355 research outputs found

    (1E)-6-Meth­oxy-3,4-dihydro­naphthalen-1(2H)-one oxime

    Get PDF
    In the crystal structure of the title compound, C11H13NO2, the mol­ecules are paired into centrosymmetric dimers via inter­molecular O—H⋯N hydrogen bonds

    Evolution of carnivorous traps from planar leaves through simple shifts in gene expression

    Get PDF
    Leaves vary from planar sheets and needle-like structures to elaborate cup-shaped traps. Here, we show that in the carnivorous plant Utricularia gibba, the upper leaf (adaxial) domain is restricted to a small region of the primordium that gives rise to the trap's inner layer. This restriction is necessary for trap formation, because ectopic adaxial activity at early stages gives radialized leaves and no traps. We present a model that accounts for the formation of both planar and nonplanar leaves through adaxial-abaxial domains of gene activity establishing a polarity field that orients growth. In combination with an orthogonal proximodistal polarity field, this system can generate diverse leaf forms and account for the multiple evolutionary origins of cup-shaped leaves through simple shifts in gene expression

    Lamivudine treatment in patients with HBV-related hepatocellular carcinoma--using an untreated, matched control cohort.

    Get PDF
    Lamivudine is widely used to treat patients with hepatitis B. However, the outcomes in patients with hepatocellular carcinoma (HCC) treated with lamivudine have not been established. This study was conducted to evaluate the outcomes of lamivudine treatment for patients with HCC using an untreated, matched control group. Thirty patients with controlled HCC orally received lamivudine. As controls, 40 patients with HCC who were not treated with lamivudine and matched for clinical features were selected. The lamivudine-treated and untreated groups were compared with respect to changes in liver function, HCC recurrence, survival, and cause of death. In the lamivudine-treated group, there was significant improvement in the Child-Pugh score at 24 months after starting treatment, while no improvement was observed in the untreated group. There was no significant difference in the cumulative incidence of HCC recurrence and survival between the groups. However, there was a significant difference in the cumulative incidence of death due to liver failure (P= 0.043). A significant improvement in liver function was achieved by lamivudine treatment, even in patients with HCC. These results suggest that lamivudine treatment for patients with HCC may prevent death due to liver failure. Further prospective randomized studies using a larger number of patients are required.</p

    Responses of LAI to rainfall explain contrasting sensitivities to carbon uptake between forest and non-forest ecosystems in Australia

    Get PDF
    © 2017 The Author(s). Non-forest ecosystems (predominant in semi-arid and arid regions) contribute significantly to the increasing trend and interannual variation of land carbon uptake over the last three decades, yet the mechanisms are poorly understood. By analysing the flux measurements from 23 ecosystems in Australia, we found the the correlation between gross primary production (GPP) and ecosystem respiration (Re) was significant for non-forest ecosystems, but was not for forests. In non-forest ecosystems, both GPP and Re increased with rainfall, and, consequently net ecosystem production (NEP) increased with rainfall. In forest ecosystems, GPP and Re were insensitive to rainfall. Furthermore sensitivity of GPP to rainfall was dominated by the rainfall-driven variation of LAI rather GPP per unit LAI in non-forest ecosystems, which was not correctly reproduced by current land models, indicating that the mechanisms underlying the response of LAI to rainfall should be targeted for future model development

    Janus monolayers of transition metal dichalcogenides.

    Get PDF
    Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements

    Genic Microsatellite Markers in Brassica rapa: Development, Characterization, Mapping, and Their Utility in Other Cultivated and Wild Brassica Relatives

    Get PDF
    Genic microsatellite markers, also known as functional markers, are preferred over anonymous markers as they reveal the variation in transcribed genes among individuals. In this study, we developed a total of 707 expressed sequence tag-derived simple sequence repeat markers (EST-SSRs) and used for development of a high-density integrated map using four individual mapping populations of B. rapa. This map contains a total of 1426 markers, consisting of 306 EST-SSRs, 153 intron polymorphic markers, 395 bacterial artificial chromosome-derived SSRs (BAC-SSRs), and 572 public SSRs and other markers covering a total distance of 1245.9 cM of the B. rapa genome. Analysis of allelic diversity in 24 B. rapa germplasm using 234 mapped EST-SSR markers showed amplification of 2 alleles by majority of EST-SSRs, although amplification of alleles ranging from 2 to 8 was found. Transferability analysis of 167 EST-SSRs in 35 species belonging to cultivated and wild brassica relatives showed 42.51% (Sysimprium leteum) to 100% (B. carinata, B. juncea, and B. napus) amplification. Our newly developed EST-SSRs and high-density linkage map based on highly transferable genic markers would facilitate the molecular mapping of quantitative trait loci and the positional cloning of specific genes, in addition to marker-assisted selection and comparative genomic studies of B. rapa with other related species

    Molecular mechanisms of water table lowering and nitrogen deposition in affecting greenhouse gas emissions from a Tibetan alpine wetland.

    Get PDF
    Rapid climate change and intensified human activities have resulted in water table lowering (WTL) and enhanced nitrogen (N) deposition in Tibetan alpine wetlands. These changes may alter the magnitude and direction of greenhouse gas (GHG) emissions, affecting the climate impact of these fragile ecosystems. We conducted a mesocosm experiment combined with a metagenomics approach (GeoChip 5.0) to elucidate the effects of WTL (-20 cm relative to control) and N deposition (30 kg N ha-1  yr-1 ) on carbon dioxide (CO2 ), methane (CH4 ) and nitrous oxide (N2 O) fluxes as well as the underlying mechanisms. Our results showed that WTL reduced CH4 emissions by 57.4% averaged over three growing seasons compared with no-WTL plots, but had no significant effect on net CO2 uptake or N2 O flux. N deposition increased net CO2 uptake by 25.2% in comparison with no-N deposition plots and turned the mesocosms from N2 O sinks to N2 O sources, but had little influence on CH4 emissions. The interactions between WTL and N deposition were not detected in all GHG emissions. As a result, WTL and N deposition both reduced the global warming potential (GWP) of growing season GHG budgets on a 100-year time horizon, but via different mechanisms. WTL reduced GWP from 337.3 to -480.1 g CO2 -eq m-2 mostly because of decreased CH4 emissions, while N deposition reduced GWP from 21.0 to -163.8 g CO2 -eq m-2 , mainly owing to increased net CO2 uptake. GeoChip analysis revealed that decreased CH4 production potential, rather than increased CH4 oxidation potential, may lead to the reduction in net CH4 emissions, and decreased nitrification potential and increased denitrification potential affected N2 O fluxes under WTL conditions. Our study highlights the importance of microbial mechanisms in regulating ecosystem-scale GHG responses to environmental changes
    corecore