41 research outputs found

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Contribution to the methods for the identification of electromagnetic component and muonic component from the extensive atmospheric showers in the Pierre Auger Observatory

    No full text
    Orientadores: José Augusto Chinellato, Márcio Aparecido MüllerDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb WataghinResumo: O Observatório Pierre Auger foi construído para detectar raios cósmicos de altas energias. Um dos principais objetivos das pesquisas realizadas pelo Observatório Auger, é o estudo da composição de massa dos raios cósmicos primários. O conteúdo muônico dos chuveiros atmosféricos extensos, produzidos a partir das interações dessas partículas primárias no alto da atmosfera, é um dos parâmetros mais sensíveis para o estudo da composição de massa. Ao nível do solo, as partículas detectadas com os 1600 tanques Cherenkov, que constituem o detector de superfície do Observatório, são essencialmente uma mistura de fótons, elétrons e pósitrons, que formam a componente eletromagnética; e os múons da componente muônica dos chuveiros extensos. A contribuição relativa dessas componentes depende do estágio de desenvolvimento do chuveiro e da distância radial ao eixo do mesmo. Nas regiões mais afastadas do eixo do chuveiro, num determinado estagio de seu desenvolvimento, um chuveiro iniciado por um núcleo de ferro, pode sob as mesmas condições que um chuveiro com primário de próton, induzir até 40% mais múons. Um dos métodos possíveis para estimar a contribuição muônica é o uso da estrutura temporal do sinal Cherenkov no detector de superfície. Esses sinais digitalizados em FADCs, mostram que múons induzem picos de sinais acima de um contínuo eletromagnético formado de pequenos picos. De forma que essa estrutura de sinal característica das componentes dependem da distância radial ao eixo do chuveiro. Esse trabalho tem como objetivo contribuir para a identificação e discriminação das componentes muônicas e eletromagnética dos chuveiros, a partir de um desenvolvimento matemático sobre o método de análise ¿Muon Jump¿. O método de jumps é baseado nas estruturais temporais dos sinais das componentes registrados pelos tanques Cherenkov do Observatório Auger e digitalizados em unidades FADCs. Usando essa característica estrutura temporal dos sinais, poderemos estimar o sinal de cada componente, definindo filtros de separação nas distribuições temporais dos sinais das frentes dos chuveiros e nas distribuições das derivadas desses sinais. Partindo dos diferentes sinais depositados por múons e partículas eletromagnéticas nos tanques Cherenkov, fizemos um estudo de contaminação desse sinal muônico pela componente eletromagnética, de forma individual e em frentes de chuveiros atmosféricos. Com isso, definimos o conceito de um filtro a ser aplicado nas distribuições de sinais, que nos permitisse separar de forma eficiente os sinais produzidos pelas partículasAbstract: The Pierre Auger Observatory was built to detect high-energy cosmic rays. Studies of the mass composition of the highest energy cosmic rays is a major focus of research developed by the Pierre Auger Observatory. The muon content of the extensive air showers produced from the interactions of these primary particles with the atmosphere, is one of the most sensitive parameters to the mass composition. At the ground level, the detected particles by the Surface Detector of the Auger Observatory consists of 1660 water-Cherenkov detectors, are essentially a mixture of photons, electrons and positrons, the electromagnetic component, and muons, the muonic component. The relative contribution of these components depends on the stage developmental stage and on the radial distance of the showers. Far enough from the shower axis at a given development stage, a shower initiated by a iron primary may induce up to 40% more muons than a proton primary under the same conditions. The time structure of the Cherenkov signal profile in the surface detectors of particles reaching ground is used to estimate the muonic contribution. The Cherenkov signals are digitized as FADCs traces, and show that muons induce peaks signal above a continuous electromagnetic formed of small peaks. So this characteristic structure of the muonic and eletromagnetic peaks depend on the radial distance from the shower axis. The goals of my work is to contribute to the identification and discrimination of the eletromagnetic and muonic components, from a mathematical model to apply filters in the signal distributions of the particles. This method is based on the Jump method. Using the detailed time structure of signs, we can estimate the sign of each component, defining a set of separation filters to make an efficient selection of the muonic signal. The different signals deposited by muons and electromagnetic particles in Cherenkov tanks, allowed us to study the electromagnetic contamination in individual muonic signals and in the showers frontsMestradoFísicaMestra em Físic

    Käytännön kosteikkosuunnittelu

    Get PDF
    Maatalouden vesiensuojelua edistetään monin tavoin. Ravinteita ja eroosioainesta sisältäviä valumavesiä pyritään puhdistamaan erilaisissa kosteikoissa. Tämä opas on kirjoitettu avuksi pienimuotoisten kosteikkojen perustamiseen. Oppaassa esitetään käytännönläheisesti kosteikon toteuttamisen eri vaiheet paikan valinnasta suunnitteluun ja rakentamiseen. Vuonna 2010 julkaistun painoksen tiedot on saatettu ajantasalle. Julkaisu on toteutettu osana Tehoa maatalouden vesiensuojeluun (TEHO) -hanketta ja päivitetty TEHO Plus -hankkeen toimesta. Oppaan toivotaan lisäävän kiinnostusta kosteikkojen suunnitteluun ja edelleen niiden rakentamiseen

    Search for photons with energies above 1018 eV using the hybrid detector of the Pierre Auger Observatory

    No full text

    Erratum: Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory

    No full text
    We present a combined fit of a simple astrophysical model of UHECR sources to both the energy spectrum and mass composition data measured by the Pierre Auger Observatory. The fit has been performed for energies above 5 ⋅ 10(18) eV, i.e. the region of the all-particle spectrum above the so-called ankle feature. The astrophysical model we adopted consists of identical sources uniformly distributed in a comoving volume, where nuclei are accelerated through a rigidity-dependent mechanism. The fit results suggest sources characterized by relatively low maximum injection energies, hard spectra and heavy chemical composition. We also show that uncertainties about physical quantities relevant to UHECR propagation and shower development have a non-negligible impact on the fit results

    The Pierre Auger Observatory: Contributions to the 35th International Cosmic Ray Conference (ICRC 2017)

    No full text
    corecore