20 research outputs found

    Bail Reform - The Search for Constitutional Realism

    Get PDF

    Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat

    Get PDF
    Seedling root traits of wheat (Triticum aestivum L.) have been shown to be important for efficient establishment and linked to mature plant traits such as height and yield. A root phenotyping pipeline, consisting of a germination paper-based screen combined with image segmentation and analysis software, was developed and used to characterize seedling traits in 94 doubled haploid progeny derived from a cross between the winter wheat cultivars Rialto and Savannah. Field experiments were conducted to measure mature plant height, grain yield, and nitrogen (N) uptake in three sites over 2 years. In total, 29 quantitative trait loci (QTLs) for seedling root traits were identified. Two QTLs for grain yield and N uptake co-localize with root QTLs on chromosomes 2B and 7D, respectively. Of the 29 root QTLs identified, 11 were found to co-localize on 6D, with four of these achieving highly significant logarithm of odds scores (>20). These results suggest the presence of a major-effect gene regulating seedling root vigour/growth on chromosome 6D

    Systems analysis of auxin transport in the Arabidopsis root apex

    Get PDF
    Auxin is a key regulator of plant growth and development. Within the root tip, auxin distribution plays a crucial role specifying developmental zones and coordinating tropic responses. Determining how the organ-scale auxin pattern is regulated at the cellular scale is essential to understanding how these processes are controlled. In this study, we developed an auxin transport model based on actual root cell geometries and carrier subcellular localizations. We tested model predictions using the DII-VENUS auxin sensor in conjunction with state-of-the-art segmentation tools. Our study revealed that auxin efflux carriers alone cannot create the pattern of auxin distribution at the root tip and that AUX1/LAX influx carriers are also required. We observed that AUX1 in lateral root cap (LRC) and elongating epidermal cells greatly enhance auxin’s shootward flux, with this flux being predominantly through the LRC, entering the epidermal cells only as they enter the elongation zone. We conclude that the nonpolar AUX1/LAX influx carriers control which tissues have high auxin levels, whereas the polar PIN carriers control the direction of auxin transport within these tissues

    Linear discriminant analysis reveals differences in root architecture in wheat seedlings by nitrogen uptake efficiency

    Get PDF
    Root architecture impacts water and nutrient uptake efficiency. Identifying exactly which root architectural properties influence these agronomic traits can prove challenging. In this paper approximately 300 wheat plants were divided into four groups using two binary classifications, high vs. low nitrogen uptake efficiency (NUpE), and high vs. low nitrate in medium. The root system architecture for each wheat plant was captured using 16 quantitative variables. The multivariate analysis tool, linear discriminant analysis, was used to construct composite variables, each a linear combination of the original variables, such that the score of the wheat plants on the new variables showed the maximum between-group variability. The results show that the distribution of root system architecture traits differ between low and high NUpE wheat plants and, less strongly, between low NUpE wheat plants grown on low vs. high nitrate media

    X‐ray CT reveals 4D root system development and lateral root responses to nitrate in soil

    Get PDF
    Abstract The spatial arrangement of the root system, termed root system architecture, is important for resource acquisition as it directly affects the soil zone explored. Methods for phenotyping roots are mostly destructive, which prevents analysis of roots over time as they grow. Here, we used X‐ray microcomputed tomography (μCT) to non‐invasively characterize wheat (Triticum aestivum L.) seedling root development across time under high and low nitrate nutrition. Roots were imaged multiple times with the 3D models co‐aligned and timestamped in the architectural plant model OpenSimRoot for subsequent root growth and nitrate uptake simulations. Through 4D imaging, we found that lateral root traits were highly responsive to nitrate limitation in soil with greater lateral root length under low N. The root growth model using all μCT root scans was comparable to a parameterized model using only the final root scan in the series. In a second μCT experiment, root growth and nitrate uptake simulations of candidate wheat genotypes found significant root growth and uptake differences between lines. A high nitrate uptake wheat line selected from field data had a greater lateral root count and length at seedling growth stage compared with a low uptake line

    Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial

    Get PDF
    Background Non-alcoholic steatohepatitis (NASH) is a common type of chronic liver disease that can lead to cirrhosis. Obeticholic acid, a farnesoid X receptor agonist, has been shown to improve the histological features of NASH. Here we report results from a planned interim analysis of an ongoing, phase 3 study of obeticholic acid for NASH. Methods In this multicentre, randomised, double-blind, placebo-controlled study, adult patients with definite NASH,non-alcoholic fatty liver disease (NAFLD) activity score of at least 4, and fibrosis stages F2–F3, or F1 with at least oneaccompanying comorbidity, were randomly assigned using an interactive web response system in a 1:1:1 ratio to receive oral placebo, obeticholic acid 10 mg, or obeticholic acid 25 mg daily. Patients were excluded if cirrhosis, other chronic liver disease, elevated alcohol consumption, or confounding conditions were present. The primary endpointsfor the month-18 interim analysis were fibrosis improvement (≥1 stage) with no worsening of NASH, or NASH resolution with no worsening of fibrosis, with the study considered successful if either primary endpoint was met. Primary analyses were done by intention to treat, in patients with fibrosis stage F2–F3 who received at least one dose of treatment and reached, or would have reached, the month 18 visit by the prespecified interim analysis cutoff date. The study also evaluated other histological and biochemical markers of NASH and fibrosis, and safety. This study is ongoing, and registered with ClinicalTrials.gov, NCT02548351, and EudraCT, 20150-025601-6. Findings Between Dec 9, 2015, and Oct 26, 2018, 1968 patients with stage F1–F3 fibrosis were enrolled and received at least one dose of study treatment; 931 patients with stage F2–F3 fibrosis were included in the primary analysis (311 in the placebo group, 312 in the obeticholic acid 10 mg group, and 308 in the obeticholic acid 25 mg group). The fibrosis improvement endpoint was achieved by 37 (12%) patients in the placebo group, 55 (18%) in the obeticholic acid 10 mg group (p=0·045), and 71 (23%) in the obeticholic acid 25 mg group (p=0·0002). The NASH resolution endpoint was not met (25 [8%] patients in the placebo group, 35 [11%] in the obeticholic acid 10 mg group [p=0·18], and 36 [12%] in the obeticholic acid 25 mg group [p=0·13]). In the safety population (1968 patients with fibrosis stages F1–F3), the most common adverse event was pruritus (123 [19%] in the placebo group, 183 [28%] in the obeticholic acid 10 mg group, and 336 [51%] in the obeticholic acid 25 mg group); incidence was generally mild to moderate in severity. The overall safety profile was similar to that in previous studies, and incidence of serious adverse events was similar across treatment groups (75 [11%] patients in the placebo group, 72 [11%] in the obeticholic acid 10 mg group, and 93 [14%] in the obeticholic acid 25 mg group). Interpretation Obeticholic acid 25 mg significantly improved fibrosis and key components of NASH disease activity among patients with NASH. The results from this planned interim analysis show clinically significant histological improvement that is reasonably likely to predict clinical benefit. This study is ongoing to assess clinical outcomes
    corecore