424 research outputs found

    On the possible existence of short-period g-mode instabilities powered by nuclear burning shells in post-AGB H-deficient (PG1159-type) stars

    Get PDF
    We present a pulsational stability analysis of hot post-AGB H-deficient pre-white dwarf stars with active He-burning shells. The stellar models employed are state-of-the-art equilibrium structures representative of PG1159 stars derived from the complete evolution of the progenitor stars. On the basis of fully nonadiabatic pulsation computations, we confirmed theoretical evidence for the existence of a separate PG1159 instability strip in the logTefflogg\log T_{\rm eff} - \log g diagram characterized by short-period gg-modes excited by the ϵ\epsilon-mechanism. This instability strip partially overlaps the already known GW Vir instability strip of intermediate/long period gg-modes destabilized by the classical κ\kappa-mechanism acting on the partial ionization of C and/or O in the envelope of PG1159 stars. We found that PG1159 stars characterized by thick He-rich envelopes and located inside this overlapping region could exhibit both short and intermediate/long periods simultaneously. we study the particular case of VV 47, a pulsating planetary nebula nucleus that has been reported to exhibit a series of unusually short pulsation periods. We found that the long periods exhibited by VV 47 can be readily explained by the classical κ\kappa-mechanism, while the observed short-period branch below 300\approx 300 s could correspond to modes triggered by the He-burning shell through the ϵ\epsilon-mechanism, although more observational work is needed to confirm the reality of these short-period modes. Were the existence of short-period gg-modes in this star convincingly confirmed by future observations, VV 47 could be the first known pulsating star in which both the κ\kappa-mechanism and the ϵ\epsilon-mechanism of mode driving are simultaneously operating.Comment: 9 pages, 5 figures, 2 tables. To be published in The Astrophysical Journa

    Gain and time resolution of 45 μ\mum thin Low Gain Avalanche Detectors before and after irradiation up to a fluence of 101510^{15} neq_{eq}/cm2^2

    Full text link
    Low Gain Avalanche Detectors (LGADs) are silicon sensors with a built-in charge multiplication layer providing a gain of typically 10 to 50. Due to the combination of high signal-to-noise ratio and short rise time, thin LGADs provide good time resolutions. LGADs with an active thickness of about 45 μ\mum were produced at CNM Barcelona. Their gains and time resolutions were studied in beam tests for two different multiplication layer implantation doses, as well as before and after irradiation with neutrons up to 101510^{15} neq_{eq}/cm2^2. The gain showed the expected decrease at a fixed voltage for a lower initial implantation dose, as well as for a higher fluence due to effective acceptor removal in the multiplication layer. Time resolutions below 30 ps were obtained at the highest applied voltages for both implantation doses before irradiation. Also after an intermediate fluence of 3×10143\times10^{14} neq_{eq}/cm2^2, similar values were measured since a higher applicable reverse bias voltage could recover most of the pre-irradiation gain. At 101510^{15} neq_{eq}/cm2^2, the time resolution at the maximum applicable voltage of 620 V during the beam test was measured to be 57 ps since the voltage stability was not good enough to compensate for the gain layer loss. The time resolutions were found to follow approximately a universal function of gain for all implantation doses and fluences.Comment: 17 page

    On the excitation of PG1159-type pulsations

    Get PDF
    Stability properties are presented of dipole and quadrupole nonradial oscillation modes of model stars that experienced a late helium shell flash on their way to the white-dwarf cooling domain. The computed instability domains are compared with the observed hot variable central stars of planetary nebulae and the GW Vir pulsators.Comment: Accepted for publication in Astronomy & Astrophysic

    Precise Modeling of the Exoplanet Host Star and CoRoT Main Target HD 52265

    Full text link
    This paper presents a detailed and precise study of the characteristics of the Exoplanet Host Star and CoRoT main target HD 52265, as derived from asteroseismic studies. The results are compared with previous estimates, with a comprehensive summary and discussion. The basic method is similar to that previously used by the Toulouse group for solar-type stars. Models are computed with various initial chemical compositions and the computed p-mode frequencies are compared with the observed ones. All models include atomic diffusion and the importance of radiative accelerations is discussed. Several tests are used, including the usual frequency combinations and the fits of the \'echelle diagrams. The possible surface effects are introduced and discussed. Automatic codes are also used to find the best model for this star (SEEK, AMP) and their results are compared with that obtained with the detailed method. We find precise results for the mass, radius and age of this star, as well as its effective temperature and luminosity. We also give an estimate of the initial helium abundance. These results are important for the characterization of the star-planet system.Comment: 9 pages, 6 figures, 7 tables, to be published in Astronomy and Astrophysic

    Evaluation des mesures du Grenelle de l'Environnement sur le parc de logements - Rapport pour le Conseil Général du Développement Durable, ministère de l'Ecologie

    Get PDF
    La France s'est engagée à réduire les consommations d'énergie du parc des bâtiments existants de 38 % en 2020 par rapport à 2008, objectif " Grenelle -38 % ", et à diviser les émissions de CO2 par quatre en 2050 par rapport à 1990, objectif " Facteur 4 ". Pour atteindre ces objectifs, le Grenelle de l'environnement a mis en avant un certain nombre de leviers réglementaires et incitatifs. Cette étude, réalisée par le CIRED pour le compte du CGDD, a pour objectif d'analyser l'impact de ces différents instruments sur la consommation d'énergie pour le chauffage. Mesures existantes (crédit d'impôt développement durable, éco-prêt à taux zéro, réglementation thermique) et mesures supplémentaires (obligation de rénovation, contribution climat énergie) sont évaluées grâce au modèle Res-IRF du CIRED. Ce modèle prend en compte l'efficacité énergétique des logements et leur évolution dans le temps sous l'effet de rénovations ; il modélise également de façon originale les comportements de chauffage des ménages. Les premières simulations suggèrent que les politiques considérées ne suffisent pas à atteindre les objectifs ambitieux fixés par la France. Ces résultats sont sensibles aux hypothèses retenues. En introduisant des hypothèses plus optimistes (ex : prix des rénovations plus faible) et en prenant en compte des facteurs complémentaires au modèle (ex : bois), un travail de ré-estimation sur la base du modèle du CIRED a permis d'obtenir des résultats plus proches des objectifs du Grenelle

    On the systematics of asteroseismological mass determinations of PG1159 stars

    Get PDF
    We analyze systematics in the asteroseismological mass determination methods in pulsating PG 1159 stars. We compare the seismic masses resulting from the comparison of the observed mean period spacings with the usually adopted asymptotic period spacings, and the average of the computed period spacings. Computations are based on full PG1159 evolutionary models with stellar masses ranging from 0.530 to 0.741 Mo that take into account the complete evolution of progenitor stars. We conclude that asteroseismology is a precise and powerful technique that determines the masses to a high internal accuracy, but it depends on the adopted mass determination method. In particular, we find that in the case of pulsating PG 1159 stars characterized by short pulsation periods, like PG 2131+066 and PG 0122+200, the employment of the asymptotic period spacings overestimates the stellar mass by about 0.06 Mo as compared with inferences from the average of the period spacings. In this case, the discrepancy between asteroseismological and spectroscopical masses is markedly reduced when use is made of the mean period spacing instead of the asymptotic period spacing.Comment: 7 pages, 4 figures, 1 table. To be published in Astronomy and Astrophysic

    New nonadiabatic pulsation computations on full PG1159 evolutionary models: the theoretical GW Vir instability strip revisited

    Get PDF
    We reexamine the theoretical instability domain of pulsating PG1159 stars (GW Vir variables). We performed an extensive g-mode stability analysis on PG1159 evolutionary models with stellar masses ranging from 0.530 to 0.741 Mo for which the complete evolutionary stages of their progenitors from the ZAMS, through the thermally pulsing AGB and born-again phases to the domain of the PG1159 stars have been considered. We found that pulsations in PG1159 stars are excited by the kappa-mechanism due to partial ionization of carbon and oxygen, and that no composition gradients are needed between the surface layers and the driving region, much in agreement with previous studies. We show, for the first time, the existence of a red edge of the instability strip at high luminosities. We found that all of the GW Vir stars lay within our theoretical instability strip. Our results suggest a qualitative good agreement between the observed and the predicted ranges of unstable periods of individual stars. Finally, we found that generally the seismic masses (derived from the period spacing) of GW Vir stars are somewhat different from the masses suggested by evolutionary tracks coupled with spectroscopy. Improvements in the evolution during the thermally pulsing AGB phase and/or during the core helium burning stage and early AGB could help to alleviate the persisting discrepancies.Comment: 10 pages, 8 figures. To be published in Astronomy and Astrophysic

    Solar-like oscillations in the G9.5 subgiant beta Aquilae

    Full text link
    An interesting asteroseismic target is the G9.5 IV solar-like star beta Aql. This is an ideal target for asteroseismic investigations, because precise astrometric measurements are available from Hipparcos that greatly help in constraining the theoretical interpretation of the results. The star was observed during six nights in August 2009 by means of the high-resolution \'echelle spectrograph SARG operating with the TNG 3.58 m Italian telescope on the Canary Islands, exploiting the iodine cell technique. We present the result and the detailed analysis of high-precision radial velocity measurements, where the possibility of detecting time individual p-mode frequencies for the first and deriving their corresponding asymptotic values will be discussed. The time-series analysis carried out from \sim 800 collected spectra shows the typical p-mode frequency pattern with a maximum centered at 416 \muHz. In the frequency range 300 - 600 \muHz we identified for the first time six high S/N (\gtrsim 3.5) modes with l = 0,2 and 11 < n < 16 and three possible candidates for mixed modes (l = 1), although the p-mode identification for this type of star appears to be quite difficult owing to a substantial presence of avoided crossings. The large frequency separation and the surface term from the set of identified modes by means of the asymptotic relation were derived for the first time. Their values are \Delta \nu = 29.56 \pm 0.10 \muHz and \epsilon = 1.29 \pm 0.04, consistent with expectations. The most likely value for the small separation is \delta\nu_{02} = 2.55 \pm 0.71 \muHz.Comment: 8 pages, 8 figures, 3 tables, accepted by A&

    Asteroseismological constraints on the coolest GW Vir variable star (PG 1159-type)PG 0122+200

    Get PDF
    We present an asteroseismological study on PG 0122+200, the coolest known pulsating PG1159 (GW Vir) star. Our results are based on an augmented set of the full PG1159 evolutionary models recently presented by Miller Bertolami & Althaus (2006). We perform extensive computations of adiabatic g-mode pulsation periods on PG1159 evolutionary models with stellar masses ranging from 0.530 to 0.741 Msun. We derive a stellar mass of 0.626 Msun from a comparison between the observed period spacing and the computed asymptotic period spacing, and a stellar mass of 0.567 Msun by comparing the observed period spacing with the average of the computed period spacing. We also find, on the basis of a period-fit procedure, an asteroseismological model representative of PG 0122+200 which is able to reproduce the observed period pattern with an average of the period differences of 0.88 s. The model has an effective temperature of 81500 K, a stellar mass of 0.556 Msun, a surface gravity log g= 7.65, a stellar luminosity and radius of log(L/Lsun)= 1.14 and log(R/Rsun)= -1.73, respectively, and a He-rich envelope thickness of Menv= 0.019 Msun. We derive a seismic distance of about 614 pc and a parallax of about 1.6 mas. The results of the period-fit analysis carried out in this work suggest that the asteroseismological mass of PG 0122+200 could be 6-20 % lower than thought hitherto and in closer agreement (to within 5 %) with the spectroscopic mass. This result suggests that a reasonable consistency between the stellar mass values obtained from spectroscopy and asteroseismology can be expected when detailed PG1159 evolutionary models are considered.Comment: 10 pages, 6 figures. To be published in Astronomy & Astrophysic

    Verification of the Kepler Input Catalog from Asteroseismology of Solar-type Stars

    Full text link
    We calculate precise stellar radii and surface gravities from the asteroseismic analysis of over 500 solar-type pulsating stars observed by the Kepler space telescope. These physical stellar properties are compared with those given in the Kepler Input Catalog (KIC), determined from ground-based multi-color photometry. For the stars in our sample, we find general agreement but we detect an average overestimation bias of 0.23 dex in the KIC determination of log (g) for stars with log (g)_KIC > 4.0 dex, and a resultant underestimation bias of up to 50% in the KIC radii estimates for stars with R_KIC < 2 R sun. Part of the difference may arise from selection bias in the asteroseismic sample; nevertheless, this result implies there may be fewer stars characterized in the KIC with R ~ 1 R sun than is suggested by the physical properties in the KIC. Furthermore, if the radius estimates are taken from the KIC for these affected stars and then used to calculate the size of transiting planets, a similar underestimation bias may be applied to the planetary radii.Comment: Published in The Astrophysical Journal Letter
    corecore