51 research outputs found

    Is (poly-) substance use associated with impaired inhibitory control? A mega-analysis controlling for confounders.

    Get PDF
    Many studies have reported that heavy substance use is associated with impaired response inhibition. Studies typically focused on associations with a single substance, while polysubstance use is common. Further, most studies compared heavy users with light/non-users, though substance use occurs along a continuum. The current mega-analysis accounted for these issues by aggregating individual data from 43 studies (3610 adult participants) that used the Go/No-Go (GNG) or Stop-signal task (SST) to assess inhibition among mostly "recreational" substance users (i.e., the rate of substance use disorders was low). Main and interaction effects of substance use, demographics, and task-characteristics were entered in a linear mixed model. Contrary to many studies and reviews in the field, we found that only lifetime cannabis use was associated with impaired response inhibition in the SST. An interaction effect was also observed: the relationship between tobacco use and response inhibition (in the SST) differed between cannabis users and non-users, with a negative association between tobacco use and inhibition in the cannabis non-users. In addition, participants' age, education level, and some task characteristics influenced inhibition outcomes. Overall, we found limited support for impaired inhibition among substance users when controlling for demographics and task-characteristics

    Light stimulates tyrosine hydroxylase activity and dopamine synthesis in retinal amacrine neurons

    No full text
    Retinal dopamine-containing amacrine neurons are rapidly activated by light, as shown by an increase in the rate of dopamine formation in vivo and a concomitant increase in the activity of tyrosine hydroxylase, measured in vitro with a subsaturating concentration of pteridine cofactor. Activation of tyrosine hydroxylase also occurs when isolated eyes from rats killed in the dark are exposed to a strobe light. Studies of amacrine neurons should provide basic data about the biochemical processing of visual information, as well as the physiological presynaptic regulatory mechanisms of dopamine-containing neurons
    • …
    corecore