340 research outputs found
Inhibition of Allogeneic T Cell Proliferation by Indoleamine 2,3-Dioxygenase–expressing Dendritic Cells: Mediation of Suppression by Tryptophan Metabolites
Indoleamine 2,3-dioxygenase (IDO), an enzyme involved in the catabolism of tryptophan, is expressed in certain cells and tissues, particularly in antigen-presenting cells of lymphoid organs and in the placenta. It was shown that IDO prevents rejection of the fetus during pregnancy, probably by inhibiting alloreactive T cells, and it was suggested that IDO-expression in antigen-presenting cells may control autoreactive immune responses. Degradation of tryptophan, an essential amino acid required for cell proliferation, was reported to be the mechanism of IDO-induced T cell suppression. Because we wanted to study the action of IDO-expressing dendritic cells (DCs) on allogeneic T cells, the human IDO gene was inserted into an adenoviral vector and expressed in DCs. Transgenic DCs decreased the concentration of tryptophan, increased the concentration of kynurenine, the main tryptophan metabolite, and suppressed allogeneic T cell proliferation in vitro. Kynurenine, 3-hydroxykynurenine, and 3-hydroxyanthranilic acid, but no other IDO-induced tryptophan metabolites, suppressed the T cell response, the suppressive effects being additive. T cells, once stopped in their proliferation, could not be restimulated. Inhibition of proliferation was likely due to T cell death because suppressive tryptophan catabolites exerted a cytotoxic action on CD3+ cells. This action preferentially affected activated T cells and increased gradually with exposure time. In addition to T cells, B and natural killer (NK) cells were also killed, whereas DCs were not affected. Our findings shed light on suppressive mechanisms mediated by DCs and provide an explanation for important biological processes in which IDO activity apparently is increased, such as protection of the fetus from rejection during pregnancy and possibly T cell death in HIV-infected patients
Regulation of colonic epithelial cell turnover by IDO contributes to the innate susceptibility of SCID mice to Trichuris muris infection
Tryptophan catabolism via the kynurenine pathway is dependent on the enzyme Indoleamine 2,3-dioxygenase (IDO). Expression of IDO is upregulated in a number of inflammatory settings such as wounding and infection, and the resulting local tryptophan depletion may inhibit the replication of intracellular pathogens. Indo gene expression is upregulated in the gut during chronic infection with the mouse whipworm Trichuris muris. We demonstrate an increase in the rate of colonic epithelial cell turnover after inhibition of IDO in T.muris-infected SCID mice, leading to a significant expulsion of parasite burden. We identify the goblet cell as a novel source of IDO and present data revealing a new role for IDO in the regulation of epithelial cell turnover post-infectious challenge
Expression and regulation of immune-modulatory enzyme Indoleamine 2,3-dioxygenase (IDO) by human airway epithelial cells and its effect on T cell activation
Indoleamine 2,3-dioxygenase (IDO) catalyzes the degradation of tryptophan, which plays a critical role in immune suppression through regulating the production of a series of metabolites that are generally referred to as kynurenines. It has become increasingly clear that epithelial cells (ECs) play an active role in maintaining lung homeostasis by modulating the function of immune cells via producing cytokines, chemokines, and anti-microbial mediators. In this study we assessed the regulation of IDO activity and expression in human primary ECs and EC lines under steady state conditions and in response to bacterial and allergenic stimuli. We also investigated the potential immune modulatory functions of IDO expression in human airway ECs. Our data clearly show that airway ECs produce IDO, which is down-regulated in response to allergens and TLR ligands while up-regulated in response to IFN-γ. Using gene silencing, we further demonstrate that IDO plays a key role in the EC-mediated suppression of antigen-specific and polyclonal proliferation of T cells. Interestingly, our data also show that ECs lose their inhibitory effect on T cell activation in response to different TLR agonists mimicking bacterial or viral infections. In conclusion, our work provides an understanding of how IDO is regulated in ECs as well as demonstrates that “resting” ECs can suppress T cell activation in an IDO dependent manner. These data provide new insight into how ECs, through the production of IDO, can influence downstream innate and adaptive responses as part of their function in maintaining immune homeostasis in the airways
The mannose receptor negatively modulates the Toll-like receptor 4–aryl hydrocarbon receptor–indoleamine 2,3-dioxygenase axis in dendritic cells affecting T helper cell polarization
Background: Dendritic cells (DCs) are key players in the induction and re-elicitation of TH2 responses to allergens. We have previously shown that different C-type lectin receptors on DCs play a major role in allergen recognition and uptake. In particular, mannose receptor (MR), through modulation of Toll-like receptor (TLR) 4 signaling, can regulate indoleamine 2,3-dioxygenase (IDO) activity, favoring TH2 responses. Interestingly, the aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor with an emerging role in immune modulation, has been implicated in IDO activation in response to TLR stimulation.
Objective: Here we investigated how allergens and lectins modulate the TLR4-AhR-IDO axis in human monocyte-derived DCs.
Methods: Using a combination of genomics, proteomics, and immunologic studies, we investigated the role of MR and AhR in IDO regulation and its effect on T helper cell differentiation.
Results: We have demonstrated that LPS induces both IDO isoforms (IDO1 and IDO2) in DCs, with partial involvement of AhR. Additionally, we found that, like mannan, different airborne allergens can effectively downregulate TLR4-induced IDO1 and IDO2 expression, most likely through binding to the MR. Mannose-based ligands were also able to downregulate IL-12p70 production by DCs, affecting T helper cell polarization. Interestingly, AhR and some components of the noncanonical nuclear factor κB pathway were shown to be downregulated after MR engagement, which could explain the regulatory effects of MR on IDO expression.
Conclusion: Our work demonstrates a key role for MR in the modulation of the TLR4-AhR-IDO axis, which has a significant effect on DC behavior and the development of immune responses against allergens
SHIP-Deficient Dendritic Cells, Unlike Wild Type Dendritic Cells, Suppress T Cell Proliferation via a Nitric Oxide-Independent Mechanism
Dendritic cells (DCs) not only play a crucial role in activating immune cells but also suppressing them. We recently investigated SHIP's role in murine DCs in terms of immune cell activation and found that TLR agonist-stimulated SHIP-/- GM-CSF-derived DCs (GM-DCs) were far less capable than wild type (WT, SHIP+/+) GM-DCs at activating T cell proliferation. This was most likely because SHIP-/- GM-DCs could not up-regulate MHCII and/or co-stimulatory receptors following TLR stimulation. However, the role of SHIP in DC-induced T cell suppression was not investigated.In this study we examined SHIP's role in DC-induced T cell suppression by co-culturing WT and SHIP-/- murine DCs, derived under different conditions or isolated from spleens, with αCD3+ αCD28 activated WT T cells and determined the relative suppressive abilities of the different DC subsets. We found that, in contrast to SHIP+/+ and -/- splenic or Flt3L-derived DCs, which do not suppress T cell proliferation in vitro, both SHIP+/+ and -/- GM-DCs were capable of potently suppressing T cell proliferation. However, WT GM-DC suppression appeared to be mediated, at least in part, by nitric oxide (NO) production while SHIP-/- GM-DCs expressed high levels of arginase 1 and did not produce NO. Following exhaustive studies to ascertain the mechanism of SHIP-/- DC-mediated suppression, we could conclude that cell-cell contact was required and the mechanism may be related to their relative immaturity, compared to SHIP+/+ GM-DCs.These findings suggest that although both SHIP+/+ and -/- GM-DCs suppress T cell proliferation, the mechanism(s) employed are different. WT GM-DCs suppress, at least in part, via IFNγ-induced NO production while SHIP-/- GM-DCs do not produce NO and suppression can only be alleviated when contact is prevented
Causal Modeling Using Network Ensemble Simulations of Genetic and Gene Expression Data Predicts Genes Involved in Rheumatoid Arthritis
Tumor necrosis factor α (TNF-α) is a key regulator of inflammation and rheumatoid arthritis (RA). TNF-α blocker therapies can be very effective for a substantial number of patients, but fail to work in one third of patients who show no or minimal response. It is therefore necessary to discover new molecular intervention points involved in TNF-α blocker treatment of rheumatoid arthritis patients. We describe a data analysis strategy for predicting gene expression measures that are critical for rheumatoid arthritis using a combination of comprehensive genotyping, whole blood gene expression profiles and the component clinical measures of the arthritis Disease Activity Score 28 (DAS28) score. Two separate network ensembles, each comprised of 1024 networks, were built from molecular measures from subjects before and 14 weeks after treatment with TNF-α blocker. The network ensemble built from pre-treated data captures TNF-α dependent mechanistic information, while the ensemble built from data collected under TNF-α blocker treatment captures TNF-α independent mechanisms. In silico simulations of targeted, personalized perturbations of gene expression measures from both network ensembles identify transcripts in three broad categories. Firstly, 22 transcripts are identified to have new roles in modulating the DAS28 score; secondly, there are 6 transcripts that could be alternative targets to TNF-α blocker therapies, including CD86 - a component of the signaling axis targeted by Abatacept (CTLA4-Ig), and finally, 59 transcripts that are predicted to modulate the count of tender or swollen joints but not sufficiently enough to have a significant impact on DAS28
Gene Expression Profiling of Human Decidual Macrophages: Evidence for Immunosuppressive Phenotype
Background: Although uterine macrophages are thought to play an important regulatory role at the maternal-fetal interface, their global gene expression profile is not known. Methodology/Principal Findings: Using micro-array comprising approximately 14,000 genes, the gene expression pattern of human first trimester decidual CD14+ monocytes/macrophages was characterized and compared with the expression profile of the corresponding cells in blood. Some of the key findings were confirmed by real time PCR or by secreted protein. A unique gene expression pattern intrinsic of first trimester decidual CD14+ cells was demonstrated. A large number of regulated genes were functionally related to immunomodulation and tissue remodelling, corroborating polarization patterns of differentiated macrophages mainly of the alternatively activated M2 phenotype. These include known M2 markers such as CCL-18, CD209, insulin-like growth factor (IGF)-1, mannose receptor c type (MRC)-1 and fibronectin-1. Further, the selective up-regulation of triggering receptor expressed on myeloid cells (TREM)-2, alpha-2-macroglobulin (A2M) and prostaglandin D2 synthase (PGDS) provides new insights into the regulatory function of decidual macrophages in pregnancy that may have implications in pregnancy complications. Conclusions/Significance: The molecular characterization of decidual macrophages presents a unique transcriptional profile replete with important components for fetal immunoprotection and provides several clues for further studies of these cells.Original Publication:Charlotte Gustafsson (Lidström), Jenny Mjösberg, Andreas Matussek, Robert Geffers, Leif Matthiesen, Göran Berg, Surendra Sharma, Jan Buer and Jan Ernerudh, Gene expression profiling of human decidual macrophages: Evidence for immunosuppressive phenotype, 2008, PLoS ONE, (3), 4, e2078.http://dx.doi.org/10.1371/journal.pone.0002078Copyright: Public Library of Science (PLoS)http://www.plos.org
Innate and adaptive immunity in the development of depression: : An update on current knowledge and technological advances
The inflammation theory of depression, proposed over 20years ago, was influenced by early studies on T cell responses and since then has been a stimulus for numerous research projects aimed at understanding the relationship between immune function and depression. Observational studies have shown that indicators of immunity, especially C reactive protein and proinflammatory cytokines, such as interleukin 6, are associated with an increased risk of depressive disorders, although the evidence from randomized trials remains limited and only few studies have assessed the interplay between innate and adaptive immunity in depression. In this paper, we review current knowledge on the interactions between central and peripheral innate and adaptive immune molecules and the potential role of immune-related activation of microglia, inflammasomes and indoleamine-2,3-dioxygenase in the development of depressive symptoms. We highlight how combining basic immune methods with more advanced 'omics' technologies would help us to make progress in unravelling the complex associations between altered immune function and depressive disorders, in the identification of depression-specific biomarkers and in developing immunotherapeutic treatment strategies that take individual variability into account.Peer reviewe
Shaping immune responses through the activation of dendritic cells–P2 receptors
Dendritic cells (DCs) activate and shape the adaptive immune response by capturing antigens, migrating to peripheral lymphoid organs where naïve T cells reside, expressing high levels of MHC and costimulatory molecules and secreting cytokines and chemokines. DCs are endowed with a high degree of functional plasticity and their functions are tightly regulated. Besides initiating adaptive immune responses, DCs play a key role in maintaining peripheral tolerance toward self-antigens. On the basis of the information gathered from the tissue where they reside, DCs adjust their functional activity to ensure that protective immunity is favoured while unwanted or exaggerated immune responses are prevented. A wide variety of signals from neighbouring cells affecting DC functional activity have been described. Here we will discuss the complex role of extracellular nucleotides in the regulation of DC function and the role of P2 receptors as possible tools to manipulate immune responses
An overlooked connection: serotonergic mediation of estrogen-related physiology and pathology
BACKGROUND: In humans, serotonin has typically been investigated as a neurotransmitter. However, serotonin also functions as a hormone across animal phyla, including those lacking an organized central nervous system. This hormonal action allows serotonin to have physiological consequences in systems outside the central nervous system. Fluctuations in estrogen levels over the lifespan and during ovarian cycles cause predictable changes in serotonin systems in female mammals. DISCUSSION: We hypothesize that some of the physiological effects attributed to estrogen may be a consequence of estrogen-related changes in serotonin efficacy and receptor distribution. Here, we integrate data from endocrinology, molecular biology, neuroscience, and epidemiology to propose that serotonin may mediate the effects of estrogen. In the central nervous system, estrogen influences pain transmission, headache, dizziness, nausea, and depression, all of which are known to be a consequence of serotonergic signaling. Outside of the central nervous system, estrogen produces changes in bone density, vascular function, and immune cell self-recognition and activation that are consistent with serotonin's effects. For breast cancer risk, our hypothesis predicts heretofore unexplained observations of the opposing effects of obesity pre- and post-menopause and the increase following treatment with hormone replacement therapy using medroxyprogesterone. SUMMARY: Serotonergic mediation of estrogen has important clinical implications and warrants further evaluation
- …