32 research outputs found

    Diversification dynamics of freshwater bivalves (Unionidae: Parreysiinae: Coelaturini) indicate historic hydrographic connections throughout the East African Rift System

    Get PDF
    Invertebrates are exceptionally diverse, but many are in decline because of anthropogenic changes to their habitat. This situation is particularly problematic for taxa that are not well monitored or taxonomically poorly understood, because the lack of knowledge hampers conservation. Despite their important functional role in freshwater ecosystems, African bivalves of the family Unionidae remain poorly studied compared to their highly threatened relatives in Europe, the U.S.A. and Canada. To resolve relationships and to study diversification dynamics in space and time, we performed time-calibrated phylogenetic studies and biogeographical modeling on the unionids from the East African Rift System and surroundings, including representatives of all currently recognized Afrotropical genera except for Brazzaea (and Unio from southern Africa). Our analyses indicate that all sampled Afrotropical unionids belong to the tribe Coelaturini (subfamily Parreysiinae), as does the genus Moncetia from Lake Tanganyika, which is currently attributed to the family Iridinidae. Colonization of Africa from Eurasia by Parreysiinae occurred ~17 Ma ago, and the subsequent diversification of Coelaturini in Africa continued at a steady pace, although net diversification decreased over time as more niches and ecoregions became occupied. Clades in Coelaturini largely reflect drainage basins, with the oldest lineages and highest regional diversity occurring in Lake Tanganyika, followed by the Congo Basin watershed in general. The species assemblage of Lake Tanganyika reflects multiple independent events of colonization and intralacustrine diversification since the Late Miocene or Early Pliocene. The clades of other regions, including that containing the species from Lake Malawi, are comparatively young. Biogeographical analyses indicate that the colonization history was mainly driven by cladogenesis in sympatry, whereas few anagenetic events contributed to the modern distribution of Coelaturini. Ancestral range estimations demonstrate that Coelaturini originated in the Victoria and/or Tanganyika ecoregions, and that the Congo Basin played an essential role in the colonization of Africa by Coelaturini.The attached document is the authors’ final accepted/submitted version of the journal article. You are advised to consult the publisher’s version if you wish to cite from it

    Mediterranean winter rainfall in phase with African monsoons during the past 1.36 million years

    Get PDF
    Mediterranean climates are characterized by strong seasonal contrasts between dry summers and wet winters. Changes in winter rainfall are critical for regional socioeconomic development, but are difficult to simulate accurately1 and reconstruct on Quaternary timescales. This is partly because regional hydroclimate records that cover multiple glacial–interglacial cycles2,3 with different orbital geometries, global ice volume and atmospheric greenhouse gas concentrations are scarce. Moreover, the underlying mechanisms of change and their persistence remain unexplored. Here we show that, over the past 1.36 million years, wet winters in the northcentral Mediterranean tend to occur with high contrasts in local, seasonal insolation and a vigorous African summer monsoon. Our proxy time series from Lake Ohrid on the Balkan Peninsula, together with a 784,000-year transient climate model hindcast, suggest that increased sea surface temperatures amplify local cyclone development and refuel North Atlantic low-pressure systems that enter the Mediterranean during phases of low continental ice volume and high concentrations of atmospheric greenhouse gases. A comparison with modern reanalysis data shows that current drivers of the amount of rainfall in the Mediterranean share some similarities to those that drive the reconstructed increases in precipitation. Our data cover multiple insolation maxima and are therefore an important benchmark for testing climate model performance

    Constant diversification rates of endemic gastropods in ancient Lake Ohrid: ecosystem resilience likely buffers environmental fluctuations

    No full text
    Ancient lakes represent key ecosystems for endemic freshwater species. This high endemic biodiversity has been shown to be mainly the result of intra-lacustrine diversification. Whereas the principle role of this mode of diversification is generally acknowledged, actual diversification rates in ancient lakes remain little understood. At least four types are conceivable. Diversification rates may be constant over time, they may fluctuate, rates may be higher in the initial phase of diversification, or there may be a pronounced lag phase between colonization and subsequent diversification. As understanding the tempo of diversification in ancient lake environments may help reveal the underlying processes that drive speciation and extinction, we here use the Balkan Lake Ohrid as a model system and the largest species flock in the lake, the non-pyrgulinid Hydrobiidae, as a model taxon to study changes in diversification rates over time together with the respective drivers. Based on phylogenetic, molecular-clock, lineage-through-time plot, and diversification-rate analyses we found that this potentially monophyletic group is comparatively old and that it most likely evolved with a constant diversification rate. Preliminary data of the SCOPSCO (Scientific Collaboration On Past Speciation Conditions in Lake Ohrid) deep-drilling program do indicate signatures of severe environmental/climatic perturbations in Lake Ohrid. However, so far there is no evidence for the occurrence of catastrophic environmental events. We therefore propose that the constant diversification rate observed in endemic gastropods has been caused by two factors: (i) a potential lack of catastrophic environmental events in Lake Ohrid and/or (ii) a probably high ecosystem resilience, buffering environmental changes. Parameters potentially contributing to the lake's high ecosystem resilience are its distinct bathymetry, ongoing tectonic activities, and karst hydrology. The current study not only contributes to one of the overall goals of the SCOPSCO deep-drilling program – inferring the driving forces for biotic evolution in Lake Ohrid. It might also enhance our understanding of how ecosystem resilience, in general, may promote relatively constant diversification rates in isolated ecosystems. However, we encourage future studies testing hypotheses about the lack of catastrophic events in Lake Ohrid. These studies should be based on high-resolution data for the entire geological history of the lake, and they should potentially involve information from the sediment fossil record, not only for gastropods but also for other groups with a high share of endemic taxa

    Diversification dynamics in freshwater bivalves (Unionidae) from the East African Rift

    Get PDF
    Invertebrates are exceptionally diverse, but declining because of anthropogenic changes to their habitat, as exemplified by freshwater bivalves in Europe and North America. Much less information is available for African freshwater bivalves, especially for Unionidae, which comprise 9 genera and ~40 nominal species, many of which are endemic to African ancient lakes. The phylogenetic position of most of these genera and species remains uncertain, and their conservation status unassessed. Here, we present preliminary results of phylogenetic studies on the Unionidae of the East African Rift. We integrate a phylogenetic backbone based on four gene fragments with (1) sampling information to examine geographic patterns of diversity and with (2) geometric morphometrics of shell shape to examine the relation between morphological disparity and molecular diversity. African Unionidae apart from ‘Cafferia’ form a monophyletic clade, and the basal splits in this clade occur between the reciprocally monophyletic genera Pseudospatha and Grandidieria, both of which are currently endemic to Lake Tanganyika. Mweruella, Nyassunio and Prisodontopsis are also monophyletic in the preliminary analyses as is Nitia, although this latter taxon is nested within Coelatura, which highlights the need of systematic revisions. Biogeographic analyses indicate a statistically significant North-to-South colonization of the East African Rift by Coelatura sensu lato. Beyond deep phylogenetic splits among individual clades, limited molecular differentiation is observed within most clades, calling for population genetic studies. Ongoing morphometric analyses suggest strong morphological differentiation among several clades, but substantial disparity in shell shape is observed within many clades, which needs further examination.This document is the final published abstract of a conference presentation, details available on the conference website http://www.sial-online.org/conferences/sial8

    Global Diversification Dynamics Since the Jurassic: Low Dispersal and Habitat-Dependent Evolution Explain Hotspots of Diversity and Shell Disparity in River Snails (Viviparidae).

    No full text
    The Viviparidae, commonly known as River Snails, is a dominant group of freshwater snails with a nearly worldwide distribution that reaches its highest taxonomic and morphological diversity in Southeast Asia. The rich fossil record is indicative of a probable Middle Jurassic origin on the Laurasian supercontinent where the group started to diversify during the Cretaceous. However, it remains uncertain when and how the biodiversity hotspot in Southeast Asia was formed. Here, we used a comprehensive genetic data set containing both mitochondrial and nuclear markers and comprising species representing 24 out of 28 genera from throughout the range of the family. To reconstruct the spatiotemporal evolution of viviparids on a global scale, we reconstructed a fossil-calibrated phylogeny. We further assessed the roles of cladogenetic and anagenetic events in range evolution. Finally, we reconstructed the evolution of shell features by estimating ancestral character states to assess whether the appearance of sculptured shell morphologies was driven by major habitat shifts. The molecular phylogeny supports the monophyly of the three subfamilies, the Bellamyinae, Lioplacinae, and Viviparinae, but challenges the currently accepted genus-level classification in several cases. The almost global distribution of River Snails has been influenced both by comparatively ancient vicariance and more recent founder events. In Southeast Asia, Miocene dispersal was a main factor in shaping the modern species distributions. A recurrent theme across different viviparid taxa is that many species living in lentic waters exhibit sculptured shells, whereas only one strongly sculptured species is known from lotic environments. We show that such shell sculpture is habitat-dependent and indeed evolved several times independently in lentic River Snails. Considerably high transition rates between shell types in lentic habitats probably caused the co-occurrence of morphologically distinct shell types in several lakes. In contrast, directional evolution toward smooth shells in lotic habitats, as identified in the present analyses, explains why sculptured shells are rarely found in these habitats. However, the specific factors that promoted changes in shell morphology require further work. [biogeographical analyses; fossil-calibrated phylogeny; fossil-constrained analyses; Southeast Asia; stochastic character mapping.]

    Data from: Origins of the Greenland shark (Somniosus microcephalus): impacts of ice-olation and introgression

    No full text
    Herein, we use genetic data from 277 sleeper sharks to perform coalescent-based modeling to test the hypothesis of early Quaternary emergence of the Greenland shark (Somniosus microcephalus) from ancestral sleeper sharks in the Canadian Arctic-Subarctic region. Our results show that morphologically cryptic somniosids S. microcephalus and Somniosus pacificus can be genetically distinguished using combined mitochondrial and nuclear DNA markers. Our data confirm the presence of genetically admixed individuals in the Canadian Arctic and sub-Arctic, and temperate Eastern Atlantic regions, suggesting introgressive hybridization upon secondary contact following the initial species divergence. Conservative substitution rates fitted to an Isolation with Migration (IM) model indicate a likely species divergence time of 2.34 Ma, using the mitochondrial sequence DNA, which in conjunction with the geographic distribution of admixtures and Pacific signatures likely indicates speciation associated with processes other than the closing of the Isthmus of Panama. This time span coincides with further planetary cooling in the early Quaternary period followed by the onset of oscillating glacial-interglacial cycles. We propose that the initial S. microcephalus–S. pacificus split, and subsequent hybridization events, were likely associated with the onset of Pleistocene glacial oscillations, whereby fluctuating sea levels constrained connectivity among Arctic oceanic basins, Arctic marginal seas, and the North Atlantic Ocean. Our data demonstrates support for the evolutionary consequences of oscillatory vicariance via transient oceanic isolation with subsequent secondary contact associated with fluctuating sea levels throughout the Quaternary period—which may serve as a model for the origins of Arctic marine fauna on a broad taxonomic scale
    corecore