1,098 research outputs found

    Substructures in lens galaxies: PG1115+080 and B1555+375, two fold configurations

    Full text link
    We study the anomalous flux ratio which is observed in some four-image lens systems, where the source lies close to a fold caustic. In this case two of the images are close to the critical curve and their flux ratio should be equal to unity, instead in several cases the observed value differs significantly. The most plausible solution is to invoke the presence of substructures, as for instance predicted by the Cold Dark Matter scenario, located near the two images. In particular, we analyze the two fold lens systems PG1115+080 and B1555+375, for which there are not yet satisfactory models which explain the observed anomalous flux ratios. We add to a smooth lens model, which reproduces well the positions of the images but not the anomalous fluxes, one or two substructures described as singular isothermal spheres. For PG1115+080 we consider a smooth model with the influence of the group of galaxies described by a SIS and a substructure with mass ∌105M⊙\sim 10^{5} M_{\odot} as well as a smooth model with an external shear and one substructure with mass ∌108M⊙\sim 10^{8} M_{\odot} . For B1555+375 either a strong external shear or two substructures with mass ∌107M⊙\sim 10^{7} M_{\odot} reproduce the data quite well.Comment: 26 pages, updated bibliography, Accepted for publication in Astrophysics & Space Scienc

    Probing the Environment with Galaxy Dynamics

    Get PDF
    I present various projects to study the halo dynamics of elliptical galaxies. This allows one to study the outer mass and orbital distributions of ellipticals in different environments, and the inner distributions of groups and clusters themselves.Comment: 5 pages, 2 figs, to appear in Proc. ESO Workshop, Groups of Galaxies in the Nearby Universe (5-9 Dec 2005), eds. I. Saviane, V. Ivanov & J. Borissova (Springer-Verlag

    The Importance of Time Congruity in the Organisation.

    Get PDF
    In 1991 Kaufman, Lane, and Lindquist proposed that time congruity in terms of an individual's time preferences and the time use methods of an organisation would lead to satisfactory performance and enhancement of quality of work and general life. The research reported here presents a study which uses commensurate person and job measures of time personality in an organisational setting to assess the effects of time congruity on one aspect of work life, job-related affective well-being. Results show that time personality and time congruity were found to have direct effects on well-being and the influence of time congruity was found to be mediated through time personality, thus contributing to the person–job (P–J) fit literature which suggests that direct effects are often more important than indirect effects. The study also provides some practical examples of ways to address some of the previously cited methodological issues in P–J fit research

    Microlensing by natural wormholes: theory and simulations

    Get PDF
    We provide an in depth study of the theoretical peculiarities that arise in effective negative mass lensing, both for the case of a point mass lens and source, and for extended source situations. We describe novel observational signatures arising in the case of a source lensed by a negative mass. We show that a negative mass lens produces total or partial eclipse of the source in the umbra region and also show that the usual Shapiro time delay is replaced with an equivalent time gain. We describe these features both theoretically, as well as through numerical simulations. We provide negative mass microlensing simulations for various intensity profiles and discuss the differences between them. The light curves for microlensing events are presented and contrasted with those due to lensing produced by normal matter. Presence or absence of these features in the observed microlensing events can shed light on the existence of natural wormholes in the Universe.Comment: 16 pages, 24 postscript figures (3 coloured), revtex style, submitted to Phys. Rev.

    Mathematics of Gravitational Lensing: Multiple Imaging and Magnification

    Full text link
    The mathematical theory of gravitational lensing has revealed many generic and global properties. Beginning with multiple imaging, we review Morse-theoretic image counting formulas and lower bound results, and complex-algebraic upper bounds in the case of single and multiple lens planes. We discuss recent advances in the mathematics of stochastic lensing, discussing a general formula for the global expected number of minimum lensed images as well as asymptotic formulas for the probability densities of the microlensing random time delay functions, random lensing maps, and random shear, and an asymptotic expression for the global expected number of micro-minima. Multiple imaging in optical geometry and a spacetime setting are treated. We review global magnification relation results for model-dependent scenarios and cover recent developments on universal local magnification relations for higher order caustics.Comment: 25 pages, 4 figures. Invited review submitted for special issue of General Relativity and Gravitatio

    Migration of the Antarctic Polar Front through the mid-Pleistocene transition: evidence and climatic implications

    No full text
    The Antarctic Polar Front is an important biogeochemical divider in the Southern Ocean. Laminated diatom mat deposits record episodes of massive flux of the diatom Thalassiothrix antarctica beneath the Antarctic Polar Front and provide a marker for tracking the migration of the Front through time. Ocean Drilling Program Sites 1091, 1093 and 1094 are the only deep piston cored record hitherto sampled from the sediments of the circumpolar biogenic opal belt. Mapping of diatom mat deposits between these sites indicates a glacial-interglacial front migration of up to 6 degrees of latitude in the early / mid Pleistocene. The mid Pleistocene transition marks a stepwise minimum 7 degree northward migration of the locus of the Polar Front sustained for about 450 kyr until an abrupt southward return to a locus similar to its modern position and further south than any mid-Pleistocene locus. This interval from a “900 ka event” that saw major cooling of the oceans and a ?13C minimum through to the 424 ka Mid-Brunhes Event at Termination V is also seemingly characterised by 1) sustained decreased carbonate in the subtropical south Atlantic, 2) reduced strength of Antarctic deep meridional circulation, 3) lower interglacial temperatures and lower interglacial atmospheric CO2 levels (by some 30 per mil) than those of the last 400 kyr, evidencing less complete deglaciation. This evidence is consistent with a prolonged period lasting 450 kyr of only partial ventilation of the deep ocean during interglacials and suggests that the mechanisms highlighted by recent hypotheses linking mid-latitude atmospheric conditions to the extent of deep ocean ventilation and carbon sequestration over glacial-interglacial cycles are likely in operation during the longer time scale characteristic of the Mid-Pleistocene Transition. The cooling that initiated the “900 ka event” may have been driven by minima in insolation amplitude related to eccentricity modulation of precession that also affected low latitude climates as marked by threshold changes in the African monsoon system. The major thresholds in earth system behaviour through the Mid-Pleistocene Transition were likely governed by an interplay of the 100 kyr and 400 kyr eccentricity modulation of precession

    Cosmological distance indicators

    Full text link
    We review three distance measurement techniques beyond the local universe: (1) gravitational lens time delays, (2) baryon acoustic oscillation (BAO), and (3) HI intensity mapping. We describe the principles and theory behind each method, the ingredients needed for measuring such distances, the current observational results, and future prospects. Time delays from strongly lensed quasars currently provide constraints on H0H_0 with < 4% uncertainty, and with 1% within reach from ongoing surveys and efforts. Recent exciting discoveries of strongly lensed supernovae hold great promise for time-delay cosmography. BAO features have been detected in redshift surveys up to z <~ 0.8 with galaxies and z ~ 2 with Ly-α\alpha forest, providing precise distance measurements and H0H_0 with < 2% uncertainty in flat Λ\LambdaCDM. Future BAO surveys will probe the distance scale with percent-level precision. HI intensity mapping has great potential to map BAO distances at z ~ 0.8 and beyond with precisions of a few percent. The next years ahead will be exciting as various cosmological probes reach 1% uncertainty in determining H0H_0, to assess the current tension in H0H_0 measurements that could indicate new physics.Comment: Review article accepted for publication in Space Science Reviews (Springer), 45 pages, 10 figures. Chapter of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Ag

    Interstellar MHD Turbulence and Star Formation

    Full text link
    This chapter reviews the nature of turbulence in the Galactic interstellar medium (ISM) and its connections to the star formation (SF) process. The ISM is turbulent, magnetized, self-gravitating, and is subject to heating and cooling processes that control its thermodynamic behavior. The turbulence in the warm and hot ionized components of the ISM appears to be trans- or subsonic, and thus to behave nearly incompressibly. However, the neutral warm and cold components are highly compressible, as a consequence of both thermal instability in the atomic gas and of moderately-to-strongly supersonic motions in the roughly isothermal cold atomic and molecular components. Within this context, we discuss: i) the production and statistical distribution of turbulent density fluctuations in both isothermal and polytropic media; ii) the nature of the clumps produced by thermal instability, noting that, contrary to classical ideas, they in general accrete mass from their environment; iii) the density-magnetic field correlation (or lack thereof) in turbulent density fluctuations, as a consequence of the superposition of the different wave modes in the turbulent flow; iv) the evolution of the mass-to-magnetic flux ratio (MFR) in density fluctuations as they are built up by dynamic compressions; v) the formation of cold, dense clouds aided by thermal instability; vi) the expectation that star-forming molecular clouds are likely to be undergoing global gravitational contraction, rather than being near equilibrium, and vii) the regulation of the star formation rate (SFR) in such gravitationally contracting clouds by stellar feedback which, rather than keeping the clouds from collapsing, evaporates and diperses them while they collapse.Comment: 43 pages. Invited chapter for the book "Magnetic Fields in Diffuse Media", edited by Elisabete de Gouveia dal Pino and Alex Lazarian. Revised as per referee's recommendation

    Measurement of the Bs0→J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction

    Get PDF
    The Bs0→J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction is measured in a data sample corresponding to 0.41fb−1fb^{-1} of integrated luminosity collected with the LHCb detector at the LHC. This channel is sensitive to the penguin contributions affecting the sin2ÎČ\beta measurement from B0→J/ψKS0B^0\to J/\psi K_S^0 The time-integrated branching fraction is measured to be BF(Bs0→J/ψKS0)=(1.83±0.28)×10−5BF(B_s^0\to J/\psi K_S^0)=(1.83\pm0.28)\times10^{-5}. This is the most precise measurement to date
    • 

    corecore