371 research outputs found
Translation competence as a complex multidimensional aspect
This article is devoted to problems of translation didactics. A comparative study of translation competence concepts, their main methodological characteristics, and means of competence formation allows to define the translation teaching goal as the formation of translation competence, which comprises knowledge and skills required for translator’s professional activity. The PACTE group model is chosen as one of the most comprehensive and frequently cited models for organizing the training process
International doctoral training and interculturality. Reflection on the completion of a PhD under a joint supervision as a process of developing intercultural competences
Notre but est de porter un regard réflexif sur la formation doctorale e
Testing non-linear force-free coronal magnetic field extrapolations with the Titov-Demoulin equilibrium
CONTEXT: As the coronal magnetic field can usually not be measured directly,
it has to be extrapolated from photospheric measurements into the corona. AIMS:
We test the quality of a non-linear force-free coronal magnetic field
extrapolation code with the help of a known analytical solution. METHODS: The
non-linear force-free equations are numerically solved with the help of an
optimization principle. The method minimizes an integral over the force-free
and solenoidal condition. As boundary condition we use either the magnetic
field components on all six sides of the computational box in Case I or only on
the bottom boundary in Case II. We check the quality of the reconstruction by
computing how well force-freeness and divergence-freeness are fulfilled and by
comparing the numerical solution with the analytical solution. The comparison
is done with magnetic field line plots and several quantitative measures, like
the vector correlation, Cauchy Schwarz, normalized vector error, mean vector
error and magnetic energy. RESULTS: For Case I the reconstructed magnetic field
shows good agreement with the original magnetic field topology, whereas in Case
II there are considerable deviations from the exact solution. This is
corroborated by the quantitative measures, which are significantly better for
Case I. CONCLUSIONS: Despite the strong nonlinearity of the considered
force-free equilibrium, the optimization method of extrapolation is able to
reconstruct it; however, the quality of reconstruction depends significantly on
the consistency of the input data, which is given only if the known solution is
provided also at the lateral and top boundaries, and on the presence or absence
of flux concentrations near the boundaries of the magnetogram.Comment: 6 pages, 2 figures, Research Not
Large amplitude oscillatory motion along a solar filament
Large amplitude oscillations of solar filaments is a phenomenon known for
more than half a century. Recently, a new mode of oscillations, characterized
by periodical plasma motions along the filament axis, was discovered. We
analyze such an event, recorded on 23 January 2002 in Big Bear Solar
Observatory H filtergrams, in order to infer the triggering mechanism
and the nature of the restoring force. Motion along the filament axis of a
distinct buldge-like feature was traced, to quantify the kinematics of the
oscillatory motion. The data were fitted by a damped sine function, to estimate
the basic parameters of the oscillations. In order to identify the triggering
mechanism, morphological changes in the vicinity of the filament were analyzed.
The observed oscillations of the plasma along the filament was characterized by
an initial displacement of 24 Mm, initial velocity amplitude of 51 km/s, period
of 50 min, and damping time of 115 min. We interpret the trigger in terms of
poloidal magnetic flux injection by magnetic reconnection at one of the
filament legs. The restoring force is caused by the magnetic pressure gradient
along the filament axis. The period of oscillations, derived from the
linearized equation of motion (harmonic oscillator) can be expressed as
, where represents the Alfv\'en speed based on the
equilibrium poloidal field . Combination of our measurements with
some previous observations of the same kind of oscillations shows a good
agreement with the proposed interpretation.Comment: Astron. Astrophys., 2007, in pres
Testing magnetofrictional extrapolation with the Titov-D\'emoulin model of solar active regions
We examine the nonlinear magnetofrictional extrapolation scheme using the
solar active region model by Titov and D\'emoulin as test field. This model
consists of an arched, line-tied current channel held in force-free equilibrium
by the potential field of a bipolar flux distribution in the bottom boundary. A
modified version, having a parabolic current density profile, is employed here.
We find that the equilibrium is reconstructed with very high accuracy in a
representative range of parameter space, using only the vector field in the
bottom boundary as input. Structural features formed in the interface between
the flux rope and the surrounding arcade-"hyperbolic flux tube" and "bald patch
separatrix surface"-are reliably reproduced, as are the flux rope twist and the
energy and helicity of the configuration. This demonstrates that force-free
fields containing these basic structural elements of solar active regions can
be obtained by extrapolation. The influence of the chosen initial condition on
the accuracy of reconstruction is also addressed, confirming that the initial
field that best matches the external potential field of the model quite
naturally leads to the best reconstruction. Extrapolating the magnetogram of a
Titov-D\'emoulin equilibrium in the unstable range of parameter space yields a
sequence of two opposing evolutionary phases which clearly indicate the
unstable nature of the configuration: a partial buildup of the flux rope with
rising free energy is followed by destruction of the rope, losing most of the
free energy.Comment: 14 pages, 10 figure
Chromospheric seismology above sunspot umbrae
The acoustic resonator is an important model for explaining the three-minute
oscillations in the chromosphere above sunspot umbrae. The steep temperature
gradients at the photosphere and transition region provide the cavity for the
acoustic resonator, which allows waves to be both partially transmitted and
partially reflected. In this paper, a new method of estimating the size and
temperature profile of the chromospheric cavity above a sunspot umbra is
developed. The magnetic field above umbrae is modelled numerically in 1.5D with
slow magnetoacoustic wave trains travelling along magnetic fieldlines.
Resonances are driven by applying the random noise of three different
colours---white, pink and brown---as small velocity perturbations to the upper
convection zone. Energy escapes the resonating cavity and generates wave trains
moving into the corona. Line of sight (LOS) integration is also performed to
determine the observable spectra through SDO/AIA. The numerical results show
that the gradient of the coronal spectra is directly correlated with the
chromosperic temperature configuration. As the chromospheric cavity size
increases, the spectral gradient becomes shallower. When LOS integrations is
performed, the resulting spectra demonstrate a broadband of excited frequencies
that is correlated with the chromospheric cavity size. The broadband of excited
frequencies becomes narrower as the chromospheric cavity size increases. These
two results provide a potentially useful diagnostic for the chromospheric
temperature profile by considering coronal velocity oscillations
String Matching and 1d Lattice Gases
We calculate the probability distributions for the number of occurrences
of a given letter word in a random string of letters. Analytical
expressions for the distribution are known for the asymptotic regimes (i) (Gaussian) and such that is finite
(Compound Poisson). However, it is known that these distributions do now work
well in the intermediate regime . We show that the
problem of calculating the string matching probability can be cast into a
determining the configurational partition function of a 1d lattice gas with
interacting particles so that the matching probability becomes the
grand-partition sum of the lattice gas, with the number of particles
corresponding to the number of matches. We perform a virial expansion of the
effective equation of state and obtain the probability distribution. Our result
reproduces the behavior of the distribution in all regimes. We are also able to
show analytically how the limiting distributions arise. Our analysis builds on
the fact that the effective interactions between the particles consist of a
relatively strong core of size , the word length, followed by a weak,
exponentially decaying tail. We find that the asymptotic regimes correspond to
the case where the tail of the interactions can be neglected, while in the
intermediate regime they need to be kept in the analysis. Our results are
readily generalized to the case where the random strings are generated by more
complicated stochastic processes such as a non-uniform letter probability
distribution or Markov chains. We show that in these cases the tails of the
effective interactions can be made even more dominant rendering thus the
asymptotic approximations less accurate in such a regime.Comment: 44 pages and 8 figures. Major revision of previous version. The
lattice gas analogy has been worked out in full, including virial expansion
and equation of state. This constitutes the main part of the paper now.
Connections with existing work is made and references should be up to date
now. To be submitted for publicatio
Sparkling extreme-ultraviolet bright dots observed with Hi-C
Observing the Sun at high time and spatial scales is a step toward understanding the finest and fundamental scales of heating events in the solar corona. The high-resolution coronal (Hi-C) instrument has provided the highest spatial and temporal resolution images of the solar corona in the EUV wavelength range to date. Hi-C observed an active region on 2012 July 11 that exhibits several interesting features in the EUV line at 193 Å. One of them is the existence of short, small brightenings "sparkling" at the edge of the active region; we call these EUV bright dots (EBDs). Individual EBDs have a characteristic duration of 25 s with a characteristic length of 680 km. These brightenings are not fully resolved by the SDO/AIA instrument at the same wavelength; however, they can be identified with respect to the Hi-C location of the EBDs. In addition, EBDs are seen in other chromospheric/coronal channels of SDO/AIA, which suggests a temperature between 0.5 and 1.5 MK. Based on their frequency in the Hi-C time series, we define four different categories of EBDs: single peak, double peak, long duration, and bursty. Based on a potential field extrapolation from an SDO/HMI magnetogram, the EBDs appear at the footpoints of large-scale, trans-equatorial coronal loops. The Hi-C observations provide the first evidence of small-scale EUV heating events at the base of these coronal loops, which have a free magnetic energy of the order of 1026 erg. © 2014. The American Astronomical Society. All rights reserved
On the period ratio P<sub>1</sub>/2P<sub>2</sub> in the oscillations of coronal loops
<p>Aims. With strong evidence of fast and slow magnetoacoustic modes arising in the solar atmosphere there is scope for improved
determinations of coronal parameters through coronal seismology. Of particular interest is the ratio P<sub>1</sub>/2P<sub>2</sub>between the period P<sub>1</sub> of the fundamental mode and the period P<sub>2</sub> of its first harmonic; in an homogeneous medium this ratio is one, but in a more complex
configuration it is shifted to lower values.</p>
<p>Methods. We consider analytically the effects on the different magnetohydrodynamic modes of structuring and stratification, pointing
out that transverse or longitudinal structuring or gravitational stratification modifies the ratio P<sub>1</sub>/2P<sub>2</sub>.</p>
<p>Results. The deviations caused by gravity and structure are studied for the fast and slow modes. Structure along the loop is found to
be the dominant effect.</p>
<p>Conclusions. The departure of P<sub>1</sub>/2P<sub>2</sub> from unity can be used as a seismological tool in the corona. We apply our technique to the
observations by Verwichte et al. (2004), deducing the density scale height in a coronal loop.</p>
- …