1,797 research outputs found

    Performance of an Operating High Energy Physics Data Grid: D0SAR-Grid

    Full text link
    The D0 experiment at Fermilab's Tevatron will record several petabytes of data over the next five years in pursuing the goals of understanding nature and searching for the origin of mass. Computing resources required to analyze these data far exceed capabilities of any one institution. Moreover, the widely scattered geographical distribution of D0 collaborators poses further serious difficulties for optimal use of human and computing resources. These difficulties will exacerbate in future high energy physics experiments, like the LHC. The computing grid has long been recognized as a solution to these problems. This technology is being made a more immediate reality to end users in D0 by developing a grid in the D0 Southern Analysis Region (D0SAR), D0SAR-Grid, using all available resources within it and a home-grown local task manager, McFarm. We will present the architecture in which the D0SAR-Grid is implemented, the use of technology and the functionality of the grid, and the experience from operating the grid in simulation, reprocessing and data analyses for a currently running HEP experiment.Comment: 3 pages, no figures, conference proceedings of DPF04 tal

    Development of Large Area GEM Chambers

    Full text link
    The High Energy Physics group of the University of Texas at Arlington Physics Department has been developing Gas Electron Multiplier (GEM) detectors for use as the sensitive gap detector in digital hadron calorimeters (DHCAL) for the future International Linear Collider. In this study, two kinds of prototype GEM detectors have been tested. One has 30x30 cm2 active area double GEM structure with a 3 mm drift gap, a 1 mm transfer gap and a 1 mm induction gap. The other one has two 2x2 cm2 GEM foils in the amplifier stage with a 5 mm drift gap, a 2 mm transfer gap and a 1 mm induction gap. We present characteristics of these detectors obtained using high-energy charged particles, cosmic ray muons and 106Ru and 55Fe radioactive sources. From the 55Fe tests, we observed two well-separated X-ray emission peaks and measured the chamber gain to be over 6500 with a high voltage of 395 V across each GEM electrode. Both the spectra from cosmic rays and the 106Ru fit well to Landau distributions as expected from minimum ionizing particles. We also present the chamber performance after high dosage exposure to radiation as well as the pressure dependence of the gain and correction factors. Finally, we discuss the quality test results of the first set of large scale GEM foils and discuss progress and future plans for constructing large scale (100cmx100cm) GEM detectors

    Application of Large Scale GEM for Digital Hadron Calorimetry

    Get PDF
    The High Energy Physics group of the University of Texas at Arlington Physics Department has been developing Gas Electron Multiplier (GEM) detectors for use as the sensitive gap detector in digital hadron calorimeters (DHCAL) for the future International Linear Collider. In this study, two kinds of prototype GEM detectors have been tested. One has 30x30 cm2 active area double GEM structure with a 3 mm drift gap, a 1 mm transfer gap and a 1 mm induction gap. The other one has two 2x2 cm2 GEM foils in the amplifier stage with a 5 mm drift gap, a 2 mm transfer gap and a 1 mm induction gap. We present characteristics of these detectors obtained using high-energy charged particles, cosmic ray muons and 106Ru and 55Fe radioactive sources. From the 55Fe tests, we observed two well-separated X-ray emission peaks and measured the chamber gain to be over 6500 with a high voltage of 395 V across each GEM electrode. Both the spectra from cosmic rays and the 106Ru fit well to Landau distributions as expected from minimum ionizing particles. We also present the chamber performance after high dosage exposure to radiation as well as the pressure dependence of the gain and correction factors. Finally, we discuss the quality test results of the first set of large scale GEM foils and discuss progress and future plans for constructing large scale (100cmx100cm) GEM detectors

    Spatiotemporal Overlap Of Spiny Dogfish (Squalus Acanthias) And Commercial Fisheries In The Northeast Us Shelf Large Marine Ecosystem

    Get PDF
    Commercial fishermen have argued that localized concentrations of spiny dogfish (Squalus acanthias) in the northeast U.S. shelf large marine ecosystem (NES LME) have impeded their fishing operations when monitoring surveys estimated lower relative abundances. Fishery-dependent and -independent data were analyzed simultaneously to examine whether increased spatial overlap between spiny dogfish and commercial fisheries may explain high catches of this species on fishing grounds. Spatial overlap was quantified between spiny dogfish distribution and commercial fisheries from 1989 to 2009 during autumn and spring in the NES LME. Combined, the sink gillnet (SGN) and otter trawl (OT) fisheries accounted for the majority of spiny dogfish catch (autumn: 85%; spring: 92%), either retained (SGN) or discarded (OT). Centers of spiny dogfish abundance illustrated spatial differences in local density within the NES LME and revealed seasonal differences in spiny dogfish density. Recent increases in spatial overlap indicate that a growing portion of the spiny dogfish stock was available to each fishery over the time series. Availability, estimated as the percentage of spiny dogfish present on fishing grounds, also increased and was generally higher during autumn than spring. Abundance of mature (total length.80 cm) female spiny dogfish was significantly related to availability, but trends were variable between fisheries and seasons. Although recent increases in abundance indicate recovery, research regarding the mechanisms behind these changes may help explain why abundance in the NES LME appears highly variable

    Report of the Scientific Council Meeting 01 -15 June 2017

    Get PDF
    Council met at the Sobey Building, Saint Mary’s University, Halifax, NS, Canada, during 01 – 15 June 2017, to consider the various matters in its Agenda. Representatives attended from Canada, Denmark (in respect of Faroe Islands and Greenland), the European Union (France, Germany (via WebEx), Portugal, Spain, the United Kingdom and the European Commission), Japan, the Russian Federation and the United States of America. Observers from the Ecology Action Centre and Dalhousie University were also present. The Executive Secretary, Scientific Council Coordinator and other members of the Secretariat were in attendance. The Executive Committee met prior to the opening session of the Council to discuss the provisional agenda and plan of work. The Council was called to order at 1000 hours on 01 June 2017. The provisional agenda was adopted with modification. The Scientific Council Coordinator was appointed the rapporteur. The Council was informed that the meeting was quorate and authorization had been received by the Executive Secretary for proxy votes from the European Union, Denmark (in respect of Faroe Islands and Greenland), Iceland, Japan, Republic of Korea, and Norway. The opening session was adjourned at 1200 hours on 01 June 2017. Several sessions were held throughout the course of the meeting to deal with specific items on the agenda. The Council considered adopted the STACFEN report on 8 June 2017, and the STACPUB, STACFIS and STACREC reports on 15 June 2017. The concluding session was called to order at 0830 hours on 15 June 2017. The Council considered and adopted the report the Scientific Council Report of this meeting of 01 -15 June 2017. The Chair received approval to leave the report in draft form for about two weeks to allow for minor editing and proof-reading on the usual strict understanding there would be no substantive changes. The meeting was adjourned at 1430 hours on 15 June 2017. The Reports of the Standing Committees as adopted by the Council are appended as follows: Appendix I - Report of the Standing Committee on Fisheries Environment (STACFEN), Appendix II - Report of Standing Committee on Publications (STACPUB), Appendix III - Report of Standing Committee on Research Coordination (STACREC), and Appendix IV - Report of Standing Committee on Fisheries Science (STACFIS). The Agenda, List of Research (SCR) and Summary (SCS) Documents, and List of Representatives, Advisers and Experts, are given in Appendix V-VII. The Council’s considerations on the Standing Committee Reports, and other matters addressed by the Council follow in Sections II-XV

    Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter

    Get PDF
    A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45x10x3 mm3 plastic scintillator strips. Data were collected using a positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's performance is presented in terms of the linearity and resolution of the energy measurement. These results represent an important milestone in the development of highly granular calorimeters using scintillator strip technology. This technology is being developed for a future linear collider experiment, aiming at the precise measurement of jet energies using particle flow techniques

    The Time Structure of Hadronic Showers in highly granular Calorimeters with Tungsten and Steel Absorbers

    Get PDF
    The intrinsic time structure of hadronic showers influences the timing capability and the required integration time of hadronic calorimeters in particle physics experiments, and depends on the active medium and on the absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15 small plastic scintillator tiles read out with Silicon Photomultipliers, the time structure of showers is measured on a statistical basis with high spatial and temporal resolution in sampling calorimeters with tungsten and steel absorbers. The results are compared to GEANT4 (version 9.4 patch 03) simulations with different hadronic physics models. These comparisons demonstrate the importance of using high precision treatment of low-energy neutrons for tungsten absorbers, while an overall good agreement between data and simulations for all considered models is observed for steel.Comment: 24 pages including author list, 9 figures, published in JINS

    Measurement of the t-channel single top quark production cross section

    Get PDF
    The D0 collaboration reports direct evidence for electroweak production of single top quarks through the t-channel exchange of a virtual W boson. This is the first analysis to isolate an individual single top quark production channel. We select events containing an isolated electron or muon, missing transverse energy, and two, three or four jets from 2.3 fb^-1 of ppbar collisions at the Fermilab Tevatron Collider. One or two of the jets are identified as containing a b hadron. We combine three multivariate techniques optimized for the t-channel process to measure the t- and s-channel cross sections simultaneously. We measure cross sections of 3.14 +0.94 -0.80 pb for the t-channel and 1.05 +-0.81 pb for the s-channel. The measured t-channel result is found to have a significance of 4.8 standard deviations and is consistent with the standard model prediction.Comment: 7 pages, 6 figure

    Measurement of the W boson mass

    Get PDF
    We present a measurement of the W boson mass in W -> ev decays using 1 fb^-1 of data collected with the D0 detector during Run II of the Fermilab Tevatron collider. With a sample of 499830 W -> ev candidate events, we measure M_W = 80.401 +- 0.043 GeV. This is the most precise measurement from a single experiment.Comment: As published in PR

    Simultaneous measurement of the ratio B(t->Wb)/B(t->Wq) and the top quark pair production cross section with the D0 detector at sqrt(s)=1.96 TeV

    Get PDF
    We present the first simultaneous measurement of the ratio of branching fractions, R=B(t->Wb)/B(t->Wq), with q being a d, s, or b quark, and the top quark pair production cross section sigma_ttbar in the lepton plus jets channel using 0.9 fb-1 of ppbar collision data at sqrt(s)=1.96 TeV collected with the D0 detector. We extract R and sigma_ttbar by analyzing samples of events with 0, 1 and >= 2 identified b jets. We measure R = 0.97 +0.09-0.08 (stat+syst) and sigma_ttbar = 8.18 +0.90-0.84 (stat+syst)} +/-0.50 (lumi) pb, in agreement with the standard model prediction.Comment: submitted to Phys.Rev.Letter
    • …
    corecore