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Abstract

Faraday tomography allows astronomers to probe the distribution of the magnetic field along the line of sight
(LOS), but that can be achieved only after the Faraday spectrum is interpreted. However, the interpretation is not
straightforward, mainly because the Faraday spectrum is complicated due to a turbulent magnetic field; it ruins the
one-to-one relation between the Faraday depth and the physical depth, and appears as many small-scale features in
the Faraday spectrum. In this paper, by employing “simple toy models” for the magnetic field, we describe
numerically as well as analytically the characteristic properties of the Faraday spectrum. We show that the Faraday
spectrum along “multiple LOSs” can be used to extract the global properties of the magnetic field. Specifically,
considering face-on spiral galaxies and modeling turbulent magnetic field as a random field with a single coherence
length, we numerically calculate the Faraday spectrum along a number of LOSs and its shape-characterizing
parameters, that is, the moments. When multiple LOSs cover a region of (10 coherence length)2, the shape of the
Faraday spectrum becomes smooth and the shape-characterizing parameters are well specified. With the Faraday
spectrum constructed as a sum of Gaussian functions with different means and variances, we analytically show that
the parameters are expressed in terms of the regular and turbulent components of the LOS magnetic field and the
coherence length. We also consider the turbulent magnetic field modeled with a power-law spectrum, and study
how the magnetic field is revealed in the Faraday spectrum. Our work suggests a way to obtain information on the
magnetic field from a Faraday tomography study.
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1. Introduction

Faraday tomography, originally suggested by Burn (1966)
and Brentjens & de Bruyn (2005) and replacing the Faraday
rotation measure (RM), revolutionized the study of the cosmic
magnetic field. This technique creates a tomographic recon-
struction of the polarization spectrum as a function of RM or
the Faraday depth along the line of sight (LOS). The basic
equation is
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where P(λ2) is the observed polarization spectrum. Here, F(f)
is the Faraday spectrum or Faraday dispersion function, which
is basically the polarized synchrotron emission due to the
“perpendicular” magnetic field, B⊥, as a function of Faraday
depth, f. The Faraday depth is defined as
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where BP is the “parallel” magnetic field, ne is the thermal
electron density, and x is the physical distance along the LOS.
It is given in units of rad m−2. The coefficient is
K e m c2 e

3 2 4p= ( ), where e is the electron charge, me is the
electron mass, and c is the speed of light.

The study of magnetic fields using Faraday tomography
involves two stages of efforts. One is the reconstruction of
F(f), and the other is the extraction of magnetic field
information from F(f). The first requires wide frequency
coverage observations of P(λ2), which can be provided by, for
instance, the Square Kilometre Array (SKA) and its pathfinders

and precursors, such as LOFAR, ASKAP, MeerKAT, MWA,
and HERA. Various approaches for it have been suggested
(e.g., Sun et al. 2015 and references therein). The second
requires a successful interpretation of F(f). However, that often
turns out to be difficult, because the physical distance is not in a
one-to-one correspondence with the Faraday depth owing to
the turbulent component of the magnetic field, and thus F(f), in
general, does not represent the distribution of polarized
emission in real space. While it would be straightforward to
estimate, for instance, the number of sources of synchrotron
radiation and their Faraday depths, the Faraday spectrum could
be used to obtain more information. The properties of F(f)
were previously studied (e.g., Bell et al. 2011; Frick et al. 2011;
Beck et al. 2012; Ideguchi et al. 2014). For instance, the
characteristic features in F(f) caused by various configurations
of the large-scale LOS magnetic field such as field reversal
were examined using simple models. Also, the effects of a
small-scale, turbulent field were taken into account, and how
the effects would be superposed on the features due to the
large-scale field were studied. It was shown that turbulent field
basically appears as many small-scale components in F(f),
which are called “Faraday forest” (Beck et al. 2012).
In this paper, we extend the second-stage efforts. As the first

trial, we consider spiral galaxies and study how the properties
of the “vertical” magnetic field (the component vertical to the
disk) can be extracted. The strength of the vertical magnetic
field is among many yet to be constrained in spiral galaxies
(see, e.g., Beck 2016 for a summary). It has been observed in
several edge-on galaxies showing the X-shaped pattern (see,
e.g., Krause 2009; Beck 2015), but such observations have so
far told us mostly only the existence and orientation of the field.
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The vertical magnetic field is important for the reconstruction
of the global galactic magnetic field and the study of its origin
(Sofue et al. 2010), and also necessary to describe cosmic-ray
(CR) transportation (galactic wind). In the Milky Way, there is
a difference in the strength of the vertical magnetic field toward
the north and south Galactic poles, as estimated with RM
(Taylor et al. 2009; Mao et al. 2010). This is inconsistent with
observations of several external galaxies and needs to be
understood (Beck 2016).

Previously, in Ideguchi et al. (2014), we studied the F(f) of
face-on galaxies, using a realistic model for the Milky Way
(Akahori et al. 2013). The model included the global, regular
component of the magnetic field, based on observations, as
well as the turbulent component, constructed with the data from
magnetohydrodynamic turbulence simulations. F(f) turned out
to be complicated, mostly due to the turbulent magnetic field; it
showed the Faraday forest superposed on large-scale diffuse
emissions, in agreement with Beck et al. (2012). We also found
that F(f) can have significantly different shapes for different
configurations of the turbulent field, even when the global
parameters of the model are fixed. This suggests that while the
existence of turbulence can be expected with the Faraday
forest, it is not easy to quantify the details of the turbulence. As
a matter of fact, turbulence seems to make it difficult to study
the global properties of the magnetic field. At the time, our
interpretation of F(f) was limited because of its complicated
behavior. On the other hand, our results indicated that F(f)
becomes smoother if a larger number of LOSs is used.

We then attempted to extract the properties of the magnetic
field using the shape-characterizing parameters of F(f), that is,
the width, skewness, and kurtosis,
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is the spectrum-weighted average of the Faraday depth. We
found that stronger vertical magnetic fields result in larger σ;
hence, σ should be a useful measure. On the other hand, γs and
γk exhibit behaviors that are too complicated. In summary, in
Ideguchi et al. (2014), F(f) was obtained with a realistic model,
but its behavior was not easy to interpret, mainly due to the
turbulent field.

After that previous work, we here employ “simple, toy
models” for the magnetic field, and try to numerically and
analytically describe the behavior of F(f). Specifically, for
face-on spiral galaxies, we calculate F(f) and its shape-
characterizing parameters, and examine their dependence on
magnetic fields. Even though the models assumed here are
simpler than those in former works, they still keep the physical
essentials for interpreting F(f). Most of all, simple models
make analytical interpretation possible. We first employ the
turbulent magnetic field described as a random field with a

single coherence length. We also consider the turbulent field
represented by power-law spectra. We then examine how F(f)
obtained along “multiple LOSs” can be used to study the
vertical magnetic field of face-on spiral galaxies, inspired by
the result of Ideguchi et al. (2014) that F(f) becomes smoother
and thus easier to interpret with a larger number of LOSs. We
regard this work as the first step in finding a practical way to
extract the magnetic field information from the Faraday
spectrum.
In Section 2, we describe our toy model and show the

calculated F(f). In Section 3, we present the analytical
interpretation of F(f). In Section 4, we present F(f) with a
power-law, turbulent magnetic field. The summary and
discussion follow in Section 5. Note that in this paper, we
concentrate on the characteristics of the “intrinsic” F(f), and do
not consider observational effects in constructing F(f) from
P(λ2), such as the ambiguity caused by the limited coverage of
observation frequency and observational noises.

2. Faraday Spectrum for Random Magnetic Field with a
Single Coherence Length

2.1. Model

We consider a small portion, ∼(100 pc)2, of face-on spiral
galaxies, and employ a simple model for the galactic magnetic
field. The magnetic field is decomposed into parallel (BP) and
perpendicular (B⊥) components with respect to the LOS. BP
contributes to the Faraday depth, while B⊥ contributes to
polarized synchrotron emission, as mentioned in the Introduc-
tion. We further assume that the parallel field is decomposed
into random and coherent components, representing the
turbulent and global vertical fields, respectively, and express
it as

B B B . 7rand coh= + ( )

From radio polarimetric data of many almost face-on
external galaxies, the strength of the turbulent magnetic field
is estimated to be 10–15 μG in spiral arms (see, e.g.,
Beck 2016). So, we set the rms (root-mean-square) strength of
Brand, σB, to be15 3 Gm (then, the rms strength of thee three-
dimensional (3D) random field is 15 μG). It was shown that the
size of turbulent cells in the Galactic disk is ∼10–100 pc from a
pulsar RM study (Ohno & Shinbata 1993), that the outer scale
of the turbulent magnetic field is ∼17 pc in the spiral arms and
∼100 pc in the interarm regions from an RM study of
extragalactic polarized sources (Haverkorn et al. 2006), and
that the size of turbulent cells in external galaxies is ∼50 pc
from a Faraday depolarization study (Beck 2016; see below).
Based on these studies, for the coherence length of the random
field, we adopt 10 pc as the fiducial value and also consider 50
and 100 pc for comparison. On the other hand, we take Bcoh as
a free parameter, varying its value to see the effects on the
Faraday spectrum. Recent RM studies of face-on external
galaxies such as IC 342 (Beck 2009) and NGC 628 (Mulcahy
et al. 2017) indicated absolute values of the RM up to
∼100 rad m−2, which corresponds to up to ∼6 μG if we
assume that the average thermal electron density along the LOS
is 0.02 cm−3 and the path length through the thermal gas is
1 kpc. So, we set Bcoh = 0–5 μG. Note that the positive
magnetic field here is meant to be toward the observer, and thus
the Faraday depth due to the coherent field is positive.
Regarding the synchrotron radiation, we assume that its

polarization angle is the same within the computational domain
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(see below). This assumption may be justified with observations
of ordered magnetic fields in galactic disks (see, e.g., Beck &
Wielebinski 2013). Fletcher et al. (2011), for instance, reported a
spiral pattern of B̂ from polarized radiation in M51, with
an angular resolution of 15″, which corresponds to the beam
size of ∼500 pc. This means that synchrotron emissions within
this beam would have similar polarization angles. From the
assumption of same polarization angle, the depolarization caused
by the unaligned B⊥ within a magnetized, synchrotron polariza-
tion emitting medium (wavelength-independent depolarization)
does not occur. In addition, depolarization caused by differential
Faraday rotation along the LOS within a medium (Faraday
depolarization) and that caused by many polarizations with
different angles within an observing beam (beam depolarization)
are ignored, which means that an “intrinsic” Faraday spectrum
is considered. This is because the emissions that experience
certain Faraday rotations are accumulated in the same Faraday
depth. Note that the latter two depolarizations occur in P(λ2)
space.

Thermal and CR electron densities enter in the calculations
of Faraday depth and synchrotron emission. Observations
suggest ne ∼ 0.014–0.036 cm−3 for the thermal electron
density in our Galaxy (see, e.g., Gaensler et al. 2008). So,
we adopt ne = 0.02 cm−3. We are here concerned only with the
overall shape of the Faraday spectrum, but not its amplitude
(see Section 2.2). Hence, we do not need to specify the density
and energy spectrum of CR electrons nor the strength of the
perpendicular magnetic field, B⊥.

The physical quantities described above are assigned to
cubic cells of size Lcell. For Brand, we randomly place a B0 of
15 μG strength and take the LOS component. Then,

B 3 15 3 G,B 0s mº = and the cell size corresponds to
the coherence length, that is, Lcell = 10, 50, 100 pc. Other
quantities, such as Bcoh, ne, and the synchrotron emissivity, are
assumed to be simply uniform in the computational domain.
Along an LOS, we stack up cells for [−LSH, LSH], where LSH

is the scale height of the physical quantities. Gaensler et al.
(2008), for instance, suggested LSH ∼ 430–1830 pc for the
thermal electron density in the thick disk of our Galaxy. Krause
(2009) reported that the LSH of radio emission, which reflects
the LSH of CR electrons and magnetic field, is ∼300 pc for thin
disks and ∼1.8 kpc for halos (or thick disks) from observations
of various edge-on spiral galaxies. So, we set LSH = 1 kpc as
the fiducial value and also consider 0.5 and 2 kpc for
comparison. Each LOS includes NP = 2LSH/Lcell cells or
“layers,” that is, 200 layers for representative Lcell and LSH.
The Faraday spectrum is obtained with N⊥ LOSs, covering a

small region in the sky where the properties of the physical
quantities can be assumed to be uniform, but still larger than
the coherence length of the turbulent magnetic field. We set
each layer to consist of N⊥ = 12–302 cells, or the area of

L1 302 2
cell
2( – ) . For a representative Lcell, the area becomes

102–3002 pc2, which corresponds to, for instance, ∼0 1–3″ for
observations of galaxies in the Virgo Cluster 20 Mpc away.
Our computational domain consists of NP × N⊥ cells. With

the physical quantities allocated to the cells, we calculate f
using Equation (2) and the polarized radiation by adding the

Figure 1. Simulated Faraday spectrum, F(f), as a function of Faraday depth, f, with Bcoh = 1 μG, Lcell = 10 pc, and LSH = 1 kpc, for N⊥ = 1, 9, 100, and 900 from
top to bottom. For each value of N⊥, four different realizations are shown.
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contribution from cells along the LOSs, so F(f). Below we
examine the behavior of F(f) for different model parameters,
including how the shape-characterizing parameters converge as
N⊥ increases.

The model parameters are summarized in Table 1. See
Section 5 for further discussions of our assumptions.

2.2. Results

2.2.1. Convergence

Figure 1 shows F(f) with Bcoh = 1 μG, Lcell = 10 pc, and
LSH = 1 kpc (below, representative Lcell and LSH are used,
unless otherwise stated) for different numbers of LOSs,
N⊥ = 1, 9, 100, and 900, from top to bottom. Four different
realizations of the turbulent magnetic field are shown for each
value of N⊥. F(f) looks complicated with spikes and varies
significantly between different realizations for small N⊥. F(f)
becomes smooth as N⊥ increases, and converges to a universal

shape for N⊥  100. This is because the effects of the random
magnetic field on f are statistically averaged out.
As in Ideguchi et al. (2014), the width σ, skewness γs, and

kurtosis γk of F(f) were calculated (see Equations (3)–(5)).
Figure 2 shows the scattered distributions of these shape-
characterizing parameters with Bcoh = 0 μG for N⊥ = 1, 9, 100,
and 900; 800 realizations for each value of N⊥ are shown. The
convergence of the parameters for large N⊥ is evident. The
standard deviation of the width, for instance, decreases as 3.09,
2.72, 0.799, and 0.287 for N⊥ = 1, 9, 100, and 900,
respectively.

2.2.2. Dependence on Bcoh

Figure 3 shows F(f) for Bcoh = 0, 1, 3, and 5 μG, fixing
N⊥ = 100. The spectrum becomes broader as Bcoh increases.
With Bcoh = 0 μG, only Brand in layers along the LOSs
contributes to f by the random walk process. On the other hand,
with non-zero Bcoh, there is a contribution due to Bcoh and the

Table 1
Model Parameters

Symbol Physical Quantities Adopted Values Reference

Brand random component of BP 15 3 GBs m= Beck (2016)
Bcoh coherent component of BP 0–5 μG Beck (2009), Mulcahy et al. (2017)
ne thermal electron density 0.02 cm−3 Gaensler et al. (2008)
Lcell cell size 10, 50, 100 pc Ohno & Shinbata (1993), Haverkorn et al. (2006), Beck (2016)
LSH scale height of physical quantities 0.5, 1.0, 2.0 kpc Gaensler et al. (2008), Krause (2009)

Note. Fiducial values are denoted in bold.

Figure 2. Scatter plots for the shape-characterizing parameters of the Faraday spectrum with Bcoh = 0 μG, Lcell = 10 pc, and LSH = 1 kpc, for N⊥ = 1, 9, 100, and 900
shown in red, green, blue, and magenta colors, respectively. Eight hundred realizations are shown. The top plots of each column are the one-dimensional probability
distributions of the parameters.
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contribution monotonically increases along the LOSs, on top of
the contribution due to Brand. As a consequence, F(f) stretches
over a large range of f. The stretching is larger for larger Bcoh.

Figure 4 shows the distributions of the shape-characterizing
parameters for Bcoh = 0, 1, 3, and 5 μG, fixing N⊥ = 100. The
parameters change systematically with Bcoh. For Bcoh = 0 μG,

F(f) has small σ, as explained. The narrow, sharp (leptokurtic)
shape results in a positive γk, while the symmetric shape causes
γs to be zero. As Bcoh increases, σ increases. At the same time,
a flat region appears in F(f) (see the 5 μG case in Figure 3),
and hence the shape changes from leptokurtic to platykurtic, so
γk becomes negative. The change in γs, on the other hand, is

Figure 3. Simulated Faraday spectrum, F(f), as a function of Faraday depth, f, with Bcoh = 0, 1, 3, 5 μG; Lcell = 10 pc, LSH = 1 kpc, and N⊥ = 100.

Figure 4. Same as Figure 2, but for Bcoh = 0, 1, 3, 5 μG shown in red, green, blue, and magenta colors, respectively; Lcell = 10 pc, LSH = 1 kpc, and N⊥ = 100. The
overlaid black lines show the analytical solutions (see Section 3) with Bcoh varying from 0 to 5 μG.
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not monotonic. For a non-zero but small Bcoh, F(f) becomes
positively skewed and γs increases. For larger Bcoh, the flat
region restores the symmetry about the mean, causing γs to
decrease. These behaviors of F(f) and the shape-characterizing
parameters will be quantitatively described in Section 3.
Figure 5 shows the convergence of the shape-characterizing
parameters for increasing N⊥. The parameters are reasonably
converged, again for N⊥  100. This indicates that the
observation covering a region 100 times the square of the
coherence length of the turbulent magnetic field would be
useful to extract information on the magnetic field.

2.2.3. Dependence on LSH and Lcell

Figure 6 compares F(f) for LSH = 0.5 and 2.0 kpc; the other
parameters are Bcoh = 1 μG and Lcell = 10 pc. The change in

LSH affects the number of cells (or the number of coherence
lengths of turbulent magnetic field) along the LOS: NP = 100
for LSH = 0.5 kpc and NP = 400 for LSH = 2.0 kpc. F(f)
converges to universal shapes for N⊥  100 as before, but the
shapes are different for different LSH, because f spans a larger
range with larger LSH.
Figure 7 compares F(f) for Lcell = 50 and 100 pc; the other

parameters are Bcoh = 1μG and LSH = 1.0 kpc. The number of
cells along the LOS is NP = 40 for Lcell = 50 pc and NP = 20 for
Lcell = 100 pc. The figure shows F(f) with N⊥ corresponding to
the covering area of (100 pc)2 (N⊥ = 4 for Lcell = 50 pc and N⊥ =
1 for Lcell = 100 pc) and (300 pc)2 (N⊥ = 36 for Lcell = 50 pc and
N⊥ = 9 for Lcell = 100 pc) to be compared with that for
Lcell = 10 pc, as well as F(f) with N⊥ = 100 and 900.
For convergence, again N⊥  100 is required. But for
Lcell = 100 pc, even N⊥ = 100 does not produce a smooth

Figure 5. Same as Figure 4, but for N⊥ = 1, 9, 100, and 900 shown in red, green, blue, and magenta colors, respectively. The parameters for different Bcoh but same
N⊥ are plotted with the same color. The overlaid black lines for the analytical solutions are the same as those in Figure 4. One-dimensional distributions are not shown.

Figure 6. Same as Figure 1, but with LSH = 0.5 kpc (left) and 2.0 kpc (right); Bcoh = 1 μG and Lcell = 10 pc.
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F(f), because NP is too small or the path length does not include
enough number of coherence lengths. The converged shape, on the
other hand, only weakly depends on Lcell.

3. Analytic Faraday Spectrum

We next analytically derive F(f) and the shape-characterizing
parameters in the limit of large N⊥, or large numbers of LOSs,
and interpret the results presented in the previous section. The
Faraday depth up to the nth layer along the LOS can be written as

n . 8n
j

n
j

j

n
j

1
coh rand coh

1
randå åf f f f f= D + D = D + D

= =

( ) ( )
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coherent component of BP, which is the same for all layers;
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Figure 7. Same as Figure 1, but with Lcell = 50 pc (left) and 100 pc (right); Bcoh = 1 μG and LSH = 1 kpc.

Figure 8. Simulated Faraday spectrum, F(f), as a function of Faraday depth, f, for N⊥ = 1, 9, 100, and 900 (black lines), overlaid with the analytically reproduced
spectrum (gray lines); Bcoh = 1 μG, Lcell = 10 pc, and LSH = 1 kpc. The simulated spectra are the same as those in Figure 1, but with different realizations.
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where K n Le B
2 2 2 2

cell
2s s=f with B Brand

2 2sá ñ = . We assume that
there is no correlation between the Brand of the different layers.

We further assume that the polarized synchrotron emissivity
and the polarization angle are uniform throughout the
computational domain (see Section 2.1). Then, the jth layer’s
contribution to the Faraday spectrum, Pj(f), is proportional to
the probability distribution of the Faraday depth of the jth layer,
and F(f), aside from the overall normalization, is given by

F P . 11
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j
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åf fµ
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The functional form of Pj(f) reflects the characteristics of the
probability distribution. In the limit of large N⊥, the central
limit theorem dictates that Pj(f) approaches the normal
distribution with jΔfcoh as the mean and j 2sf as the variance:
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That is, the Faraday spectrum is approximated as a sum of
many Gaussian functions with different means and variances.
Figure 8 shows the comparisons of the simulated F(f) with the
spectrum in Equations (11) and (12) for Bcoh = 1 μG. As N⊥

increases, the statistical fluctuations due to the turbulence

magnetic field are reduced and the simulated F(f) approaches
the analytical solution.
Figure 9 illustrates how the specific shape of F(f) is induced

for different parameters of L Bpc , G 10, 0cell coh m =( [ ] [ ]) ( ),
(10, 1), (10, 5), and (100, 1) in panels (a), (b), (c), and (d),
respectively. When Bcoh = 0 μG, the contribution from each
layer is the Gaussian with zero mean, but the variance increases
with increasing j. As a consequence, F(f) becomes symmetric
about f = 0 with zero skewness and leptokurtic with positive
kurtosis (see also Figure 3). With non-zero Bcoh, the mean of
the Gaussian also increases as j increases. So, F(f) becomes
skewed toward positive f, and the shape changes from
leptokurtic to platykurtic as Bcoh increases, as shown in
Figures 9(b) and (c) (also in Figure 3). In the figures, F(f) for a
large positive f represents emissions from the far side of the
computational box. Their contributions to a large f are small,
because emissions from the far side experience Faraday
rotation due to the turbulent fields in nearer layers and spread
out in f space. We note that the polarization angle of emissions
is assumed to be uniform in our model, and any depolarizations
are not included in our calculation (see Section 2.1). For Bcoh

comparable to or larger than σB, F(f) stretches over a large
range of f, and the skewness decreases. For larger Lcell, shown
in Figure 9(d), the variance from each layer is larger, but the
number of layers is smaller. Thus, the shape becomes relatively
more symmetric.
Once the Faraday spectrum is given as in Equations (11) and

(12), the width, skewness, and kurtosis can be analytically

Figure 9. Analytical Faraday spectra with L Bpc , G 10, 0cell coh m =( [ ] [ ]) ( ), (10, 1), (10, 5), and (100, 1), shown in (a), (b), (c), and (d), respectively; LSH = 1 kpc. The
lower parts of the panels show contributions from a number of different layers using Equation (12). The spectra in the upper parts are the sums of the contributions
along the LOS.
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calculated as (see the Appendix)
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where “” denotes the limit of NP ? 1 (NP = 10–400 in our
model; see Section 2) and N B Bcoh

2 2a s=  . The black lines of
Figures 4 and 5 show these analytical solutions, which well
reproduce the simulated results.

We learn the following. (i) The width increases with
increasing Bcoh, σB, and coherence length Lcell. (ii) Both the
skewness and kurtosis are expressed with a single parameter,

N B Bcoh
2 2a s=  , which represents the relative importance of

coherent to random fields (see Equations (8) and (10)). (iii) The
skewness is zero for α = 0 and also for a  ¥, and its sign is
determined by the sign of Bcoh. (iv) The kurtosis changes from
+1 (leptokurtic) for α = 0 to −6/5 (platykurtic) for a  ¥.
Hence, if the width, skewness, and kurtosis of F(f) are
obtained from observations, we may be able to get the
information such as the strengths of the global and random
components of the magnetic field parallel to LOSs as well as
the coherence length of the turbulent magnetic field (see
Section 5). We point out that the shape-characterizing
parameters of the “intrinsic” F(f) are expressed with NP,
Bcoh, and σB as shown in Equations (13)–(15) and do not
depend on the observation frequency coverage.

4. Faraday Spectrum for the Turbulent Magnetic Field with
Power-law Energy Spectrum

We also consider a magnetic field model that is a bit more
realistic, where the turbulent magnetic field is represented by
the energy spectrum of two power laws, such as

E k k k k

E k k k k .
16B

B

innner

inner

µ
µ >

a

b

⎧⎨⎩
( ) ( )
( ) ( )

( )

The outer scale in real space (which corresponds to an inner scale
in Fourier space), Louter ≡ 2π/kinner, is set to be 10–100 pc (see
Section 2.1). The slope for k � kinner, α, is fixed as 2

(see, e.g., Lesieur 1997), while for k > kinner, a range of values,
−2 � β � −1.5, is considered. β = −5/3 is the Kolmogorov
slope, which is close, for instance, to the power spectrum slope of
the interstellar electron density (see, e.g., Armstrong et al. 1981).
In a box of size Lbox = 2 kpc, divided into (512)3 grid zones

(so that the grid size is ∼4 pc), a 3D turbulent magnetic field is
constructed, as follows. The Fourier components, satisfying
k Bk· (and so ensuring B 0 =· in real space), are drawn
from a Gaussian random field in Fourier space. Their relative
amplitudes are determined by the above spectrum. The
components are converted into quantities in real space by
Fourier transformation and then added. The absolute amplitude
is tuned in such a way that the resulting 3D magnetic field has
the rms value of 15 μG. Then, the LOS component is taken as
Brand, which has 15 3 G.Bs m= The thermal electron
density ne, synchrotron emissivity, and polarization angle are
assumed to be uniform within the computational domain, as in
Section 2.
Figure 10 shows the simulated F(f) with Bcoh = 0, 1, and

5 μG from top to bottom for different Louter and β. The profiles
of F(f) are smooth, since F(f) is obtained with N⊥ = 5122

covering a (2 kpc)2 region. Although not shown here, once the
covering region is sufficiently large, specifically, larger than
∼(10Lint)

2 (see below for the definition of Lint), F(f)
converges, similar to that discussed in Section 2. The shape
of F(f) changes sensitively with changing Bcoh/σB, as well as
with changing Louter. On the other hand, the dependence on β is
weak in the range of β considered.
The black lines of Figure 10 show the analytically

constructed F(f) of Section 3 with the integral scale length,

L
E k

k
dk E k dk2 , 17B

Bint ò òp=
( ) ( ) ( )

for β = −5/3, as the coherence length (that is, the Lint used for
Lcell in Equations (11) and (12)), and correspondingly, with
NP = Lbox/Lint. Note that Lint = 0.5–0.75 Louter for −2 � β �
−1.5. The analytically constructed spectra fit well the
simulated ones. This is expected, since it is known that the
variance of RM can be expressed with Lint for the coherence
length of the turbulent magnetic field (see, e.g., Cho &
Ryu 2009). This result implies that even if the turbulent part of
the galactic magnetic field is described by power-law spectra,
once a smooth profile of F(f) is obtained through observations
of multiple LOSs, the width, skewness, and kurtosis may be
used to retrieve the strength of the global and random
components of BP as well as the integral scale length of the
turbulent magnetic field.

5. Summary and Discussion

The study of the cosmic magnetic field using Faraday
tomography involves not only the reconstruction of the Faraday
spectrum, F(f), through observations of the polarization
spectrum, but also the extraction of magnetic field information
from F(f). The latter part, however, often turns out to be
complicated, mainly because of the turbulent component of the
magnetic field; it causes the relation between the Faraday depth
and the physical depth to be non-trivial and produces the
Faraday forest (Frick et al. 2011; Beck et al. 2012), many small-
scale features, in F(f). Our previous work (Ideguchi et al. 2014)
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showed that F(f) calculated with a realistic model for the Milky
Way (Akahori et al. 2013) has the Faraday forest superposed on
the large-scale diffuse emission. We also found that F(f) can
have significantly different shapes for different configurations of
turbulence, despite the global parameters of the model being
fixed. But in Ideguchi et al. (2014), the interpretation of F(f)
was limited, due to its complicated behavior. In this work, we
studied the F(f) of face-on spiral galaxies with the magnetic
fields described with simpler, toy models, and tried to
numerically as well as analytically interpret F(f). We investi-
gated how F(f) along multiple LOSs, covering a small region
where the properties of the magnetic field and other quantities
such as thermal and CR electron densities are assumed to be
uniform, can be used in Faraday tomography study.

With the turbulent magnetic field described as a random field
with a single coherence length, we numerically showed that
small-scale features in F(f) are smoothed out and the shape of F
(f) converges, if F(f) is obtained with LOSs covering a region
of (10 coherence length)2 in the sky. Note that this explains
why we failed to obtain a converged F(f) in Ideguchi et al.
(2014); with Lint ∼ 75 pc, the covering region of (500 pc)2 is
smaller than the requirement for convergence. Also note that we
do not need very high angular resolutions of radio interferom-
eters to apply this method, in the sense that the observed field
should be much larger than the coherence length of the turbulent
field to smooth out the small-scale features in F(f).

We then analytically showed that the converged F(f) can be
expressed as a sum of Gaussian functions with jΔfcoh as the
mean and j 2sf as the variance along LOSs; jΔfcoh is the RM up
to the jth layer due to the coherent component of BP, Bcoh, and

j 2sf is the variance of RM due the random component of BP,
Brand. The analytical expression was derived using the central
limit theorem. Then, the shape-characterizing parameters, that
is, the width, skewness, and kurtosis of F(f), are given as
simple functions of the strength of Bcoh and the variance and
coherence length of Brand.
With the turbulent magnetic field reproduced with power-

law spectra, the same results are obtained, once the coherence
length is replaced with the integral length of the turbulent
magnetic field.
Our results suggest a way to extract quantities such as the

strength and coherence length of the vertical magnetic field in
face-on spiral galaxies with Faraday tomography. We point that
the F(f) along a single LOS and the F(f) constructed with
multiple LOSs can be used differently. While theF(f) along a
single LOS can tell us, for instance, about the existence of a
turbulent field, the F(f) along multiple LOSs can provide us
with the global properties of the magnetic field such as the
strength and coherence length.
Our analytic expressions could be used to interpret the

results of other works. For instance, Frick et al. (2011)
calculated F(f) including both regular and turbulent fields, and
obtained a small skewness. They assumed a Gaussian
distribution of the large-scale field with the peak strength of
∼2.0 μG, and the rms value of a small-scale turbulent field with
a Kolmogorov spectrum is twice that of large-scale field. If we
estimate NP = 200, Bcoh = 2.0 μG, and 16 3 GB

2 2s m= ( ) (so
that the rms strength of the random field is 4 μG) for simplicity,
α ∼ 150. From Equation (14), note that the skewness is large
only for α around unity, that is, only when the contributions of

Figure 10. Simulated Faraday spectrum, F(f), as a function of Faraday depth, f, for the turbulent magnetic field reproduced with power-law spectra; Bcoh = 0, 1, 5 μG
from top to bottom, and 15 3 G.Bs m= The spectra with different outer scales, Louter, and power-law slopes, β, are shown. The black lines are the analytic spectra
of Section 3 for β = −5/3. See the main text for further details.
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the coherent and turbulent fields to f are comparable. The
models adopted in Frick et al. (2011) result in small skewness,
i.e., γs ∼ 0.065 for α ∼ 150, mainly because the contribution of
the coherent field is much larger than that of turbulent field.

The α parameter is composed of three quantities, NP, Bcoh,
and σB. While it would be useful if we could separate them
from observables such as skewness and kurtosis, that is not
easy mainly because the quantities are degenerate. For instance,
any combination of three quantities providing the same α value
results in the same skewness and kurtosis. However, the width
of F(f) is large if NP and Bcoh are large, regardless of the σB
value. Hence, we may be able to understand how the three
parameters depend on the shape-characterizing parameters. We
will leave the exploration of this to a future work.

In this work, we ignored the possible differences between
disk and halo (or thick disk). Observations suggested that the
halo magnetic field would have a topology very different from
that of a disk (e.g., Fletcher et al. 2011). If the component of
the halo magnetic field parallel to the LOS is mostly turbulent,
such a field may lead to Faraday dispersion, which broadens
and weakens the signals seen in F(f), and F(f) would become
more complicated. If the component is mostly coherent and the
halo does not contribute to polarized emission, F(f) only shifts
in f space. The impact of the halo on F(f) will depend on the
amount of polarized emission. If the halo emission is as large as
that of the disk, the observed spectrum may suffer substantial
wavelength-independent depolarization, since the perpend-
icular components of the halo and disk fields would in general
not be aligned with each other. However, observations showed
that the distribution of radio emission from halos of edge-on
spiral galaxies can be described by an exponential function, for
instance, with the scale heights of about 1.8 kpc (Krause 2009).
This suggests that the halo emission is small compared to that
of the disk.

Finally, we consider the work presented here to be the first
step toward understanding the intrinsic characteristics of F(f),
and thus it needs to be become more sophisticated with more
realistic treatments of the galactic magnetic field. In addition,
when F(f) is constructed from an observed polarization
spectrum, effects such as a false signal in RM CLEAN
(Farnsworth et al. 2011; Kumazaki et al. 2014; Miyashita et al.
2016) as well as the limited frequency coverage and noises in
observation need to be considered. For instance, the shape of
F(f) could depend on the wavelength because of an imperfect
Fourier transform due to the limited sampling of the squared
wavelength. Also, the resolution in Faraday depth space, which
is determined by the λ2 coverage (Brentjens & de Bruyn 2005),
becomes important for the method presented here to be applied.
In the case of a large Bcoh, like 5 μG (e.g., Figure 9(c)), a
resolution of  a few 10 rad m−2 may be enough to calculate
the shape-characterizing parameters. The full ASKAP
(700–1800MHz), giving a ∼22 rad m−2 resolution, would
then be good enough. On the other hand, when Bcoh is smaller,
like 1 μG (e.g., Figure 9(b)), a resolution of 10 rad m−2

seems to be necessary. Upgraded GMRT (e.g., 300–900MHz),
which gives a ∼4 rad m−2 resolution, could then be used.
Furthermore, if we try to apply the method to galaxies with
much weaker fields such as the Milky Way, where the vertical
Bcoh at the solar radius is up to ∼0.3 μG (Taylor et al. 2009;
Mao et al. 2010) and the random field is ∼5 μG (Orlando &
Strong 2013) toward the direction of the Galactic poles, we
need a much higher resolution due to the smaller width of F(f).

Hence, LOFAR (e.g., 120–240MHz, high frequency band),
giving a 1 rad m−2 resolution, would be necessary. Indeed,
LOFAR so far has not detected extended polarized emissions
from spiral galaxies at frequencies below 200MHz, probably
because of Faraday depolarization. We may have to wait for
SKA. Thus, it is necessary to examine how well shape-
characterizing parameters will be determined after considering
observational effects. We will leave these to future works.
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Appendix
Calculation of Shape-characterizing Parameters

To derive the width, skewness, and kurtosis in
Equations (13)–(15), we employ F(f) in Equations (11) and
(12) and replace the summation in Equations (3)–(5) with the
integration. That is,
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Then, the spectrum-weighted average of the Faraday depth
becomes
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In the same manner,
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The skewness and kurtosis can be similarly derived.
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