlyDeR by comparing degradation profiles for genomes in the Human Microbiome Project against KEGG reaction annotations. Next, we applied GlyDeR to the analysis of human and mammalian gut microbial communities, which revealed that the glycan degradation potential of a community is strongly linked to host diet and can be used to predict diet with higher accuracy than sequence data alone. Finally, we show that a microbe's glycan degradation potential is significantly correlated (R = 0.46) with its abundance, with even higher correlations for potential pathogens such as the class Clostridia (R = 0.76). GlyDeR therefore represents an important tool for advancing our understanding of bacterial metabolism in the gut and for the future development of more effective prebiotics for microbial community manipulation.ImportanceThe increased availability of high-throughput sequencing data has positioned the gut microbiota as a major new focal point for biomedical research. However, despite the expenditure of huge efforts and resources, sequencing-based analysis of the microbiome has uncovered mostly associative relationships between human health and diet, rather than a causal, mechanistic one. In order to utilize the full potential of systems biology approaches, one must first characterize the metabolic requirements of gut bacteria, specifically, the degradation of glycans, which are their primary nutritional source. We developed a computational framework called GlyDeR for integrating expert knowledge along with high-throughput data to uncover important new relationships within glycan metabolism. GlyDeR analyzes particular bacterial (meta)genomes and predicts the potency by which they degrade a variety of different glycans. Based on GlyDeR, we found a clear connection between microbial glycan degradation and human diet, and we suggest a method for the rational design of novel prebiotics

    The intestinal metabolome: an intersection between microbiota and host.

    No full text
    Recent advances that allow us to collect more data on DNA sequences and metabolites have increased our understanding of connections between the intestinal microbiota and metabolites at a whole-systems level. We can also now better study the effects of specific microbes on specific metabolites. Here, we review how the microbiota determines levels of specific metabolites, how the metabolite profile develops in infants, and prospects for assessing a person's physiological state based on their microbes and/or metabolites. Although data acquisition technologies have improved, the computational challenges in integrating data from multiple levels remain formidable; developments in this area will significantly improve our ability to interpret current and future data sets

    Comparison of the vaginal microbial communities in women with recurrent genital HSV receiving acyclovir intravaginal rings.

    No full text
    Vaginally administered antiviral agents may reduce the risk of HIV and HSV acquisition. Delivery of these drugs using intravaginal rings (IVRs) holds the potential benefits of improving adherence and decreasing systemic exposure, while maintaining steady-state drug levels in the vaginal tract. Elucidating how IVRs interact with the vaginal microbiome constitutes a critical step in evaluating the safety of these devices, as shifts the vaginal microbiome have been linked with several disease states. To date, clinical IVR trials have relied on culture-dependent methods that omit the high diversity of unculturable microbial population. Longitudinal, culture-independent characterization of the microbiota in vaginal samples from 6 women with recurrent genital HSV who used an acyclovir IVR was carried out and compared to the communities developing in biofilms on the IVR surface. The analysis utilized Illumina MiSeq sequence datasets generated from bar-coded amplicons of 16S rRNA gene fragments. Specific taxa in the vaginal communities of the study participants were found to be associated with the duration of recurrent genital HSV status and the number of HSV outbreaks. Taxonomic comparison of the vaginal and IVR biofilm communities did not reveal any significant differences, suggesting that the IVRs were not systematically enriched with members of the vaginal microbiome. Device usage did not alter the participants' vaginal microbial communities, within the confines of the current study design. Rigorous, molecular analysis of the effects of intravaginal devices on the corresponding microbial communities shows promise for integration with traditional approaches in the clinical evaluation of candidate products
    corecore