38 research outputs found

    Corn yield response to nitrogen and irrigation in southeast Missouri, 1963

    Get PDF
    Cover title."University of Missouri Agricultural Experiment Station and Farm Production Economics Division, Economic Research Service, U.S. Department of Agriculture cooperating."Includes bibliographical references

    Incidence of drouth conditions in southeastern Missouri

    Get PDF
    Missouri Agricultural Experiment Station and Farm Production Economics Division, Economic Research Service, United States Department of Agriculture, cooperating.Digitized 2007 AES.Includes bibliographical references (pages 34-35)

    Combination of novel and public RNA-seq datasets to generate an mRNA expression atlas for the domestic chicken

    Get PDF
    Background: The domestic chicken (Gallus gallus) is widely used as a model in developmental biology and is also an important livestock species. We describe a novel approach to data integration to generate an mRNA expression atlas for the chicken spanning major tissue types and developmental stages, using a diverse range of publicly-archived RNA-seq datasets and new data derived from immune cells and tissues. Results: Randomly down-sampling RNA-seq datasets to a common depth and quantifying expression against a reference transcriptome using the mRNA quantitation tool Kallisto ensured that disparate datasets explored comparable transcriptomic space. The network analysis tool Graphia was used to extract clusters of co-expressed genes from the resulting expression atlas, many of which were tissue or cell-type restricted, contained transcription factors that have previously been implicated in their regulation, or were otherwise associated with biological processes, such as the cell cycle. The atlas provides a resource for the functional annotation of genes that currently have only a locus ID. We cross-referenced the RNA-seq atlas to a publicly available embryonic Cap Analysis of Gene Expression (CAGE) dataset to infer the developmental time course of organ systems, and to identify a signature of the expansion of tissue macrophage populations during development. Conclusion: Expression profiles obtained from public RNA-seq datasets - despite being generated by different laboratories using different methodologies - can be made comparable to each other. This meta-analytic approach to RNA-seq can be extended with new datasets from novel tissues, and is applicable to any species

    Matrix-assisted laser desorption ionization-imaging mass spectrometry: A new methodology to study human osteoarthritic cartilage

    No full text
    Objective. Information about the distribution of proteins and the modulation that they undergo in the different phases of rheumatic pathologies is essential to understanding the development of these diseases. We undertook this study to demonstrate the utility of mass spectrometry (MS)–based molecular imaging for studying the spatial distribution of different components in human articular cartilage sections. Methods. We compared the distribution of peptides and proteins in human control and osteoarthritic (OA) cartilage. Human control and OA cartilage slices were cut and deposited on conductive slides. After tryptic digestion, we performed matrix-assisted laser desorption ionization–imaging MS (MALDI-IMS) experiments in a MALDI–quadrupole time-of-flight mass spectrometer. Protein identification was undertaken with a combination of multivariate statistical methods and Mascot protein database queries. Hematoxylin and eosin staining and immunohistochemistry were performed to validate the results. Results. We created maps of peptide distributions at 150- m raster size from control and OA human cartilage. Proteins such as biglycan, prolargin, decorin, and aggrecan core protein were identified and localized. Specific protein markers for cartilage oligomeric matrix protein and fibronectin were found exclusively in OA cartilage samples. Their distribution displayed a stronger intensity in the deep area than in the superficial area. New tentative OA markers were found in the deep area of the OA cartilage. Conclusion. MALDI-IMS identifies and localizes disease-specific peptides and proteins in cartilage. All the OA-related peptides and proteins detected display a stronger intensity in the deep cartilage. MS-based molecular imaging is demonstrated to be an innovative method for studying OA pathology
    corecore