1,763 research outputs found

    Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b

    Get PDF
    The nearby extrasolar planet GJ 436b--which has been labelled as a 'hot Neptune'--reveals itself by the dimming of light as it crosses in front of and behind its parent star as seen from Earth. Respectively known as the primary transit and secondary eclipse, the former constrains the planet's radius and mass, and the latter constrains the planet's temperature and, with measurements at multiple wavelengths, its atmospheric composition. Previous work using transmission spectroscopy failed to detect the 1.4-\mu m water vapour band, leaving the planet's atmospheric composition poorly constrained. Here we report the detection of planetary thermal emission from the dayside of GJ 436b at multiple infrared wavelengths during the secondary eclipse. The best-fit compositional models contain a high CO abundance and a substantial methane (CH4) deficiency relative to thermochemical equilibrium models for the predicted hydrogen-dominated atmosphere. Moreover, we report the presence of some H2O and traces of CO2. Because CH4 is expected to be the dominant carbon-bearing species, disequilibrium processes such as vertical mixing and polymerization of methane into substances such as ethylene may be required to explain the hot Neptune's small CH4-to-CO ratio, which is at least 10^5 times smaller than predicted

    Slow Magnetic Relaxation and Single-Molecule Toroidal Behaviour in a Family of Heptanuclear {CrIIILnIII6} (Ln=Tb, Ho, Er) Complexes

    Get PDF
    © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. The synthesis, magnetic properties, and theoretical studies of three heterometallic {Cr III Ln III 6 } (Ln=Tb, Ho, Er) complexes, each containing a metal topology consisting of two Ln 3 triangles connected via a Cr III linker, are reported. The {CrTb 6 } and {CrEr 6 } analogues display slow relaxation of magnetization in a 3000 Oe static magnetic field. Single-crystal measurements reveal opening up of the hysteresis loop for {CrTb 6 } and {CrHo 6 } molecules at low temperatures. Ab initio calculations predict toroidal magnetic moments in the two Ln 3 triangles, which are found to couple, stabilizing a con-rotating ferrotoroidal ground state in Tb and Ho examples and extend the possibility of observing toroidal behaviour in non Dy III complexes for the first time

    Transmembrane helix dynamics of bacterial chemoreceptors supports a piston model of signalling.

    Get PDF
    Transmembrane α-helices play a key role in many receptors, transmitting a signal from one side to the other of the lipid bilayer membrane. Bacterial chemoreceptors are one of the best studied such systems, with a wealth of biophysical and mutational data indicating a key role for the TM2 helix in signalling. In particular, aromatic (Trp and Tyr) and basic (Arg) residues help to lock α-helices into a membrane. Mutants in TM2 of E. coli Tar and related chemoreceptors involving these residues implicate changes in helix location and/or orientation in signalling. We have investigated the detailed structural basis of this via high throughput coarse-grained molecular dynamics (CG-MD) of Tar TM2 and its mutants in lipid bilayers. We focus on the position (shift) and orientation (tilt, rotation) of TM2 relative to the bilayer and how these are perturbed in mutants relative to the wildtype. The simulations reveal a clear correlation between small (ca. 1.5 Å) shift in position of TM2 along the bilayer normal and downstream changes in signalling activity. Weaker correlations are seen with helix tilt, and little/none between signalling and helix twist. This analysis of relatively subtle changes was only possible because the high throughput simulation method allowed us to run large (n = 100) ensembles for substantial numbers of different helix sequences, amounting to ca. 2000 simulations in total. Overall, this analysis supports a swinging-piston model of transmembrane signalling by Tar and related chemoreceptors

    Tuning the ferrotoroidic coupling and magnetic hysteresis in double-triangle complexes {Dy3MIIIDy3} via the MIII-linker

    Get PDF
    We present the syntheses, structures, magnetic data and theoretical analyses for two families of heptanuclear clusters, wherein two staggered dysprosium(III) triangles are linked by various M(III) d‐/p‐block ions. The families differ in the counter‐anion and are of formulae [DyIII6MIII(OH)8(o‐tol)12(MeOH)5(NO3)]∙4MeOH and [DyIII6MIII(OH)8(o‐tol)12(MeOH)6]Cl·6MeOH (M = Cr, Mn, Fe, Co, Al; o‐tol = o‐toluate). We find that variation of the central metal ion M is crucial in tuning the toroidal moments on the triangular units, with diamagnetic M linking ions enhancing the ferrotoroidic coupling. By detailed simulation and analysis of various magnetic measurements, including sub‐kelvin microSquid hysteresis loops, we identified the specific signature of the M linking ions’ modulation of toroidal properties, including the mechanism whereby anisotropic, paramagnetic M ions lead to hysteresis profiles with larger remnant magnetisations and broader coercive fields

    Studies of the Decay B+- -> D_CP K+-

    Get PDF
    We report studies of the decay B+- -> D_CP K+-, where D_CP denotes neutral D mesons that decay to CP eigenstates. The analysis is based on a 29.1/fb data sample of collected at the \Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric e+ e- storage ring. Ratios of branching fractions of Cabibbo-suppressed to Cabibbo-favored processes involving D_CP are determined to be B(B- -> D_1 K-)/B(B- -> D_1 pi-)=0.125 +- 0.036 +- 0.010 and B(B- -> D_2 K-)/B(B- -> D_2 pi-)=0.119 +- 0.028 +- 0.006, where indices 1 and 2 represent the CP=+1 and CP=-1 eigenstates of the D0 - anti D0 system, respectively. We also extract the partial rate asymmetries for B+- -> D_CP K+-, finding A_1 = 0.29 +- 0.26 +- 0.05 and A_2 = -0.22 +- 0.24 +- 0.04.Comment: 10 pages, 2 figures, submitted to Physical Review Letter

    Quality control and beam test of GEM detectors for future upgrades of the CMS muon high rate region at the LHC

    Get PDF
    Gas Electron Multipliers (GEM) are a proven position sensitive gas detector technology which nowadays is becoming more widely used in High Energy Physics. GEMs offer an excellent spatial resolution and a high particle rate capability, with a close to 100% detection efficiency. In view of the high luminosity phase of the CERN Large Hadron Collider, these aforementioned features make GEMs suitable candidates for the future upgrades of the Compact Muon Solenoid (CMS) detector. In particular, the CMS GEM Collaboration proposes to cover the high-eta region of the muon system with large-area triple-GEM detectors, which have the ability to provide robust and redundant tracking and triggering functions. In this contribution, after a general introduction and overview of the project, the construction of full-size trapezoidal triple-GEM prototypes will be described in more detail. The procedures for the quality control of the GEM foils, including gain uniformity measurements with an x-ray source will be presented. In the past few years, several CMS triple-GEM prototype detectors were operated with test beams at the CERN SPS. The results of these test beam campaigns will be summarised

    A robust tracking system for low frame rate video

    Get PDF
    Tracking in low frame rate (LFR) videos is one of the most important problems in the tracking literature. Most existing approaches treat LFR video tracking as an abrupt motion tracking problem. However, in LFR video tracking applications, LFR not only causes abrupt motions, but also large appearance changes of objects because the objects’ poses and the illumination may undergo large changes from one frame to the next. This adds extra difficulties to LFR video tracking. In this paper, we propose a robust and general tracking system for LFR videos. The tracking system consists of four major parts: dominant color-spatial based object representation, bin-ratio based similarity measure, annealed particle swarm optimization (PSO) based searching, and an integral image based parameter calculation. The first two parts are combined to provide a good solution to the appearance changes, and the abrupt motion is effectively captured by the annealed PSO based searching. Moreover, an integral image of model parameters is constructed, which provides a look-up table for parameters calculation. This greatly reduces the computational load. Experimental results demonstrate that the proposed tracking system can effectively tackle the difficulties caused by LFR

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
    • 

    corecore