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We report studies of the Cabibbo-suppressed decay B� ! DCPK
�, where DCP denotes CP eigen-

states of the D0 � �D0D0 system. The analysis is based on a 29:1 fb�1 sample collected at the ��4S�
resonance with the Belle detector at the KEKB asymmetric e�e� storage ring. We measure
ratios of branching fractions, relative to Cabibbo-favored B� ! DCP


�, of B�B� ! D1K
��=

B�B� ! D1

�� � 0:125� 0:036� 0:010 and B�B� ! D2K

��=B�B� ! D2

�� � 0:119� 0:028�

0:006; the index 1 (2) denotes the CP � �1 ��1� eigenstate. We also extract the partial rate
asymmetries for B� ! DCPK

�, finding A1 � 0:29� 0:26� 0:05 and A2 � �0:22� 0:24� 0:04.

DOI: 10.1103/PhysRevLett.90.131803 PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh
amplitudes, r � jA�B� ! �DD0K��=A�B� ! D0K��j, and
�0 is the strong phase difference between the two ampli-

of branching fractions R for the flavor specific state and
the CP � �1 eigenstates, and a determination of the
Direct CP violation in B� ! DCPK� decay, where
DCP denotes neutral D mesons that decay to CP eigen-
states, provides a promising way to extract the angle �3

of the Cabibbo-Kobayashi-Maskawa (CKM) unitarity
triangle [1,2]. A partial rate asymmetry ACP between
the DCPK� and DCPK� final states can arise from inter-
ference between b! c and b! u processes. The relation
of ACP and the �3 angle [3] is given by

A1;2 �
B�B� ! D1;2K

�� �B�B� ! D1;2K
��

B�B� ! D1;2K
�� �B�B� ! D1;2K

��

�
2r sin�0 sin�3

1� r2 � 2r cos�0 cos�3

; (1)

where indices 1 and 2 denote the CP � �1 and CP � �1
eigenstates of the neutral D mesons, r is the ratio of the
tudes, with �0 � � for D1 and �0 � �� 
 for D2. This
asymmetry can have a nonzero value when both �3 and
� are nonzero. In principle, one can constrain the angle
�3 from the measurement of asymmetries A1;2.
B! DK processes have been studied by measuring

the ratio of the Cabibbo-suppressed process B� !
D0K� to the Cabibbo-favored process B� ! D0
�.
Belle [4] measured R � B�B� ! D0K��=B�B� !
D0
�� � 0:079� 0:009� 0:006, while CLEO [5] re-
ported R � 0:055� 0:014� 0:005. Both measurements
are in agreement with the naı̈ve theoretical expectation:
assuming factorization, R � tan2�C�fK=f
�

2 � 0:074
in a tree-level approximation, where �C is the Cabibbo
angle, and fK and f
 are the decay constants.

In this Letter, we report the first measurement of B� !
DCPK� decay. We also give a comparison of the ratio
131803-2
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asymmetries A1;2. The results are based on a 29:1 fb�1

data sample collected on the ��4S� resonance with the
Belle detector [6] at the KEKB asymmetric e�e� collider
[7], corresponding to approximately 31:3� 106 B �BB
events. The inclusion of charge conjugate decay modes
is implied throughout this Letter unless otherwise stated.

Belle is a general-purpose detector with a 1.5 T su-
perconducting solenoid magnet that can distinguish
the Cabibbo-suppressed (-favored) processes B� !
D0K� �D0
�� by means of particle identification and
kinematic separation. A detailed description of the Belle
detector can be found elsewhere [6].

We distinguish the processes B� ! D0h�; h� �
K�; 
�, using particle identification of the prompt hadron
h� and the effect of the mass difference at the final stage
of event selection. The decay B� ! D0
� is used as a
control sample to establish constraints on kinematic vari-
ables, resolution of detectors, evaluation of systematic
uncertainties, and normalization of results.

Flavor specific D0 meson candidates (denoted Df) are
reconstructed via D0 ! K�
�; for CP � �1 eigen-
states we use D1 ! K�K� and 
�
� and for CP �
�1 we use D2 ! KS


0, KS!, KS�, KS�, and KS�0.
KS ! 
�
� candidates are reconstructed from oppo-

sitely charged tracks with an invariant mass within �3�
of the nominal KS mass. We impose a photon energy cut
E� > 30 MeV to reconstruct 
0 ! ��, and require an
invariant mass within �3� of the nominal value. �!
�� and �0 ! �
�
� candidates are reconstructed us-
ing mass cuts 0:495 GeV=c2 <M����< 0:57 GeV=c2

and 0:904 GeV=c2 <M��
�
��< 1:003 GeV=c2, and
a momentum cut p� > 500 MeV=c.

Vector meson decays !! 
�
�
0 and �! K�K�

are reconstructed requiring 0:733 GeV=c2 <
M�
�
�
0�< 0:819 GeV=c2 and 1:007 GeV=c2 <
M�K�K��< 1:031 GeV=c2; a helicity angle cut
j cos�helj > 0:4 reduces the nonresonant D0 !
KS
�
�
0 and KSK�K� backgrounds to a negligible
level [8]. ForD0 ! KS!, theD0 ! K� � background is
rejected by vetoing KS


� combinations within
�75 MeV=c2 of the nominal K mass.

For each charged track, the particle identification sys-
tem is used to determine likelihoods LK, L
, and the
K=
 likelihood ratio P�K=
� � LK=�LK �L
� [6].
We identify pions using P�K=
�< 0:7 for D0 ! K�
�

and 
�
�; kaons are required to satisfy P�K=
� > 0:3
for D0 ! K�
� and P�K=
� > 0:7 for D0 ! K�K�.
Pions from D0 ! 
�
� are required to have momentum
p > 0:8 GeV=c, and the D0 candidate is vetoed if either
pion, when combined with any other track in the event,
has an invariant mass within �50 MeV=c2 of the nomi-
nal J= mass, or �20 MeV=c2 of the nominal D0 mass.

Candidate D0 mesons are also required to have an
invariant mass within �2:5� of the nominal value,
where � is the measured mass resolution, which ranges
from 5 to 18 MeV=c2, depending on the decay channel.
131803-3
To improve the momentum determination, tracks and
photons from the D0 candidate final states, except for
KS
0, KS�, and KS�0, are then refitted according to the
nominalD0 mass hypothesis and the reconstructed vertex
position.

We analyze B� ! DK� and D
� events using the
variables �E andMlc. The energy difference in the center
of mass frame (c.m.) is calculated by assigning the pion
mass to the prompt hadron h�: �E � Ec:m:

D � Ec:m:
h� �

Ec:m:
beam. The laboratory constrained mass is the B candidate

mass calculated from laboratory momenta, assuming

e�e� ! B �BB: Mlc �
�������������������������������
�Elab

B �2 � �pB�2
q

, where Elab
B �

1
Eee

�s=2� pee � pB�, pB is the laboratory momentum of

the B meson candidate (pB � jpBj), pee and Eee are the
laboratory momentum and energy of the e�e� system,
and s is the square of the c.m. energy. We accept B
candidates with 5:27 GeV=c2 <Mlc < 5:29 GeV=c2.

Background events from e�e� ! q �qq continuum pro-
cesses are rejected using event shape variables that dis-
tinguish between spherical B �BB events and jetlike con-
tinuum events. We construct a Fisher discriminant, F �P
l�2;4 &lR

so
l �

P
4
l�1 (lR

oo
l , where &l, (l are coefficients

maximizing discrimination between B �BB and continuum
events, and Rsol , Rool are modified Fox-Wolfram moments
[9]. We also use the angle �B between the beam axis and
the c.m. momentum of the B meson. A likelihood vari-
able is formed from the probability density functions of
F and cos�B, for the signal (Lsig) and the continuum
background (Lcont); we then apply cuts on the likelihood
ratio LR � Lsig=�Lsig �Lcont�. Since each D0 decay
mode has different backgrounds, we optimize the LR
cut for each mode by maximizing S=

��������������
S� N

p
, where S

(N) denotes the number of signal (background) events
estimated by a Monte Carlo simulation [10]. For ex-
ample, for the D0 ! K�
� mode, we require LR >
0:4, retaining 87:1% of signal and 26:4% of the contin-
uum background.

We use particle identification information on the
prompt hadron to divide the remaining events into sam-
ples enriched in B� ! D0K� [P�K=
� > 0:8], andB� !

D0
� [P�K=
�< 0:8]. The �E distribution is then used
to distinguish between B� ! D0K� (peaking at
�49 MeV) and B� ! D0
� (peaking at 0 MeV), as
shown in Fig. 1. In the B� ! D0K� enriched sample a
second peak near �E � 0 MeV, due to misidentified
pions from B� ! D0
�, can be seen in Figs. 1(b), 1(d),
and 1(f)

The numbers of B� ! D0
� and B� ! D0K� events
are extracted by fitting double Gaussian functions with
different central values and widths to the �E distri-
bution. Backgrounds originate from q �qq continuum
events and B �BB events. Continuum events are distrib-
uted over the entire �E region, and the shape of this
background is determined by fitting a linear function to
131803-3
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FIG. 1. �E distributions for B� ! D0
�=K� candidates and
fit results: (a) B� ! Df


�, (b) B� ! DfK
�, (c) B� ! D1


�,
(d) B� ! D1K

�, (e) B� ! D2

�, and (f) B� ! D2K

�, where
in each case the pion mass is assigned to the prompt 
�=K�.
Dotted (dashed) lines show the distributions of DK�D
� sig-
nals. The shaded plot shows the continuum background and the
remaining component from B �BB background is estimated and
fitted by Monte Carlo simulation. In the DK plots, the dashed
curves show the D0
 feed-across.
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the �E distribution in the Mlc sideband region
(5:20 GeV=c2 <Mlc < 5:26 GeV=c2). B �BB backgrounds,
such as B� ! D0 � and B� ! D
� processes,
are mostly seen at negative values of �E; MC simula-
tions are used to obtain the shape of their
distribution.
TABLE I. Results of fits for the D0
� and D0K� decay modes. T
region, statistical significance ofD0K� signals, efficiencies, and bra
by weighting according to the measured subcomponents [� �

P
i

D1;2 are also shown in parentheses.

B� ! D0K� B� ! D0
� Stat. B�

events feed-across sig. e

B� ! Dfh
� 161:7� 14:5 51:3� 9:7 16.9 2245

B� ! D1h
� 22:9� 6:1 9:6� 4:4 5.1 240

�D1 ! K�K�� (18:9� 5:2) (9:0� 3:7) (202

B� ! D2h
� 26:1� 6:5 4:9� 4:1 5.5 290

�D2 ! KS

0� (14:8� 4:7) (1:0� 2:2) (171

131803-4
In the fits to the B� ! D0
� enriched �E distribution,
the signal peak position and width, and the normaliza-
tion of continuum and B �BB backgrounds are free parame-
ters. In the fits to the B� ! D0K� enriched sample, we
calibrate the shape parameters of the B� ! D0K� double
Gaussian using the B� ! D0
� data, following the pro-
cedure described in [4]: the B� ! D0
� distribution is
fitted using a kaon mass hypothesis for the prompt pion,
and the relative peak position is then reversed with re-
spect to the origin. This accounts for the kinematical
shifts and smearing of the �E peaks caused by the
incorrect mass assignment. The shape parameters for
the feed-across from B� ! D0
� are fixed using the fit
results of the B� ! D0
� enriched sample.

The fit results are shown as solid curves in Fig. 1. The
statistical significance of both D1K

� and D2K
� signals,

defined as
�����������������������������������
�2 ln�L0=Lmax�

p
, is over 5:0�. (Lmax is the

maximum likelihood in the �E fit and L0 is the like-
lihood when the signal yield is constrained to be zero.)
The results are summarized in Table I.

The ratio of branching fractions is determined using

R �
N�B� ! D0K��

N�B� ! D0
��
�
��B� ! D0
��

��B� ! D0K��
�
*�
�
*�K�

; (2)

where N is the number of events obtained, � is the signal
detection efficiency, and * is the prompt hadron identi-
fication efficiency. The signal detection efficiencies are
determined from MC simulation: ��B� ! D0K�� is
approximately 5% lower than ��B� ! D0
�� due to
kaon decays in flight. Particle identification efficiencies
*�K�, *�
� are determined from a kinematically selected
sample of D� ! D0
�, D0 ! K�
� decays, using
tracks in the same c.m. momentum (pc:m:) and polar angle
regions as prompt hadrons from B� ! Dh� decay
(2:1GeV=c < pc:m: < 2:5 GeV=c). For P�K=
� > 0:8,
we find *�K� � 0:778� 0:005 with a pion misidentifi-
cation rate of 0:024� 0:002; P�K=
�< 0:8 gives a pion
identification efficiency *�
� � 0:972� 0:007.

Since the kinematics of the B� ! D0K� and B� !
D0
� processes are similar, the systematic uncertain-
ties from detection efficiencies cancel in the ratios of
he event yields, the feed-across from D0
� to the D0K� signal
nching fraction ratios (R) are given. Efficiencies are determined
�iB�D0 ! Xi�]. The results with the dominant decay mode of

! D0
� Efficiency (%) Branching fraction ratio
vents ��D0
��=��D0K�� R

:1� 51:0 1:703=1:639 0:094� 0:009� 0:007

:1� 16:7 0:173=0:165 0:125� 0:036� 0:010
:0� 14:8) (0:142=0:136) (0:122� 0:035)

:6� 19:1 0:184=0:173 0:119� 0:028� 0:006
:5� 13:9) (0:119=0:113) (0:114� 0:037)

131803-4



TABLE II. Summary of measured partial rate asymmetries.

Mode N�B�� N�B�� ACP 90% C.L.

B� ! DfK� 80:6� 10:1 81:1� 10:4 0:003� 0:089� 0:037 �0:15<Af < 0:16
B� ! D1K

� 8:1� 3:9 14:7� 4:6 0:29� 0:26� 0:05 �0:14<A1 < 0:73
B� ! D2K

� 16:4� 5:5 10:6� 4:2 �0:22� 0:24� 0:04 �0:62<A2 < 0:18
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branching fractions. The dominant systematic errors are
the uncertainties in the shapes of backgrounds in the �E
distributions (5:1%–7:9%), which are determined by
varying the background shape of the fitting function by
�1�, andK=
 identification efficiencies (1:2%). The sum
of the uncertainties for each mode are combined in quad-
rature to determine the total systematic errors for the
ratios.

The resulting measurements of R are listed with
their statistical and systematic errors in Table I.
These are the first observations of the decays B� !
DCPK�. As a check, the result for the flavor specific
decay B� ! Dfh� is listed as well, and is found to be
consistent with previous measurements. We find no devia-
tion of the R ratio for the B� ! DCPK� processes from
the corresponding flavor specific modes beyond statistical
errors.

To search for direct CP violation, we measure the
partial rate asymmetries A1;2 in B� ! D1;2K

� decays,
fitting the B� and B� yields separately for each mode.
The results are shown in Table II. To construct 90%
confidence intervals in A, we combine statistical and
systematic errors in quadrature, and assume that the total
error is distributed as a Gaussian. We find �0:14<A1 <
0:73 and �0:62<A2 < 0:18, consistent with zero asym-
metry. We also measure A for the flavor specific mode,
and find a result consistent with zero, as expected.

The main sources of systematic errors for the partial
rate asymmetries A are possible asymmetries in the
measured background (1:5%� 3:9%), intrinsic asymme-
try in the Belle detector (3:6%), and kaon identifica-
tion (1:0%). We observe 1154:6� 35:4 B� ! �DD0
�,
�DD0 ! K�
�, and 1073:5� 34:5 B� ! D0
�, D0 !
K�
� candidates, consistent with our expectation that
the detector has no significant intrinsic charge asymme-
try. Using MC simulation, we find that the contribution of
nonresonant contaminations (�0:1%) of ! and � can be
neglected.

In conclusion, using 29:1 fb�1 of data collected with
the Belle detector, we report studies of the decays B� !
DCPK

�. The ratios of branching fractions R for the
decays B� ! DCPK

� and B� ! DCP

� are consistent

with that for the flavor specific decay within errors. The
partial rate asymmetries A1;2 are consistent with zero
within large errors. This is the first stage of a program to
measure the angle �3 in the CKM unitarity triangle.
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