41 research outputs found

    Intégration monolithique de multiples membranes de silicium poreux pour laboratoires sur puce

    Get PDF
    La principale cause de mortalitĂ© dans le monde est due Ă  des maladies traitables non diagnostiquĂ©es. La raison sous-jacente est le coĂ»t et la complexitĂ© de la plupart des processus de diagnostic, car ils sont souvent rĂ©alisĂ©s dans des centres mĂ©dicaux et nĂ©cessitent des Ă©quipements coĂ»teux et compliquĂ©s. Pour rĂ©soudre ce problĂšme, le dĂ©veloppement d'une technologie au point de service utilisant des laboratoires sur puce miniaturisĂ©s et peu coĂ»teux revĂȘt une grande importance. L'analyse d'un Ă©chantillon comprend deux Ă©tapes principales : la prĂ©paration de l'Ă©chantillon (purification et prĂ© concentration de l'Ă©chantillon) et son analyse (bio dĂ©tection). DiffĂ©rentes technologies ont Ă©tĂ© dĂ©veloppĂ©es avec succĂšs pour implĂ©menter ces Ă©tapes sur puce, cependant elles sont gĂ©nĂ©ralement intĂ©grĂ©es de maniĂšre hybride, oĂč le biocapteur et le module de prĂ©paration de l'Ă©chantillon sont rĂ©alisĂ©s sĂ©parĂ©ment puis combinĂ©s, ce qui augmente la complexitĂ© du dispositif et Ă©ventuellement son coĂ»t final. L'objectif de ce travail est d'offrir une rĂ©ponse technologique gĂ©nĂ©rique et unique pour la prĂ©paration et la dĂ©tection d'Ă©chantillons sur puce au moyen d'Ă©lĂ©ments en silicium poreux, sous la forme de membranes latĂ©rales en silicium poreux et de couches verticales standard en silicium poreux fabriquĂ©es de maniĂšre monolithique sur une seule puce micro fluidique plane. Le silicium poreux est un matĂ©riau nanostructurĂ© aux caractĂ©ristiques Ă©lectriques et optiques intĂ©ressantes qui a dĂ©jĂ  Ă©tĂ© utilisĂ© pour la bio dĂ©tection par interfĂ©romĂ©trie basĂ©e sur la rĂ©flectance lorsqu'il est correctement fonctionnalisĂ© et pour la filtration basĂ©e sur la taille et la charge. En outre, c'est un bon candidat pour la concentration d'Ă©chantillons par polarisation de la concentration ionique, en raison de sa propriĂ©tĂ© de sĂ©lectivitĂ© ionique. Cependant, il faut ĂȘtre capable de fabriquer de multiples Ă©lĂ©ments en silicium poreux avec des morphologies spĂ©cifiques (taille des pores et porositĂ©) sur la mĂȘme puce, ce qui n'a pas encore Ă©tĂ© rĂ©alisĂ©, afin d'utiliser le silicium poreux comme une brique technologique gĂ©nĂ©rique pour diverses fonctions. Le silicium poreux est gĂ©nĂ©ralement fabriquĂ© par anodisation Ă©lectrochimique et l'Ă©tat de dopage du silicium est l'un des paramĂštres qui contrĂŽle la morphologie de la couche poreuse. Nous avons donc dĂ©veloppĂ© un procĂ©dĂ© de fabrication basĂ© sur l'implantation ionique sĂ©lective de substrats SOI afin d'obtenir de nombreux Ă©lĂ©ments poreux de caractĂ©ristiques distinctes en utilisant une seule Ă©tape d'anodisation. Nous avons rĂ©ussi Ă  fabriquer des membranes latĂ©rales poreuses en silicium pontant des micro canaux planaires avec une augmentation de deux fois la taille des pores entre les rĂ©gions non implantĂ©es et implantĂ©es sur une seule puce (de ~25 Ă  ~50 nm), tandis que la porositĂ© variait de ~80 Ă  ~90%. En gravant la couche d'oxyde enterrĂ©e, nous avons Ă©galement formĂ© des couches de silicium poreuses verticales, avec une taille de pores de ~35 nm et une porositĂ© de ~65%, au fond des micro canaux sur le mĂȘme Ă©chantillon. En utilisant les procĂ©dĂ©s de fabrication dĂ©veloppĂ©s, nous avons conçu et fabriquĂ© un laboratoire sur puce monolithique intĂ©grant des Ă©tapes de prĂ© concentration et de filtration de l'Ă©chantillon, avec un potentiel de rĂ©alisation de bio dĂ©tection par interfĂ©romĂ©trie optique.The leading cause of mortality worldwide is due to undiagnosed treatable diseases. The underlying reason is the cost and complexity of most diagnostic processes, as they are often carried out in medical centers and require expensive and complicated equipment. To tackle this issue, the development of point-of-care technology using miniaturized and low-cost lab-on-a-chip is of great importance. The analysis of a sample includes two main steps: sample preparation (sample purification and preconcentration) and sample analysis (biosensing). Different technologies have been successfully developed to implement these steps on chip, however they are usually integrated in a hybrid fashion, where the biosensor and the sample preparation module are realized separately and then combined, which increases the device complexity and possibly its final cost. The aim of this work is to offer a generic and single technological response for on chip sample preparation and sensing by means of porous silicon elements, in the form of lateral porous silicon membranes and standard vertical porous silicon layers monolithically fabricated onto a single planar microfluidic chip. Porous silicon is a nanostructured material with interesting electrical and optical characteristics that has already been used for biosensing via reflectance-based interferometry when properly functionalized and for size/charge-based filtration. Besides, it is a strong candidate for sample concentration using ion concentration polarization due to its ion-selectivity property. However, one must be able to fabricate multiple porous silicon elements with specific morphologies (pore size and porosity) on the same chip, which has not been achieved yet, in order to use porous silicon as a generic technological brick for various functions. Porous silicon is usually fabricated through electrochemical anodization and the doping condition of silicon is one of the parameters that controls the porous layer morphology. We have thus developed a fabrication process based on the selective ion implantation of SOI substrates in order to achieve numerous porous elements of distinct characteristics using a single anodization step. We have successfully fabricated lateral porous silicon membranes bridging planar microchannels with twofold increase in pore size from non-implanted to implanted regions onto a single chip (from ~25 to ~50 nm), while the porosity varied from ~80 to ~90%. By etching the buried oxide layer, we have also formed vertical porous silicon layers, with ~35 nm pore size and ~65% porosity, at the bottom of the microchannels on the same sample. Using the developed fabrication processes, we have designed and fabricated a monolithic lab-on-a-chip integrating sample preconcentration and filtration stages, with a potential to achieve biosensing through optical interferometry

    Recital de formatura online: compartilhando saberes musicais e tecnolĂłgicos durante a pandemia / Online Graduation Recital: sharing musical and technological knowledge during the pandemic

    Get PDF
    Esse artigo relata o processo de construção e execução de um Recital de Formatura Online durante a pandemia e todos os enfrentamentos para a aceitação dessa nova modalidade, no meio acadĂȘmico. O texto conjuga as experiĂȘncias do aluno e do professor e descreve o desenvolvimento de formas alternativas de comunicação e de compartilhamento de saberes musicais e tecnolĂłgicos. Novas interaçÔes surgiram entre professor e aluno, entre performer e pĂșblico, por meio de softwares e plataformas online. Nesse perĂ­odo de isolamento social, a necessidade de utilização de recursos tecnolĂłgicos forçou um aprendizado fora do cĂ­rculo acadĂȘmico e sem tutoria presencial, alĂ©m de estimular a capacitação de docentes e discentes em ĂĄreas anteriormente consideradas nĂŁo prioritĂĄrias. Parte do conhecimento adquirido nessa empreitada foi fruto da interação do aluno com outros alunos, de forma colaborativa. O artigo descreve os desafios da gravação de ĂĄudio e vĂ­deo de forma remota e a apresentação de um recital, no qual pĂșblico e performer interagem de forma nĂŁo presencial, possibilitando o aumento do alcance de pĂșblico

    COMPOSICIÓN FLORÍSTICA DE QUINTAIS AGROFLORESTAIS EN LA VILA CUERA, BRAGANZA, PARÁ

    Get PDF
    RESUMO: Os quintais agroflorestais caracterizam-se como um sistema tradicional de utilização da terra, usados por famĂ­lias residentes em zonas rurais, periurbanas e urbanas e possuem relevĂąncia quando se trata da conservação da biodiversidade. Este trabalhou objetivou caracterizar a composição florĂ­stica de quintais agroflorestais na Vila Cuera, municĂ­pio de Bragança, estado do ParĂĄ. Para realização deste trabalho, foram selecionados aleatoriamente, quatro quintais agroflorestais, na Vila de Cuera, zona rural, no municĂ­pio de Bragança, ParĂĄ, onde foi aplicado um questionĂĄrio semiestruturado para as famĂ­lias. Mediu-se o diĂąmetro a altura do peito (DAP), o tamanho dos quatros quintais, o que totalizou uma ĂĄrea mĂ©dia de 1.819,28 mÂČ e, estimou-se a altura das espĂ©cies existentes nas ĂĄreas. Posteriormente, a comunidade foi dividida em estrato superior, mĂ©dio e inferior, sendo calculados os parĂąmetros fitossociolĂłgicos de frequĂȘncia relativa, Ă­ndice de diversidade de Shannon-Wiener (H’) e equabilidade de Pielou (J’). Foram registrados 217 indivĂ­duos, que podem ser direcionados tanto para a comercialização quanto para o consumo familiar, bem como para o uso na medicina caseira e no Ăąmbito ornamental. Ademais, muitos indivĂ­duos estĂŁo presentes no estrato inferior, o que caracteriza uma comunidade com plantas jovens, sendo o açaizeiro e o coqueiro encontrados em todos os estratos e com alta frequĂȘncia. No mais, as ĂĄreas sĂŁo compostas por um aglomerado bastante diverso de espĂ©cies arbĂłreas, herbĂĄceas e arbustivas. Desta forma, os quintais agroflorestais sĂŁo manejados de maneira tradicional pelos mantedores, grande parte das espĂ©cies estĂĄ voltada para o consumo e posterior comercialização e, uma elevada diversidade de espĂ©cies.PALAVRAS-CHAVE: AmazĂŽnia, Agroecossistemas, Segurança alimentar.ABSTRACT: The agroforestry yards are characterized as a traditional land use system, by means of residents in rural, peri-urban and urban areas and services related to the acquisition of biodiversity conservation. This work is a project for the production of agroforestry farms in Vila Cuera, Bragança municipality, state of ParĂĄ. For this work, four agroforestry farms were randomly selected in Vila de Cuera, a rural area, in the municipality of Bragança, ParĂĄ, where a semi-structured questionnaire for families was published. The diameter at breast height (DBH), the size of the four quintals, was measured, which totaled an average area of 1,819.28 mÂČ and the height of the species in the areas was estimated. Subsequently, the community was divided into upper, middle and lower strata, and the relative frequency phytosociological parameters, Shannon-Wiener diversity index (H ') and Pielou equability (J') were calculated. A total of 217 individuals were enrolled, which can be targeted both for marketing and family consumption, as well as for use in home medicine and ornamental medicine. In addition, many individuals are present in the lower stratum, which characterizes a community with young plants, with açai and coconut trees found in all strata and with high frequency. In addition, the areas are composed of a very diverse cluster of arboreal, herbaceous and shrub species. In this way, agroforestry yards are managed in a traditional way by the keepers, most of the species are focused on consumption and subsequent commercialization, and a high diversity of species.KEYWORDS: Amazon, Agroecosystems, Food safety.RESUMEN: Los quintos agroforestales se caracterizan como un sistema tradicional de utilizaciĂłn de la tierra, utilizados por familias residentes en zonas rurales, periurbanas y urbanas y tienen relevancia cuando se trata de la conservaciĂłn de la biodiversidad. En el presente trabajo se analizaron los resultados obtenidos en el anĂĄlisis de los resultados obtenidos en el estudio de los resultados obtenidos en el estudio, donde se aplicĂł un cuestionario semiestructurado para las familias. Se midiĂł el diĂĄmetro a la altura del pecho (DAP), el tamaño de los quatros quintos, lo que totalizĂł un ĂĄrea promedio de 1.819,28 mÂČ y, se estimĂł la altura de las especies existentes en las ĂĄreas. En la mayorĂ­a de los casos, la comunidad se dividiĂł en estrato superior, medio e inferior, calculando los parĂĄmetros fitosociolĂłgicos de frecuencia relativa, Ă­ndice de diversidad de Shannon-Wiener (H ') y la equidad de Pielou (J'). Se registraron 217 individuos, que pueden ser dirigidos tanto para la comercializaciĂłn como para el consumo familiar, asĂ­ como para el uso en la medicina casera y en el ĂĄmbito ornamental. AdemĂĄs, muchos individuos estĂĄn presentes en el estrato inferior, lo que caracteriza a una comunidad con plantas jĂłvenes, siendo el açaiceiro y el cocotero encontrados en todos los estratos y con alta frecuencia. En el mĂĄs, las ĂĄreas estĂĄn compuestas por un aglomerado bastante diverso de especies arbĂłreas, herbĂĄceas y arbustivas. De esta forma, los quintos agroforestales son manejados de manera tradicional por los mantedores, gran parte de las especies estĂĄ orientada hacia el consumo y posterior comercializaciĂłn y, una elevada diversidad de especies. PALABRAS CLAVE: Amazonia, Agroecosistemas, Seguridad alimentaria

    Challenges and implementation of the “Programa Mais MĂ©dicos Campineiro”

    Get PDF
    The aim of this study is to describe the experience of implementing the Programa Mais MĂ©dicos Campineiro (PMMC) in Campinas city, State of SĂŁo Paulo, Brazil, from April 2019 to April 2020, as the result of a health policy that suited the municipality’s needs to the doctors’ training program in Family and Community Medicine. For such purpose, information from meeting registries was assembled from several sources, to recover the series of actions taken to achieve an effective proposal. The situation of primary health care in the municipality until 2019 was analyzed in detail, which revealed difficulties in fixating doctors in Health Units. As a solution, the institution of a medical residency program was chosen. To preserve the doctor’s maintenance in the PMMC, he was admitted to the Family Health Strategy. Funding was allocated to guarantee sufficient compensation to attract and engage professionals to the proposal. The selection process of medical residents and preceptors was widely discussed and a pedagogical program was created and the program’s management was established. An increase in the number of vacancies offered was noted, demonstrating that, through public policy aimed at training Family and Community Physicians, it is possible to change the scenario of idleness as well as the high turnover of vacancies in medical residency programs in Campinas.O objetivo deste trabalho Ă© descrever a experiĂȘncia da implementação do Programa Mais MĂ©dicos Campineiro (PMMC) na cidade de Campinas, Estado de SĂŁo Paulo, no perĂ­odo de abril de 2019 a abril de 2020, como resultado de polĂ­tica de saĂșde que adequou as necessidades do municĂ­pio Ă  formação de mĂ©dicos especialistas em Medicina da FamĂ­lia e Comunidade. Para tal, foram compilados registros de reuniĂ”es realizadas entre integrantes da Secretaria Municipal de SaĂșde e instituiçÔes de ensino superior do municĂ­pio e recuperada a trajetĂłria percorrida pelos diversos atores envolvidos. A situação da atenção bĂĄsica de saĂșde no municĂ­pio atĂ© 2019 foi analisada com detalhes, o que revelou dificuldades em fixar o mĂ©dico nas Unidades de SaĂșde. Como solução optou-se pela instituição de programa de residĂȘncia mĂ©dica. Para preservar a manutenção do mĂ©dico no programa, garantiu-se a sua vinculação Ă  EstratĂ©gia de SaĂșde da FamĂ­lia, foram estabelecidas parcerias com instituiçÔes de saĂșde e foi planejado o financiamento que garantiu remuneração suficiente para atrair e manter profissionais Ă  proposta. O processo seletivo de mĂ©dicos residentes e preceptores foi amplamente discutido. Foi criado um programa pedagĂłgico e estabelecida a gestĂŁo do programa. Foi verificado incremento da ocupação de vagas oferecida, demonstrando-se que por meio de polĂ­tica pĂșblica direcionada Ă  formação de MĂ©dico da FamĂ­lia e Comunidade Ă© possĂ­vel alterar o panorama de ociosidade assim como a alta rotatividade de vagas em programas de residĂȘncia mĂ©dica em Campinas

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Monolithic Integration of Multiple Porous Silicon Membranes for Lab-on-a-chip Applications

    No full text
    La principale cause de mortalitĂ© dans le monde est due Ă  des maladies traitables non diagnostiquĂ©es. La raison sous-jacente est le coĂ»t et la complexitĂ© de la plupart des processus de diagnostic, car ils sont souvent rĂ©alisĂ©s dans des centres mĂ©dicaux et nĂ©cessitent des Ă©quipements coĂ»teux et compliquĂ©s. Pour rĂ©soudre ce problĂšme, le dĂ©veloppement d'une technologie au point de service utilisant des laboratoires sur puce miniaturisĂ©s et peu coĂ»teux revĂȘt une grande importance. L'analyse d'un Ă©chantillon comprend deux Ă©tapes principales : la prĂ©paration de l'Ă©chantillon (purification et prĂ© concentration de l'Ă©chantillon) et son analyse (bio dĂ©tection). DiffĂ©rentes technologies ont Ă©tĂ© dĂ©veloppĂ©es avec succĂšs pour implĂ©menter ces Ă©tapes sur puce, cependant elles sont gĂ©nĂ©ralement intĂ©grĂ©es de maniĂšre hybride, oĂč le biocapteur et le module de prĂ©paration de l'Ă©chantillon sont rĂ©alisĂ©s sĂ©parĂ©ment puis combinĂ©s, ce qui augmente la complexitĂ© du dispositif et Ă©ventuellement son coĂ»t final. L'objectif de ce travail est d'offrir une rĂ©ponse technologique gĂ©nĂ©rique et unique pour la prĂ©paration et la dĂ©tection d'Ă©chantillons sur puce au moyen d'Ă©lĂ©ments en silicium poreux, sous la forme de membranes latĂ©rales en silicium poreux et de couches verticales standard en silicium poreux fabriquĂ©es de maniĂšre monolithique sur une seule puce micro fluidique plane. Le silicium poreux est un matĂ©riau nanostructurĂ© aux caractĂ©ristiques Ă©lectriques et optiques intĂ©ressantes qui a dĂ©jĂ  Ă©tĂ© utilisĂ© pour la bio dĂ©tection par interfĂ©romĂ©trie basĂ©e sur la rĂ©flectance lorsqu'il est correctement fonctionnalisĂ© et pour la filtration basĂ©e sur la taille et la charge. En outre, c'est un bon candidat pour la concentration d'Ă©chantillons par polarisation de la concentration ionique, en raison de sa propriĂ©tĂ© de sĂ©lectivitĂ© ionique. Cependant, il faut ĂȘtre capable de fabriquer de multiples Ă©lĂ©ments en silicium poreux avec des morphologies spĂ©cifiques (taille des pores et porositĂ©) sur la mĂȘme puce, ce qui n'a pas encore Ă©tĂ© rĂ©alisĂ©, afin d'utiliser le silicium poreux comme une brique technologique gĂ©nĂ©rique pour diverses fonctions. Le silicium poreux est gĂ©nĂ©ralement fabriquĂ© par anodisation Ă©lectrochimique et l'Ă©tat de dopage du silicium est l'un des paramĂštres qui contrĂŽle la morphologie de la couche poreuse. Nous avons donc dĂ©veloppĂ© un procĂ©dĂ© de fabrication basĂ© sur l'implantation ionique sĂ©lective de substrats SOI afin d'obtenir de nombreux Ă©lĂ©ments poreux de caractĂ©ristiques distinctes en utilisant une seule Ă©tape d'anodisation. Nous avons rĂ©ussi Ă  fabriquer des membranes latĂ©rales poreuses en silicium pontant des micro canaux planaires avec une augmentation de deux fois la taille des pores entre les rĂ©gions non implantĂ©es et implantĂ©es sur une seule puce (de ~25 Ă  ~50 nm), tandis que la porositĂ© variait de ~80 Ă  ~90%. En gravant la couche d'oxyde enterrĂ©e, nous avons Ă©galement formĂ© des couches de silicium poreuses verticales, avec une taille de pores de ~35 nm et une porositĂ© de ~65%, au fond des micro canaux sur le mĂȘme Ă©chantillon. En utilisant les procĂ©dĂ©s de fabrication dĂ©veloppĂ©s, nous avons conçu et fabriquĂ© un laboratoire sur puce monolithique intĂ©grant des Ă©tapes de prĂ© concentration et de filtration de l'Ă©chantillon, avec un potentiel de rĂ©alisation de bio dĂ©tection par interfĂ©romĂ©trie optique.The leading cause of mortality worldwide is due to undiagnosed treatable diseases. The underlying reason is the cost and complexity of most diagnostic processes, as they are often carried out in medical centers and require expensive and complicated equipment. To tackle this issue, the development of point-of-care technology using miniaturized and low-cost lab-on-a-chip is of great importance. The analysis of a sample includes two main steps: sample preparation (sample purification and preconcentration) and sample analysis (biosensing). Different technologies have been successfully developed to implement these steps on chip, however they are usually integrated in a hybrid fashion, where the biosensor and the sample preparation module are realized separately and then combined, which increases the device complexity and possibly its final cost. The aim of this work is to offer a generic and single technological response for on chip sample preparation and sensing by means of porous silicon elements, in the form of lateral porous silicon membranes and standard vertical porous silicon layers monolithically fabricated onto a single planar microfluidic chip. Porous silicon is a nanostructured material with interesting electrical and optical characteristics that has already been used for biosensing via reflectance-based interferometry when properly functionalized and for size/charge-based filtration. Besides, it is a strong candidate for sample concentration using ion concentration polarization due to its ion-selectivity property. However, one must be able to fabricate multiple porous silicon elements with specific morphologies (pore size and porosity) on the same chip, which has not been achieved yet, in order to use porous silicon as a generic technological brick for various functions. Porous silicon is usually fabricated through electrochemical anodization and the doping condition of silicon is one of the parameters that controls the porous layer morphology. We have thus developed a fabrication process based on the selective ion implantation of SOI substrates in order to achieve numerous porous elements of distinct characteristics using a single anodization step. We have successfully fabricated lateral porous silicon membranes bridging planar microchannels with twofold increase in pore size from non-implanted to implanted regions onto a single chip (from ~25 to ~50 nm), while the porosity varied from ~80 to ~90%. By etching the buried oxide layer, we have also formed vertical porous silicon layers, with ~35 nm pore size and ~65% porosity, at the bottom of the microchannels on the same sample. Using the developed fabrication processes, we have designed and fabricated a monolithic lab-on-a-chip integrating sample preconcentration and filtration stages, with a potential to achieve biosensing through optical interferometry

    Intégration monolithique de multiples membranes de silicium poreux pour laboratoires sur puce

    Get PDF
    National audienceThe leading cause of mortality worldwide is due to undiagnosed treatable diseases. The underlying reason is the cost and complexity of most diagnostic processes, as they are often carried out in medical centers and require expensive and complicated equipment. To tackle this issue, the development of point-of-care technology using miniaturized and low-cost lab-on-a-chip is of great importance. The analysis of a sample includes two main steps: sample preparation (sample purification and preconcentration) and sample analysis (biosensing). Different technologies have been successfully developed to implement these steps on chip, however they are usually integrated in a hybrid fashion, where the biosensor and the sample preparation module are realized separately and then combined, which increases the device complexity and possibly its final cost. The aim of this work is to offer a generic and single technological response for on chip sample preparation and sensing by means of porous silicon elements, in the form of lateral porous silicon membranes and standard vertical porous silicon layers monolithically fabricated onto a single planar microfluidic chip. Porous silicon is a nanostructured material with interesting electrical and optical characteristics that has already been used for biosensing via reflectance-based interferometry when properly functionalized and for size/charge-based filtration. Besides, it is a strong candidate for sample concentration using ion concentration polarization due to its ion-selectivity property. However, one must be able to fabricate multiple porous silicon elements with specific morphologies (pore size and porosity) on the same chip, which has not been achieved yet, in order to use porous silicon as a generic technological brick for various functions. Porous silicon is usually fabricated through electrochemical anodization and the doping condition of silicon is one of the parameters that controls the porous layer morphology. We have thus developed a fabrication process based on the selective ion implantation of SOI substrates in order to achieve numerous porous elements of distinct characteristics using a single anodization step. We have successfully fabricated lateral porous silicon membranes bridging planar microchannels with twofold increase in pore size from non-implanted to implanted regions onto a single chip (from ~25 to ~50 nm), while the porosity varied from ~80 to ~90%. By etching the buried oxide layer, we have also formed vertical porous silicon layers, with ~35 nm pore size and ~65% porosity, at the bottom of the microchannels on the same sample. Using the developed fabrication processes, we have designed and fabricated a monolithic lab-on-a-chip integrating sample preconcentration and filtration stages, with a potential to achieve biosensing through optical interferometry.La principale cause de mortalitĂ© dans le monde est due Ă  des maladies traitables non diagnostiquĂ©es. La raison sous-jacente est le coĂ»t et la complexitĂ© de la plupart des processus de diagnostic, car ils sont souvent rĂ©alisĂ©s dans des centres mĂ©dicaux et nĂ©cessitent des Ă©quipements coĂ»teux et compliquĂ©s. Pour rĂ©soudre ce problĂšme, le dĂ©veloppement d'une technologie au point de service utilisant des laboratoires sur puce miniaturisĂ©s et peu coĂ»teux revĂȘt une grande importance. L'analyse d'un Ă©chantillon comprend deux Ă©tapes principales : la prĂ©paration de l'Ă©chantillon (purification et prĂ© concentration de l'Ă©chantillon) et son analyse (bio dĂ©tection). DiffĂ©rentes technologies ont Ă©tĂ© dĂ©veloppĂ©es avec succĂšs pour implĂ©menter ces Ă©tapes sur puce, cependant elles sont gĂ©nĂ©ralement intĂ©grĂ©es de maniĂšre hybride, oĂč le biocapteur et le module de prĂ©paration de l'Ă©chantillon sont rĂ©alisĂ©s sĂ©parĂ©ment puis combinĂ©s, ce qui augmente la complexitĂ© du dispositif et Ă©ventuellement son coĂ»t final. L'objectif de ce travail est d'offrir une rĂ©ponse technologique gĂ©nĂ©rique et unique pour la prĂ©paration et la dĂ©tection d'Ă©chantillons sur puce au moyen d'Ă©lĂ©ments en silicium poreux, sous la forme de membranes latĂ©rales en silicium poreux et de couches verticales standard en silicium poreux fabriquĂ©es de maniĂšre monolithique sur une seule puce micro fluidique plane. Le silicium poreux est un matĂ©riau nanostructurĂ© aux caractĂ©ristiques Ă©lectriques et optiques intĂ©ressantes qui a dĂ©jĂ  Ă©tĂ© utilisĂ© pour la bio dĂ©tection par interfĂ©romĂ©trie basĂ©e sur la rĂ©flectance lorsqu'il est correctement fonctionnalisĂ© et pour la filtration basĂ©e sur la taille et la charge. En outre, c'est un bon candidat pour la concentration d'Ă©chantillons par polarisation de la concentration ionique, en raison de sa propriĂ©tĂ© de sĂ©lectivitĂ© ionique. Cependant, il faut ĂȘtre capable de fabriquer de multiples Ă©lĂ©ments en silicium poreux avec des morphologies spĂ©cifiques (taille des pores et porositĂ©) sur la mĂȘme puce, ce qui n'a pas encore Ă©tĂ© rĂ©alisĂ©, afin d'utiliser le silicium poreux comme une brique technologique gĂ©nĂ©rique pour diverses fonctions. Le silicium poreux est gĂ©nĂ©ralement fabriquĂ© par anodisation Ă©lectrochimique et l'Ă©tat de dopage du silicium est l'un des paramĂštres qui contrĂŽle la morphologie de la couche poreuse. Nous avons donc dĂ©veloppĂ© un procĂ©dĂ© de fabrication basĂ© sur l'implantation ionique sĂ©lective de substrats SOI afin d'obtenir de nombreux Ă©lĂ©ments poreux de caractĂ©ristiques distinctes en utilisant une seule Ă©tape d'anodisation. Nous avons rĂ©ussi Ă  fabriquer des membranes latĂ©rales poreuses en silicium pontant des micro canaux planaires avec une augmentation de deux fois la taille des pores entre les rĂ©gions non implantĂ©es et implantĂ©es sur une seule puce (de ~25 Ă  ~50 nm), tandis que la porositĂ© variait de ~80 Ă  ~90%. En gravant la couche d'oxyde enterrĂ©e, nous avons Ă©galement formĂ© des couches de silicium poreuses verticales, avec une taille de pores de ~35 nm et une porositĂ© de ~65%, au fond des micro canaux sur le mĂȘme Ă©chantillon. En utilisant les procĂ©dĂ©s de fabrication dĂ©veloppĂ©s, nous avons conçu et fabriquĂ© un laboratoire sur puce monolithique intĂ©grant des Ă©tapes de prĂ© concentration et de filtration de l'Ă©chantillon, avec un potentiel de rĂ©alisation de bio dĂ©tection par interfĂ©romĂ©trie optique

    Optical interferometry on lateral porous silicon

    No full text
    International audienceWe demonstrate the transducing ability of lateral porous silicon membranes (LPSi) using optical interferometry. To this aim, we use a Fourier Transform Infra-Red spectrometer (FTIR) coupled to a microscope stage equipped with an appropriate objective in order to overcome the difficulty to obtain interference signal from the LPSi membrane with small dimensions. We have recorded reflectance spectra upon filling the membrane with various solvents and the observed shifts of Fabry-PĂ©rot fringe patterns indicate that the we are able to differentiate between solvents, thus providing a proof-of-concept of the LPSi interferometric transducer
    corecore