71 research outputs found
Priming of indirect defence responses in maize is shown to be genotype-specific
Priming is an induced defence mechanism in which plants that have been exposed to elicitors, such as herbivore-induced plant volatiles (HIPVs), go into an alert state with faster and stronger responses against a future biotic challenge. This study evaluated whether HIPVs emitted by maize genotypes after herbivory by fall armyworm (Spodoptera frugiperda) larvae could prime neighbouring maize plants for an enhanced indirect defence response, and if priming was consistent across different genotypes. Two genotypes were selected based on their differences in HIPV emission: Sintético Spodoptera (SS), a relatively high emitter of HIPVs, and L3, a relatively low emitter of HIPVs. SS plants that were previously exposed to SS HIPVs initiated earlier and enhanced volatile production upon larval challenge, compared to SS plants that were previously exposed to SS undamaged plant volatiles. In addition, SS plants exposed to SS HIPVs and then to larval challenge attracted an egg parasitoid, Telenomus remus, at an earlier stage than SS plants that were only subjected to larval challenge, indicating a priming effect. There was no evidence of a priming response by L3 plants that were previously exposed to L3 or SS HIPVs. When comparing the gene expression of HIPV-exposed and undamaged plant volatile (UDV)-exposed plants, jasmonate-induced protein GRMZM2G05154 and UDP-glucosyltransferase bx8 genes related to the biosynthesis of DIBOA-Glu were upregulated. These data indicate that priming by HIPVs enhances indirect defence in maize plants as reported by other studies, and provide new information showing that the priming effect can be genotype-specific
Decomposition, Reformulation, and Diving in University Course Timetabling
In many real-life optimisation problems, there are multiple interacting
components in a solution. For example, different components might specify
assignments to different kinds of resource. Often, each component is associated
with different sets of soft constraints, and so with different measures of soft
constraint violation. The goal is then to minimise a linear combination of such
measures. This paper studies an approach to such problems, which can be thought
of as multiphase exploitation of multiple objective-/value-restricted
submodels. In this approach, only one computationally difficult component of a
problem and the associated subset of objectives is considered at first. This
produces partial solutions, which define interesting neighbourhoods in the
search space of the complete problem. Often, it is possible to pick the initial
component so that variable aggregation can be performed at the first stage, and
the neighbourhoods to be explored next are guaranteed to contain feasible
solutions. Using integer programming, it is then easy to implement heuristics
producing solutions with bounds on their quality.
Our study is performed on a university course timetabling problem used in the
2007 International Timetabling Competition, also known as the Udine Course
Timetabling Problem. In the proposed heuristic, an objective-restricted
neighbourhood generator produces assignments of periods to events, with
decreasing numbers of violations of two period-related soft constraints. Those
are relaxed into assignments of events to days, which define neighbourhoods
that are easier to search with respect to all four soft constraints. Integer
programming formulations for all subproblems are given and evaluated using ILOG
CPLEX 11. The wider applicability of this approach is analysed and discussed.Comment: 45 pages, 7 figures. Improved typesetting of figures and table
Variability in herbivore-induced defence signalling across different maize genotypes impacts significantly on natural enemy foraging behaviour.
'Smart' plants that release volatile defence compounds in response to pest damage, and which recruit beneficial natural enemies, offer an opportunity for exploiting biological control in future crop protection strategies. Using six maize genotypes, Zapalote Chico (?landrace?), Mirt2A, Sintético Spodoptera (SS), L3, and two commercial hybrids BRS 4103 and BRS 1040, the aim of this work was to evaluate maize responses to larval damage from the fall armyworm Spodoptera frugiperda, a major maize pest in Brazil, and the ability of the egg parasitoid Telenomus remus to respond to HIPVs induced by S. frugiperda damage. Y-tube olfactometer bioassays with T. remus showed preferential responses to the S. frugiperda-induced volatiles of SS and BRS 4103 compared to constitutive volatiles of the same genotypes, but to none of the other genotypes tested. Chemical analysis of maize volatile extracts showed that SS produced more volatile compounds in response to S. frugiperda damage, followed by BRS 4103. In addition, higher levels of mono, homo-, or sesquiterpenes, together with green leaf volatiles (GLVs) were the most attractive blend for T. remus; however, there was no attraction when only GLVs were produced in higher levels. In summary, these results show that volatile defence signalling produced by maize plants due to S. frugiperda damage varies significantly depending on maize genotype and this variability influences T. remus foraging behaviour
Priming of indirect defence responses in maize is shown to be genotype-specific.
Na publicação: Marcos M. C. Costa; Maria Carolina Blassioli-Moraes
Thick collagen-based 3D matrices including growth factors to induce neurite outgrowth
Designing synthetic microenvironments for cellular investigations is a very active area of research at the crossroads of cell biology and materials science. The present work describes the design and functionalization of a three-dimensional (3D) culture support dedicated to the study of neurite outgrowth from neural cells. It is based on a dense self-assembled collagen matrix stabilized by 100-nm wide interconnected native fibrils without chemical crosslinking. The matrices were made suitable for cell manipulation and direct observation in confocal microscopy by anchoring them to traditional glass supports with a calibrated thickness of ∼50 μm. The matrix composition can be readily adapted to specific neural cell types, notably by incorporating appropriate neurotrophic growth factors. Both PC-12 and SH-SY5Y lines respond to growth factors (nerve growth factor and brain-derived neurotrophic factor, respectively) impregnated and slowly released from the support. Significant neurite outgrowth is reported for a large proportion of cells, up to 66% for PC12 and 49% for SH-SY5Y. It is also shown that both growth factors can be chemically conjugated (EDC/NHS) throughout the matrix and yield similar proportions of cells with longer neurites (61% and 52%, respectively). Finally, neurite outgrowth was observed over several tens of microns within the 3D matrix, with both diffusing and immobilized growth factors
On a Clique-Based Integer Programming Formulation of Vertex Colouring with Applications in Course Timetabling
Vertex colouring is a well-known problem in combinatorial optimisation, whose
alternative integer programming formulations have recently attracted
considerable attention. This paper briefly surveys seven known formulations of
vertex colouring and introduces a formulation of vertex colouring using a
suitable clique partition of the graph. This formulation is applicable in
timetabling applications, where such a clique partition of the conflict graph
is given implicitly. In contrast with some alternatives, the presented
formulation can also be easily extended to accommodate complex performance
indicators (``soft constraints'') imposed in a number of real-life course
timetabling applications. Its performance depends on the quality of the clique
partition, but encouraging empirical results for the Udine Course Timetabling
problem are reported
Variability in herbivore-induced defence signalling across different maize genotypes impacts significantly on natural enemy foraging behaviour
‘Smart’ plants that release volatile defence compounds in response to pest damage, and which recruit beneficial natural enemies, offer an opportunity for exploiting biological control in future crop protection strategies. Using six maize genotypes, Zapalote Chico (‘landrace’), Mirt2A, Sintético Spodoptera (SS), L3, and two commercial hybrids BRS 4103 and BRS 1040, the aim of this work was to evaluate maize responses to larval damage from the fall armyworm Spodoptera frugiperda, a major maize pest in Brazil, and the ability of the egg parasitoid Telenomus remus to respond to HIPVs induced by S. frugiperda damage. Y-tube olfactometer bioassays with T. remus showed preferential responses to the S. frugiperda-induced volatiles of SS and BRS 4103 compared to constitutive volatiles of the same genotypes, but to none of the other genotypes tested. Chemical analysis of maize volatile extracts showed that SS produced more volatile compounds in response to S. frugiperda damage, followed by BRS 4103. In addition, higher levels of mono, homo-, or sesquiterpenes, together with green leaf volatiles (GLVs) were the most attractive blend for T. remus; however, there was no attraction when only GLVs were produced in higher levels. In summary, these results show that volatile defence signalling produced by maize plants due to S. frugiperda damage varies significantly depending on maize genotype and this variability influences T. remus foraging behaviour
A PKC-Dependent Recruitment of MMP-2 Controls Semaphorin-3A Growth-Promoting Effect in Cortical Dendrites
There is increasing evidence for a crucial role of proteases and metalloproteinases during axon growth and guidance. In this context, we recently described a functional link between the chemoattractive Sema3C and Matrix metalloproteinase 3 (MMP3). Here, we provide data demonstrating the involvement of MMP-2 to trigger the growth-promoting effect of Sema3A in cortical dendrites. The in situ analysis of MMP-2 expression and activity is consistent with a functional growth assay demonstrating in vitro that the pharmacological inhibition of MMP-2 reduces the growth of cortical dendrites in response to Sema3A. Hence, our results suggest that the selective recruitment and activation of MMP-2 in response to Sema3A requires a PKC alpha dependent mechanism. Altogether, we provide a second set of data supporting MMPs as effectors of the growth-promoting effects of semaphorins, and we identify the potential signalling pathway involved
- …