65 research outputs found

    Measuring degradation of transgenic DNA and screening for horizontal gene transfer from GMO-plant material during composting

    Get PDF
    The experiments show that composting of GM plant residues greatly increases the rate of degradation of transgenic DNA compared to the rate for plant residues left in the soil. If the persistence of transgenic DNA in the environments is considered as the only risk factor, composting is a 'DNA-safe' method to treat GM plant residues. However, even though transgenic plant DNA was not detected in bacterial isolates in our experiments, we cannot conclude that horizontal gene transfer can not take place. The 300 isolates tested proved to be too low a number to be conclusive. The numbers of isolates tested were based on the screenings indicating high transfer, but the screenings were biased apparently because some Bacillus species gave PCR products matching the transgenic DNA. Thus, it is still an open question if composting constitutes a safe way of disposing of GM plant residues. Furthermore, these experiments give rise to other interesting questions, e.g., the behavior of GM plant materials decomposing in waste piles or manure yards under composting-like conditions and the possibility of horizontal gene transfer to indigenous bacteria at the comparably lower temperatures presentat these environments.These questions need to be assessed if the risk associated with the use of GM plants is to be thoroughly investigated

    Molecular surveillance of norovirus, 2005-16: an epidemiological analysis of data collected from the NoroNet network.

    Get PDF
    BACKGROUND: The development of a vaccine for norovirus requires a detailed understanding of global genetic diversity of noroviruses. We analysed their epidemiology and diversity using surveillance data from the NoroNet network. METHODS: We included genetic sequences of norovirus specimens obtained from outbreak investigations and sporadic gastroenteritis cases between 2005 and 2016 in Europe, Asia, Oceania, and Africa. We genotyped norovirus sequences and analysed sequences that overlapped at open reading frame (ORF) 1 and ORF2. Additionally, we assessed the sampling date and country of origin of the first reported sequence to assess when and where novel drift variants originated. FINDINGS: We analysed 16 635 norovirus sequences submitted between Jan 1, 2005, to Nov 17, 2016, of which 1372 (8·2%) sequences belonged to genotype GI, 15 256 (91·7%) to GII, and seven (<0·1%) to GIV.1. During this period, 26 different norovirus capsid genotypes circulated and 22 different recombinant genomes were found. GII.4 drift variants emerged with 2-3-year periodicity up to 2012, but not afterwards. Instead, the GII.4 Sydney capsid seems to persist through recombination, with a novel recombinant of GII.P16-GII.4 Sydney 2012 variant detected in 2014 in Germany (n=1) and the Netherlands (n=1), and again in 2016 in Japan (n=2), China (n=8), and the Netherlands (n=3). The novel GII.P17-GII.17, first reported in Asia in 2014, has circulated widely in Europe in 2015-16 (GII.P17 made up a highly variable proportion of all sequences in each country [median 11·3%, range 4·2-53·9], as did GII.17 [median 6·3%, range 0-44·5]). GII.4 viruses were more common in outbreaks in health-care settings (2239 [37·2%] of 6022 entries) compared with other genotypes (101 [12·5%] of 809 entries for GI and 263 [13·5%] of 1941 entries for GII non-GII.Pe-GII.4 or GII.P4-GII.4). INTERPRETATION: Continuous changes in the global norovirus genetic diversity highlight the need for sustained global norovirus surveillance, including assessment of possible immune escape and evolution by recombination, to provide a full overview of norovirus epidemiology for future vaccine policy decisions. FUNDING: European Union's Horizon 2020 grant COMPARE, ZonMw TOP grant, the Virgo Consortium funded by the Dutch Government, and the Hungarian Scientific Research Fund

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
    corecore