757 research outputs found

    Computed tomography findings of intersigmoid hernia

    Get PDF
    Purpose: To evaluate the computed tomography findings of intersigmoid hernias. Material and methods: Between April 2010 and March 2018, 7 patients who were surgically diagnosed with intersigmoid hernia in 3 institutions were enrolled in this study. Two radiologists evaluated imaging findings for the herniated small bowel, the distance between the occlusion point and bifurcation of the left common iliac artery, and the anatomic relationship with adjacent organs. Results: All patients were male, and their mean age (standard deviation, range) was 61.0 (13.5, 36-85) years. The mean size of the bowel loops was 5.2 (1.3, 4.0-8.3) cm in the caudal direction, 3.6 (0.8, 2.5-5.1) cm in the lateral, and 3.4 (0.6, 2.5-4.7) cm in the anterior-posterior direction. The volume was 37.9 (27.8, 15.6-103.0) cm3 approximated by an ellipse, and 24.0 (17.7, 9.9-65.6) cm3 approximated by a truncated cone. The obstruction point was located 3.6 (0.6, 2.8-4.7) cm inferior to the bifurcation of the left common iliac artery. In all cases, the small bowel ran under the point at which the inferior mesenteric vessels bifurcated to the superior rectal vessels and the sigmoid vessels and formed a sac-like appearance between the left psoas muscle and the sigmoid colon. The ureter ran dorsal to the point of the bowel stenosis, and the left gonadal vein ran outside the small bowel loops. Conclusions: All cases showed common imaging findings, which may be characteristic of men's intersigmoid hernia. In addition, the fossa's position was lower, and the size was larger than in the previous study, which may be a risk factor

    Faraday dispersion functions of galaxies

    Get PDF
    The Faraday dispersion function (FDF), which can be derived from an observed polarization spectrum by Faraday rotation measure synthesis, is a profile of polarized emissions as a function of Faraday depth. We study intrinsic FDFs along sight lines through face-on Milky Way like galaxies by means of a sophisticated galactic model incorporating three-dimensional MHD turbulence, and investigate how much information the FDF intrinsically contains. Since the FDF reflects distributions of thermal and cosmic-ray electrons as well as magnetic fields, it has been expected that the FDF could be a new probe to examine internal structures of galaxies. We, however, find that an intrinsic FDF along a sight line through a galaxy is very complicated, depending significantly on actual configurations of turbulence. We perform 800 realizations of turbulence and find no universal shape of the FDF even if we fix the global parameters of the model. We calculate the probability distribution functions of the standard deviation, skewness, and kurtosis of FDFs and compare them for models with different global parameters. Our models predict that the presence of vertical magnetic fields and the large-scale height of cosmic-ray electrons tend to make the standard deviation relatively large. In contrast, the differences in skewness and kurtosis are relatively less significant.open0

    Primordial magnetic field constraints from the end of reionization

    Full text link
    Primordial magnetic fields generated in the early universe are subject of considerable investigation, and observational limits on their strength are required to constrain the theory. Due to their impact on the reionization process, the strength of primordial fields can be limited using the latest data on reionization and the observed UV-luminosity function of high-redshift galaxies. Given the steep faint-end slope of the luminosity function, faint galaxies contribute substantial ionizing photons, and the low-luminosity cutoff has an impact on the total budget thereof. Magnetic pressure from primordial fields affects such cutoff by preventing collapse in halos with mass below 10^{10} M_solar (B_0 / 3 nG)^3, with B_0 the co-moving field strength. In this letter, the implications of these effects are consistently incorporated in a simplified model for reionization, and the uncertainties due to the cosmological parameters, the reionization parameters and the observed UV luminosity function are addressed. We show that the observed ionization degree at z\sim7 leads to the strongest upper limit of B_0\lsim 2-3nG. Stronger limits could follow from measurements of high ionization degree at z>7.Comment: 6 pages, 3 figures, resubmitted to MNRAS letter

    Small-scale dynamo action during the formation of the first stars and galaxies. I. The ideal MHD limit

    Full text link
    We explore the amplification of magnetic seed fields during the formation of the first stars and galaxies. During gravitational collapse, turbulence is created from accretion shocks, which may act to amplify weak magnetic fields in the protostellar cloud. Numerical simulations showed that such turbulence is sub-sonic in the first star-forming minihalos, and highly supersonic in the first galaxies with virial temperatures larger than 10^4 K. We investigate the magnetic field amplification during the collapse both for Kolmogorov and Burgers-type turbulence with a semi-analytic model that incorporates the effects of gravitational compression and small-scale dynamo amplification. We find that the magnetic field may be substantially amplified before the formation of a disk. On scales of 1/10 of the Jeans length, saturation occurs after ~10^8 yr. Although the saturation behaviour of the small-scale dynamo is still somewhat uncertain, we expect a saturation field strength of the order ~10^{-7} n^{0.5} G in the first star-forming halos, with n the number density in cgs units. In the first galaxies with higher turbulent velocities, the magnetic field strength may be increased by an order of magnitude, and saturation may occur after 10^6 to 10^7 yr. In the Kolmogorov case, the magnetic field strength on the integral scale (i.e. the scale with most magnetic power) is higher due to the characteristic power-law indices, but the difference is less than a factor of 2 in the saturated phase. Our results thus indicate that the precise scaling of the turbulent velocity with length scale is of minor importance. They further imply that magnetic fields will be significantly enhanced before the formation of a protostellar disk, where they may change the fragmentation properties of the gas and the accretion rate.Comment: 11 pages, 9 figures, accepted at A&

    The First Magnetic Fields

    Full text link
    We review current ideas on the origin of galactic and extragalactic magnetic fields. We begin by summarizing observations of magnetic fields at cosmological redshifts and on cosmological scales. These observations translate into constraints on the strength and scale magnetic fields must have during the early stages of galaxy formation in order to seed the galactic dynamo. We examine mechanisms for the generation of magnetic fields that operate prior during inflation and during subsequent phase transitions such as electroweak symmetry breaking and the quark-hadron phase transition. The implications of strong primordial magnetic fields for the reionization epoch as well as the first generation of stars is discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysical processes that generate fields after recombination. For example, a Biermann-type battery can operate in a proto-galaxy during the early stages of structure formation. Moreover, magnetic fields in either an early generation of stars or active galactic nuclei can be dispersed into the intergalactic medium.Comment: Accepted for publication in Space Science Reviews. Pdf can be also downloaded from http://canopus.cnu.ac.kr/ryu/cosmic-mag1.pd

    Study of the Vertical Magnetic Field in Face-on Galaxies Using Faraday Tomography

    Get PDF
    Faraday tomography allows astronomers to probe the distribution of the magnetic field along the line of sight (LOS), but that can be achieved only after the Faraday spectrum is interpreted. However, the interpretation is not straightforward, mainly because the Faraday spectrum is complicated due to a turbulent magnetic field; it ruins the one-to-one relation between the Faraday depth and the physical depth, and appears as many small-scale features in the Faraday spectrum. In this paper, by employing "simple toy models" for the magnetic field, we describe numerically as well as analytically the characteristic properties of the Faraday spectrum. We show that the Faraday spectrum along "multiple LOSs" can be used to extract the global properties of the magnetic field. Specifically, considering face-on spiral galaxies and modeling turbulent magnetic field as a random field with a single coherence length, we numerically calculate the Faraday spectrum along a number of LOSs and its shape-characterizing parameters, that is, the moments. When multiple LOSs cover a region of greater than or similar to(10 coherence length) 2, the shape of the Faraday spectrum becomes smooth and the shape-characterizing parameters are well specified. With the Faraday spectrum constructed as a sum of Gaussian functions with different means and variances, we analytically show that the parameters are expressed in terms of the regular and turbulent components of the LOS magnetic field and the coherence length. We also consider the turbulent magnetic field modeled with a power-law spectrum, and study how the magnetic field is revealed in the Faraday spectrum. Our work suggests a way to obtain information on the magnetic field from a Faraday tomography study

    RhoGTPase Regulators Orchestrate Distinct Stages of Synaptic Development

    Get PDF
    Small RhoGTPases regulate changes in post-synaptic spine morphology and density that support learning and memory. They are also major targets of synaptic disorders, including Autism. Here we sought to determine whether upstream RhoGTPase regulators, including GEFs, GAPs, and GDIs, sculpt specific stages of synaptic development. The majority of examined molecules uniquely regulate either early spine precursor formation or later matura- tion. Specifically, an activator of actin polymerization, the Rac1 GEF β-PIX, drives spine pre- cursor formation, whereas both FRABIN, a Cdc42 GEF, and OLIGOPHRENIN-1, a RhoA GAP, regulate spine precursor elongation. However, in later development, a novel Rac1 GAP, ARHGAP23, and RhoGDIs inactivate actomyosin dynamics to stabilize mature synap- ses. Our observations demonstrate that specific combinations of RhoGTPase regulatory pro- teins temporally balance RhoGTPase activity during post-synaptic spine development

    Comprehensive catecholaminergic projectome analysis reveals single-neuron integration of zebrafish ascending and descending dopaminergic systems

    Get PDF
    Essential components of animal behaviour are modulated by dopaminergic (DA) and noradrenergic circuitry. In this study, we reveal at cellular resolution the complete set of projections ('projectome') of every single type of DA and noradrenergio neurons in the central nervous system of zebrafish larvae. The most extensive DA projections are established by posterior tubercular otp-dependent neurons, with individual somata integrating the ascending DA system, the descending diencephalospinal, as well as the endohypothalamic circuitry. These findings suggest a major role in the modulation of physiology and behaviour for otp-dependent DA neurons, which correlate with the mammalian A11 group. We further identified an endogenous subpallial DA system that not only provides most of the local DA projections, but also connects to the ventral diencephalon. The catecholaminergic projectome map provides a framework to understand the evolution and function of these neuromodulatory systems

    Planck 2015 results. XIX. Constraints on primordial magnetic fields

    Get PDF
    We compute and investigate four types of imprint of a stochastic background of primordial magnetic fields (PMFs) on the cosmic microwave background (CMB) anisotropies: the impact of PMFs on the CMB temperature and polarization spectra, which is related to their contribution to cosmological perturbations; the effect on CMB polarization induced by Faraday rotation; the impact of PMFs on the ionization history; magnetically-induced non-Gaussianities and related non-zero bispectra; and the magnetically-induced breaking of statistical isotropy. We present constraints on the amplitude of PMFs that are derived from different Planck data products, depending on the specific effect that is being analysed. Overall, Planck data constrain the amplitude of PMFs to less than a few nanoGauss, with different bounds that depend on the considered model. In particular, individual limits coming from the analysis of the CMB angular power spectra, using the Planck likelihood, are B1 Mpc < 4.4 nG (where B1 Mpc is the comoving field amplitude at a scale of 1 Mpc) at 95% confidence level, assuming zero helicity. By considering the Planck likelihood, based only on parity-even angular power spectra, we obtain B1 Mpc < 5.6 nG for a maximally helical field. For nearly scale-invariant PMFs we obtain B1 Mpc < 2.0 nG and B1 Mpc < 0.9 nG if the impact of PMFs on the ionization history of the Universe is included in the analysis. From the analysis of magnetically-induced non-Gaussianity, we obtain three different values, corresponding to three applied methods, all below 5 nG. The constraint from the magnetically-induced passive-tensor bispectrum is B1 Mpc < 2.8 nG. A search for preferred directions in the magnetically-induced passive bispectrum yields B1 Mpc < 4.5 nG, whereas the compensated-scalar bispectrum gives B1 Mpc < 3 nG. The analysis of the Faraday rotation of CMB polarization by PMFs uses the Planck power spectra in EE and BB at 70 GHz and gives B1 Mpc < 1380 nG. In our final analysis, we consider the harmonic-space correlations produced by Alfvén waves, finding no significant evidence for the presence of these waves. Together, these results comprise a comprehensive set of constraints on possible PMFs with Planck data
    corecore